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Abstract: Two series of thermotropic liquid crystal copolymers (TLCPs) with different monomer
structures and compositions were synthesized. The copolymers in the first series consisted of
2,5-diethoxyterephthalic acid (ETA), hydroquinone (HQ), and p-hydroxybenzoic acid (HBA), whereas
those in the second series contained ETA, 2,7-dihydroxynaphthalene (DHN), and HBA. In both
series, the molar ratio of HBA to the other monomers varied from 0 to 5. The thermal properties,
degree of crystallinity, and stability of the liquid crystalline mesophase of the copolymers obtained at
each HBA ratio were evaluated and compared. Overall, at each HBA content, the DHN-containing
copolymer had better thermal properties, but the HQ-containing copolymer exhibited a higher
degree of crystallinity and a more stable liquid crystalline mesophase. Furthermore, similar thermal
stabilities were observed in both series. The dependence of the molecular dynamics of the TLCPs on
the monomer structure was explained using 13C magic-angle spinning/cross-polarization nuclear
magnetic resonance spectroscopy. An in-depth investigation of the relaxation time of each carbon
revealed that the molecular motions of the TLCPs were greatly influenced by the structures of the
monomers present in the main chain. The molecular dynamics of the HQ and DHN monomers in the
two series were evaluated and compared.

Keywords: thermotropic liquid crystalline copolymer; p-hydroxybenzoic acid; thermal property; 13C
solid-state nuclear magnetic resonance spectroscopy; molecular dynamics

1. Introduction

Thermotropic liquid crystal polymers (TLCPs), which contain a special monomer chemical
structure, are already widely used as high-performance commercial engineering polymers owing to their
good thermal properties, high strength, high modulus, low viscosity, and other excellent mechanical
properties [1,2]. Many studies have correlated the structures of TLCPs with their characteristics [3–5].
In particular, compared with liquid crystalline polyamides, which exhibit lyotropic properties,
heat-releasing liquid crystalline polyesters have attracted much attention because of their ease
of melting, despite their inferior physical strength [6,7].

Although interest in TLCPs and their composites has been increasing, to achieve enhanced physical
properties, most studies have focused on rigid rod-type TLCPs with completely aromatic monomers in
the main chain [8,9]. In almost all TLCPs, the thermo-mechanical properties have been enhanced by
using straight, rigid rod-shaped monomer units, including terephthalic acid (TPA), hydroquinone (HQ),
4,4′-biphenol (BP), p-hydroxybenzoic acid (HBA), 6-hydroxy-2-naphthoic acid (HNA), naphthalenediol
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derivatives, and naphthalenedicarboxylic acid isomers [9–13]. If the basic structure is substituted with a
para-substituted carboxyl group or benzene ring, homopolyesters synthesized from monomers such as
TPA, HQ, and HBA typically melt at approximately 600 ◦C [12]. Although rigid rod-type TLCPs exhibit
excellent thermal and mechanical properties, their high melting points generally make processing
difficult [6,14]. These TLCPs also show low solubilities in common solvents. As a result, many studies
have investigated the introduction of substituents, flexible alkyl groups, or side-group TLCPs [15–17].
The use of a monomer with a flexible alkyl unit or kinked monomer structure in the main chain or a
bulky substituent in the aromatic ring can decrease the melting point of the TLCP to 400 ◦C or lower,
which makes melting or injection molding possible [4,18]. In addition, the melting point can be greatly
reduced by using asymmetric monomers or by copolymerizing monomers with different structures
such as HBA and HNA [19,20]. If the copolymer is synthesized using a well-designed monomer, it can
be easily processed, and lowering the processing temperature can expand its applicability. For example,
a structure with a flexible alkyl moieties as side groups or meta-substituted monomer units can provide
significantly increased processability. Disadvantageously, this improvement in processability is often
accompanied by a significant deterioration of the thermo-mechanical properties.

The measurement of 13C nuclear magnetic resonance (NMR) chemical shifts is the best method
to identify synthesized chemical structures. In addition, 13C-NMR relaxation times in the rotating
frame spin-lattice (T1ρ) for 13C nuclei, which have low natural abundance, are affected by dipolar
interactions with directly bonded hydrogens [21]. Therefore, the determination of the relaxation values
of nuclei in different environments in the chemical structure can provide information on the molecular
motion occurring in each part of the structure. The 13C-NMR T1ρ values are particularly informative
because they are directly related to the motion of each carbon in the kHz frequency range. 13C-NMR
T1ρ results obtained using cross-polarization (CP) and magic-angle spinning (MAS) have been used to
elucidate the molecular dynamics of various chemical structures [22,23]. Therefore, the determination
of 13C-NMR T1ρ values is the best method for studying the molecular dynamics of individual 13C
atoms in a chemical structure.

The objectives of this study were to: (1) synthesize a two copolymer series using
2,5-diethoxyterephthalic acid (ETA), HBA, and two different diol monomers, namely, HQ and
2,7-dihydroxynaphthalene (DHN); (2) study the effect of the HBA unit on the properties of the
ETA/HQ and ETA/DHN copolymers by varying the HBA molar ratio (0–5); and (3) study the molecular
dynamics of the two copolymer series using 13C solid-state NMR spectroscopy.

The copolymers were synthesized using ETA, which contains dialkoxy side groups, and DHN,
which is a kinked monomer, to lower the values the glass transition temperature (Tg), melt transition
temperature (Tm), and isotropization temperature (Ti). Both ETA and DHN have very poor thermal
properties, and to compensate for this disadvantage, para-substituted HBA was also used as a monomer.
The thermal properties, thermal stability, liquid crystalline mesophase, degree of crystallinity, and
molecular dynamics of the synthesized copolymers were investigated while varying the molar ratio of
HBA from 0 to 5. In addition, the effect of the molar ratio of HBA on the structures of the polymers
in each series was investigated using 13C-NMR spectroscopy. The T1ρ value for each carbon of the
dialkoxy groups, C=O groups, and TPA, HQ, naphthalene, and HBA rings in the two series (TLCP-I
and -II) was obtained to understand the molecular dynamics. In addition, the dependence of molecular
motions on the molar ratio of HBA was investigated using the relaxation times, and the effect of the
molar ratio of HBA on carbon mobility was discussed.

2. Materials and Methods

2.1. Materials

All reagents used in this study were purchased from Aldrich Chemical Co. (Yongin, Korea) or TCI
(Seoul, Korea) and were used as received. However, common solvents were purified by distillation.
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2.2. Syntheses of Monomers

The chemical structures of all the monomers (1–5) for the TLCP syntheses are shown in Figure 1.
The monomers were synthesized via several routes [24].
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Figure 1. Synthetic routes of the thermotropic liquid crystalline polymers.

2.3. Synthesis of TLCP-I

The TLCPs were synthesized by a melt polymerization method [25]. The monomer composition of
the TLCP-I series is shown in Figure 1 and summarized in Table 1, and the detailed reaction conditions
are shown in Table 2. The same synthetic procedure was used to produce each TLCP, independent of
the monomer composition; therefore, the procedure for synthesizing sample I-C (2/3/5 = 1:1:2 (molar
ratio)) is detailed here as a representative example. First, 25.42 g (1.0 × 10−1 mol) of ETA (2), 19.42 g
(1.0 × 10−1 mol) of 1,4-diacetoxybenzene (3), and 36.03 g (2.0 × 10−1 mol) of 4-acetoxybenzoic acid
(5) were placed in a polymerization tube. The mixture was heated under the conditions shown in
Table 2 in a constant nitrogen flow. Acetic acid was formed during heating, and the polymerization
was completed by lowering the pressure from 300 to 1 Torr as the final step.

The obtained solid product was cooled to room temperature, washed several times with acetone,
and then dried in a vacuum oven at 80 ◦C for 24 h to obtain TLCP-I. In most common solvents, the
synthesized TLCP was not dissolved at all. In particular, it has not been dissolved at all in various
mixed solvents, which have often been used to dissolve TLCP. In almost all common solvents, the
synthesized TLCP was not dissolved at all. In particular, it did not dissolve at all in mixed solvents
such as phenol/p-chlorophenol/1,1,2,2-tetrachloroethane = 25:40:35 (w/w/w), which were frequently
used for TLCP dissolution. As no dissolution was observed, the viscosity could not be measured, as
indicated in Table 3.



Polymers 2020, 12, 198 4 of 18

Table 1. Molar ratios of monomers in the TLCPs.

TLCP
I a II b

ETA HQ HBA ETA DHN HBA

A 1 1 0 1 1 0
B 1 1 1 1 1 1
C 1 1 2 1 1 2
D 1 1 3 1 1 3
E 1 1 4 1 1 4
F 1 1 5 1 1 5

a x: 2,5-diethoxyterephthalic acid (ETA), y: hydroquinone (HQ), z: p-hydroxybenzoic acid (HBA). b x: ETA, y:
2,7-dihydroxynaphthalene (DHN), z: HBA.

2.4. Synthesis of TLCP-II

The same synthetic procedures were used to produce each TLCP; therefore, we describe here
the preparation of sample II-C (2/4/5 = 1:1:2 (molar ratio)) as a representative example. TLCP-II was
synthesized using 25.42 g (1.0× 10−1 mol) of ETA (2), 24.42 g (1.0× 10−1 mol) of 2,7-diacetoxynaphthalene
(4), and 36.03 g (2.0 × 10−1 mol) of 4-acetoxybenzoic acid (5). As a final step to complete the
polymerization, the pressure was lowered from 240 to 1 Torr. The subsequent steps were the same as
those described for TLCP-I. The monomer composition of TLCP-II is shown in Figure 1 and summarized
in Table 1, and the detailed reaction conditions are shown in Table 2. As described for the TLCP-I
series, the solubility of each polymer in the TLCP- II series was examined using a mixture of three
solvents. No dissolution was observed; hence, the viscosity was not measured (Table 3).

2.5. NMR Spectroscopy

Powdered samples were inserted into 4 mm diameter zirconia rotors and then spun at fsufficient
speed to avoid the overlap of spinning sidebands. 13C-NMR (Brucker, Berlin, Germany) T1ρ values
were measured by varying the duration of the 13C spin-locking pulse [26]. The typical experimental
approach assumes the use of CP from protons to enhance 13C sensitivity. The width of the π/2 pulse
used to measure the 13C-NMR T1ρ values was 3.3 µs. The decay of the 13C magnetization in the
spin-locking field was followed for spin-locking times of up to 160 ms.

2.6. Characterization

The thermal properties of the copolymers were determined by differential scanning calorimetry
(DSC), and thermogravimetric analysis (TGA), which were conducted under a N2 atmosphere using
DuPont 910 equipment (New Castle, DE, USA). The samples were heated or cooled at a rate of 20 ◦C/min.
Wide-angle X-ray diffraction (XRD) measurements were performed at room temperature on a Rigaku
(D/Max-IIIB) X-ray diffractometer (Tokyo, Japan) using Ni-filtered Cu-Kα radiation. The scanning
rate was 2◦/min over a 2θ range of 2–35◦. A polarizing microscope (Leitz, Ortholux, Lahn-Dill-Kreis,
Germany) equipped with a Mettler FP-5 hot stage was used to examine the liquid crystalline behavior.
The ChemDradfsw (Bitek Chems. Inc., Seoul, Korea) computer simulation program was used to
investigate the three-dimensional (3-D) polymer structures.

The 13C NMR chemical shifts and T1ρ values were obtained by 13C CP/MAS NMR spectroscopy
at a Larmor frequency of ω0/2π = 100.61 MHz using Bruker 400 DSX NMR spectrometers at the Korea
Basic Science Institute, Western Seoul Center, Seoul, Korea. The chemical shifts are referenced to
tetramethylsilane (TMS).
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Table 2. Melt polymerization conditions of TLCPs.

TLCP
I a II b

Temperature (◦C)/time (min)/pressure (Torr) Temperature (◦C)/time (min)/pressure (Torr)

A 240/120/760→ 260/120/760→ 280/60/760→ 290/60/760→ 300/40/760→ 310/40/300→ 320/30/1 250/60/760→ 270/50/760→ 280/30/760→ 290/50/760→ 290/30/240→ 290/50/1
B 240/120/760→ 260/80/760→ 280/60/760→ 300/45/760→ 300/30/300→ 310/60/1 250/40/760→ 270/120/760→ 270/60/240→ 270/40/1
C 240/150/760→ 260/60/760→ 280/90/760→ 300/75/760→ 310/35/300→ 310/40/1 250/30/760→ 270/30/760→ 280/30/760→ 290/80/760→ 290/30/240→ 290/50/1
D 240/120/760→ 260/60/760→ 280/60/760→ 300/60/760→ 305/45/300→ 310/30/1 245/120/760→ 250/30/760→ 265/50/760→ 270/50/240→ 285/40/1
E 240/120/760→ 260/60/760→ 280/60/760→ 300/60/760→ 305/35/300→ 310/40/1 250/120/760→ 265/50/760→ 280/60/760→ 285/50/240→ 290/30/1
F 245/120/760→ 260/60/760→ 280/60/760→ 300/60/760→ 310/30/300→ 310/30/1 260/60/760→ 270/60/760→ 280/60/760→ 295/30/760→ 295/30/240→ 295/30/1

a x: 2,5-diethoxyterephthalic acid (ETA), y: hydroquinone (HQ), z: p-hydroxybenzoic acid (HBA). b x: ETA, y: 2,7-dihydroxynaphthalene (DHN), z: HBA.

Table 3. General properties of TLCPs.

TLCP
I a II b

IV c Tg
(◦C)

Tm
(◦C)

Ti
(◦C)

∆Hm
(J/g)

∆Hi
(J/g)

TD
i d

(◦C)
wtR

600 e

(%)
LC

Phase
DC f

(%)
IV Tg

(◦C)
Tf

g

(◦C)
Tm

(◦C)
Ti

(◦C)
∆Hm
(J/g)

∆Hi
(J/g)

TD
i

(◦C)
wtR

600

(%)
LC

Phase
DC
(%)

A Insol.h 93 275 327 1.07 1.32 362 32 Nematic 39 Insol. 125 200 360 31 No. 0
B Insol. 96 233 321 1.28 1.42 380 34 Nematic 20 Insol. 126 200 370 41 No. 0
C Insol. 86 231 312 1.69 2.07 345 34 Nematic 20 Insol. 125 200 352 38 No. 3
D Insol. 83 228 302 1.61 2.50 344 34 Nematic 24 Insol. 99 278 305 2.66 1.04 323 36 Nematic 15
E Insol. 87 258 317 1.61 3.51 346 37 Nematic 26 Insol. 110 287 311 3.01 2.76 339 38 Nematic 16
F Insol. 86 256 348 2.74 1.47 356 38 Nematic 39 Insol. 111 311 343 3.42 1.01 369 41 Nematic 18

a x: 2,5-diethoxyterephthalic acid (ETA), y: Hydroquinone (HQ), z: p-hydroxybenzoic acid (HBA). b x: ETA, y: 2,7-dihydroxynaphthalene (DHN), z: HBA. c Inherent viscosity was
measured at a concentration of 0.1 g/dL solution in phenol/p-chlorophenol/TCE = 25/40/35 (w/w/w) at 25 ◦C. d At 2% initial weight-loss temperature. e Weight percent of residue at 600 ◦C. f

Degree of crystallinity. g Flow temperature is observed by polarized optical micrographs. h Insoluble.
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3. Results and Discussion

3.1. Thermal Behavior

The results of the 2nd heating were used to obtain thermal properties (Tg, Tm, and Ti) using DSC,
and the scanning temperature ranges were determined in advance using TGA to prevent thermal
decomposition during scanning. The thermal properties of the two TLCP series are summarized in
Table 3. The Tg, which is known to depend on the flexibility and rigidity of the monomers, reflects
changes in chain interactions and the free volume. In other words, the Tg is influenced by the segmental
motion of the chains and by the substituent size [27]. If the monomer in the main chain has a rigid
structure and a large substituent, the free volume will be large, and the Tg value will be high. In the
TLCP-I series, the copolymers were synthesized by varying the HBA molar ratio between 0 and 5. The
Tg value of the polymer without the HBA was 93 ◦C, but this value increased to 96 ◦C when 1 mol of
HBA was added. Increasing the HBA amount further to 3 mol decreased the Tg value to 83 ◦C (sample
I-D), but the Tg value then increases to 87 ◦C when 4 mol of HBA was used. Finally, with 5 mol of
HBA, the copolymer maintained a Tg value of 86 ◦C.

The Tg values of the TLCP-II series showed a similar trend. When 3 mol of HBA was used
(sample II-D), the Tg value was the lowest (99 ◦C), whereas, at 4 mol, the Tg value increased to
110 ◦C (sample II-E), which was similar to that obtained with 5 mol of HBA (111 ◦C). At low ratios
of HBA in the random copolymer, the molecular structure was disturbed, resulting in easier chain
movement and increased mobility, and consequently, a lower Tg. This phenomenon can be explained
thermodynamically using the following equation:

T = ∆H/∆S (1)

where ∆H is the enthalpy change and ∆S the entropy change.
However, when the ratio of HBA increases, a block copolymer (poly(hydroxy benzoate) (PHB))

of HBA itself was formed, and the Tg increased. Generally, a block copolymer has a large ∆H and
a relatively small ∆S, resulting in an enhancement of the thermal properties, such as an increase of
Tg [28,29]. This phenomenon was observed to be consistent for both series of synthesized TLCPs. The
Tg values for the TLCP-II series ranged from 99 to 126 ◦C, depending on the HBA molar ratio.

The Tg values of the copolymers containing DHN (TLCP-II series) were higher than those of
the polymers containing HQ (TLCP-I series). Compared with the HQ monomer, the naphthalene
monomer was substituted with nonlinear units at the 2 and 7 positions. There is a large volume of
DHN; therefore, the free volume is large, resulting in higher Tg values for copolymers with DHN than
for those with HQ in all HBA molar ranges [19,30]. In other words, the bulky DHN monomer made
the movement of the polymer chain difficult, limiting segmental motion, so that the Tg of naphthalene
increases more than that of HQ.

The Tm values of the TLCP-I series, which includes HQ, showed a similar tendency to the Tg

values (Table 3). The polymer without HBA showed a melting point of 275 ◦C. However, as the HBA
molar ratio in the copolymer increased from 1 to 3, the Tm value decreased from 233 to 228 ◦C. As the
HBA ratio increased, ∆S increased, resulting in a decrease in Tm (228 ◦C). Above 4 mol HBA, the Tm

values were in the range of 256–258 ◦C, as an excess of HBA monomers, resulted in the formation of a
block copolymer of HBA, thus increasing the Tm [31]. In the case of the TLCP-II series containing DHN
monomers, the copolymer was amorphous, and the Tm was not observed up to an HBA molar ratio
of 2 owing to the flexible dialkoxy groups in ETA and the kinked structure of DHN [32]. The flow
temperature observed by polarized optical microscopy was approximately 200 ◦C, regardless of the
molar ratio of HBA. However, when the HBA ratio was ≥3, Tm values were observed. On increasing
the HBA ratio from 3 to 5, the Tm values gradually increased from 278 to 311 ◦C. The DSC results for
the two TLCP series are shown in Figure 2.
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The same tendency was observed for the Ti values as for the Tg and Tm values (Table 3). In the
case of the TLCP-I series, the polymer without HBA had a Ti value of 327 ◦C, but the Ti values of the
copolymers with 1–3 mol of HBA monomer content gradually decreased from 321 to 302 ◦C. However,
when the ratio of HBA in the copolymer increased from 3 to 5, the Ti value increased from 302 to
348 ◦C. In the case of the TLCP-II series, Ti is not observed up to 2 mol of HBA (sample II-C), similar to
the behavior observed for Tm. The kinked structure of DHN and the dialkoxy substituents of ETA
do not promote liquid crystallinity. In contrast, the simple and linear structure of HBA helps to form
liquid crystalline mesophases. Hence, when the molar ratio of HBA increased from 3 to 5, the Ti
value increased from 305 to 343 ◦C. These values were similar to those of TLCP-I (302–348 ◦C). This
phenomenon can also be explained by the rigidity of the HBA monomer in part of the main chain.

The enthalpy changes of the crystal-anisotropic transition (∆Hm) and the enthalpy change of the
anisotropic-isotropic transition (∆Hi) were very small, as shown in Table 3, and no constant tendency
was found. For example, in the case of TLCP-I, as the number of moles of HBA increased from 0
to 5 moles, ∆Hm were 1.07–2.74 J/g, and ∆Hi were 1.32–3.51 J/g, respectively. In the case of TLCP-II,
when the number of moles of HBA increased from 3 to 5 moles, the values of ∆Hm were 2.66–3.42 J/g
and ∆Hi was 1.01–2.76 J/g. This result is because the HBA monomer has a random sequence in the
melt polymerization process, and the alkoxy side group present in the main chain reduces the effect
of enthalpy.

The TGA results for the two TLCP series are shown in Figure 3 and summarized in Table 3. First,
in the case of the TLCP-I series, the tendency observed with varying the HBA ratio is similar to the
thermal property results (Tg, Tm, and Ti), as described above. A TD

i value of 362 ◦C was observed
for HBA = 0 mole (sample I-A), but this value decreased gradually from 380 to 344 ◦C when HBA
was increased from 1 to 3 mol. When HBA was further increased to 5 mol, the TD

i value increased
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again to 356 ◦C. Similar results were observed for the TLCP-II series, with various changes in TD
i

depending on the HBA ratio. Therefore, to control the deformation owing to thermal decomposition
during processing from the melted state, the structure and ratio of the monomers in the copolymer
should be carefully selected. The overall TD

i results for both series were generally similar. However,
higher wtR

600 values were observed for the TLCP-II series with DHN monomers than for the TLCP-I
series with HQ monomers. This difference is because more charcoal is produced at high temperatures
from naphthalene derivatives, which contain two benzene rings, than from HQ, which contains one
benzene ring. Overall, the reason why the value of wtR

600 is generally lower than that of the rigid
rod-like main chain TLCP is explained by the alkoxy side group in the main chain.
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For the two TLCP series, the changes in the overall thermal properties (Tg, Tm, Ti, and TD
i) with

the molar ratio of HBA are compared in Figure 4. In each series, the minimum values were obtained
when 3 mol of HBA was added to the copolymer. These values then gradually increased as the HBA
molar ratio increased up to 5. The shape of the eutectic curve, which depends on the amount of
HBA monomer content in the TLCP copolymer, has been described in detail previously, and similar
results have been published by several researchers [11,19,32,33]. The temperature change of our study
according to the HBA molar ratio is small compared to other research results, which is probably due to
the alkoxy side groups in the main chain.

We found that the TLCP copolymer series containing DHN and HQ can be melt-processed without
thermal decomposition problems by controlling the ratio of HBA monomer. It was also found that
controlling the HBA molar ratio can determine the thermal properties of the TLCP copolymer.
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3.2. Liquid Crystalline Mesophase

Liquid crystallinity, which occurs between Tm and Ti, can be observed using an optical polarizing
microscope [34,35]. Figure 5 shows the liquid crystallinity observed for polymers in the TLCP-I and
TLCP-II series at various temperatures. A numer heating and cooling processes were taken to get a
better picture, and these LC mesophases were obtained by the heating process between Tm and Ti.
All the liquid crystalline mesophases show a thread-like nematic texture [36]. The nematic phases
show poorly developed texture, which is mainly due to a high molecular weight or poor flow of the
substance above the Tm.

The stability of the mesophase of an LCP depends on the stiffness and aspect ratio of the mesogenic
unit. If the mesogens in the main chain of the polymer are straight and rigid rods, the mesophase of the
LCP can be stabilized. Thus, the HBA monomers can stabilize the liquid crystalline phase, regardless
of the HBA ratio in the copolymer. However, as in the TLCP-II series, if a 2,7-substituted kinked
monomer (DHN) is included in the main chain, the liquid crystalline mesophase is destroyed, and a
liquid crystal texture is not observed [37]. As mentioned in the description of Tm and Ti, liquid crystal
textures are not observed when the HBA molar ratio is between 0 and 2 in the TLCP-II series.
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Figure 5. Polarized optical micrographs of (a) I-D at 280 ◦C, (b) I-E at 300 ◦C, (c) I-F at 270 ◦C, (d) II-D
at 280 ◦C, (e) II-E at 295 ◦C, and (f) II-F at 315 ◦C (magnification 200×).

3.3. XRD

The wide-angle XRD patterns of the two TLCP series are shown in Figure 6. Although their
diffractograms are different from each other, the XRD patterns of the TLCPs as a whole are not largely
different from general crystal characteristics. For the copolymers, major peaks are observed between
2θ = 20◦ and 30◦, indicating a semicrystalline character. The degree of crystallinity (DC) was calculated
from Ic, which is the peak area of the crystalline region, and Ia, which is the peak area of the amorphous
region, as follows [38]:

DC (%) = [Ic/(Ic + Ia)] × 100 (2)

The calculated DC values are summarized in Table 3. In the TLCP-I series, the polymer composed
of only ETA and HQ had a DC of 39%, whereas the DC of the copolymer with 1 mol of HBA (sample
I-B) abruptly decreased to 20%. However, as the molar ratio of HBA in the copolymer increased to
5, DC gradually increased to 39%. As previously mentioned, short and rigid HBAs contribute to
the crystallinity of the entire copolymer. Thus, an increase in DC will occur at higher HBA ratios.
In contrast, in the TLCP-II series, an amorphous diffraction pattern was observed at an HBA ratio of
1 owing to ETA having flexible alkyl groups and DHN having a kinked structure. However, at an
HBA molar ratio of 2 (sample II-C), a very small crystalline peak was observed. When the HBA ratio
was increased to 5, the intensity of the peak increased further. As shown in Table 3, when the ratio of
HBA in the copolymer increases from 2 to 5, the DC increases from 3% to 18%. Comparing the two
TLCP series, it was found that the linear structure of the HQ monomer had a greater effect on the
crystallization of the LCP main chain than the kinked structure of the DHN monomer. Based on the
results in Figure 6, the d and 2θ values of each XRD peak are summarized in Table 4 [39].
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Table 4. d values corresponding to the XRD peaks of the TLCPs.

TLCP
d (Å) (2θ (degree))

I a II b

A 7.14 (12.38) c 4.77 (18.56) 3.20 (27.82) - 3.99 (22.24) - - -
B 4.17 (21.28) - - - 4.02 (22.1) - - -
C 4.50 (19.72) 3.85 (23.08) 3.08 (28.96) - 4.91 (18.04) 4.47 (19.84) - -
D 4.46 (19.88) 3.82 (23.26) 3.07 (29.06) - 4.51 (19.64) 4.29 (20.7) 3.81 (23.34) 3.12 (28.56)
E 4.48 (19.78) 4.23 (20.96) 3.81 (23.32) 3.04 (29.3) 4.51 (19.68) 4.25 (20.88) 3.78 (23.52) 3.12 (28.58)
F 4.45 (19.94) 4.22 (21.02) 3.79 (23.44) 3.03 (29.4) 4.51 (19.68) 4.24 (20.94) 3.80 (23.4) 3.14 (28.42)

a x: 2,5-diethoxyterephthalic acid (ETA), y: hydroquinone (HQ), z: p-hydroxybenzoic acid (HBA). b x: ETA, y:
2,7-dihydroxynaphthalene (DHN), z: HBA. c 2θ values are shown in parentheses.

XRD peaks were investigated between Tm and Ti ranges showing LC mesophase, and the results
are shown in Figure 7. As expected, the XRD obtained at 285 ◦C was nearly amorphous, and the sharp
peaks were almost absent compared to the results obtained at 25 ◦C. In high-temperature conditions,
structural irregularity caused by a random sequence of monomer units, together with the random
existence of alkoxy side group or kinked structures, certainly would hinder crystallization.
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Figure 7. Patterns of sample D in two TLCP series at 25 ◦C and 285 ◦C.

Figure 8 shows a 3-D computer simulation illustrating the detailed relationship between the
copolymer structure and crystallinity. The chemical structures of copolymers in the two series
obtained using the same molar ratios of HBA (1 and 5 mol HBA) are compared. In the TLCP-I series,
the copolymer obtained using 5 mol of HBA (sample I-F) shows a more linear structure than that
obtained using 1 mol of HBA (sample I-B). This result is due to the effect of the rigid rod-shaped HBA
monomer on the crystallinity.
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Similar results were obtained for the TLCP-II series, as the copolymer containing 5 mol of HBA
shows a more linear structure than that containing 1 mol of HBA (sample II-B), which is expected
to affect the crystallinity. In contrast, when comparing the 3-D structures of the two TLCP series at
the same HBA ratio, the TLCP-I structure is more linear compared to the TLCP-II structure, but the
structure of the TLCP-II is more spherical. Thus, it was found that the copolymer structures directly
affect the crystallinity.

3.4. 13C Chemical Shifts and Relaxation Times

Structural analysis of the TLCP-I and TLCP–II series was carried out by solid-state 13C CP/MAS
NMR. The 13C chemical shifts of the TLCP-I and -II series were obtained for the carbons of the alkoxy
groups and aromatic rings at room temperature. In the TLCP-I series, for sample I-A, the 13C chemical
shifts for CH3 and CH2 of the alkoxy group are observed at 14.79 and 64.69 ppm, respectively, as
shown in Figure 9. The peaks at 115.96, 122.64, 148.87, and 151.63 ppm are assigned to the benzene
rings in ETA and HQ, and the chemical shift for C=O is observed at 164.78 ppm [40,41]. The peak for
the carbon of C=O bonds has a relatively low intensity. The spinning sidebands for the benzene rings
in ETA and HQ are marked with asterisks in Figure 9. The chemical shifts of all carbons are consistent
with the chemical structure shown in Figure 9. In the case of sample I-F (Figure 10), the 13C chemical
shifts for the alkoxy group, ETA, HQ, and C=O are similar to those observed in I-A. The 13C chemical
shifts for the benzene ring in PHB are located at 126.37, 132.34, and 148.70 ppm.Polymers 2019, 11, x FOR PEER REVIEW 9 of 19 
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Figure 9. 13C-NMR chemical shifts of sample I-A at room temperature. In the chemical formula,
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By contrast, in the TLCP-II series, for sample II-A, the 13C chemical shifts of CH3 and CH2 are
observed at 14.36 and 64.60 ppm, respectively (Figure 11). The 13C peak at 164.11 ppm corresponds to
C=O, and the signals at 149.53, 133.98, 128.91, and 119.19 ppm are attributed to the aromatic rings in
ETA and DHN [42]. The asterisks in Figure 11 represent the spinning sidebands of ETA and DHN
rings. The 13C chemical shifts for the alkoxy group, C=O, and the aromatic rings in ETA, DHN, and
PHB in sample II-F are consistent with the chemical structure shown in Figure 12. The results for II-F
are similar to those for samples II-B, II-C, II-D, and II-E.
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To obtain the 13C-NMR T1ρ values, the magnetization recovery curves for the TLCP-I and II series
were measured as a function of the delay time. All the magnetization recovery traces can be described
by a single-exponential function [43]:

I(t) = I0 exp(-Wt), (3)

where I(t) is the magnetization according to the spin-locking pulse duration t, and I0 is the total nuclear
magnetization at thermal equilibrium. The T1ρ (=1/W) values were obtained from the slopes of the
delay time vs. intensity curves, and the results for each carbon in the TLCP-I and -II series are listed
in Tables 5 and 6. The 13C relaxation times in the TLCP-I and -II series are compared according to
the molar ratio of HBA. The 13C-NMR T1ρ values for the CH3 and CH2 of sample I-A are 39.2 and
4.4 ms, respectively (Table 5). The CH3 group has a longer relaxation time than the CH2 of the alkoxy
groups, which is consistent with the fact that dipolar relaxation is more efficient based on the number
of bonded protons. In addition, the carbonyl carbons (C=O) have greater T1ρ values than the carbons
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of the alkoxy group. When the molar ratio of HBA is increased, the 13C-NMR T1ρ values for the alkoxy
group, C=O, and the aromatic rings in TPA, HQ, and HBA decrease, as shown in Table 5.
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Table 5. Spin-lattice relaxation time T1ρ (ms) in the rotating frame for each carbon in the TLCP-I series
at room temperature.

TLCP I-A I-B I-C I-D I-E I-F

CH3-a 39.2 39.7 23.8 24.4 25.4 25.7
CH2-b 4.4 3.5 4.1 3.4 5.1 2.9

c 12.2 17.4 11.9 14.7 14.1 14.0
d 41.9 46.0 42.9 42.9 47.3 45.2
e 125.9 95.9 90.8 80.4 72.9 66.6
f 121.0 81.5 83.1 70.4 77.8 87.8
g 12.2 8.4 6.7 6.1 5.8 6.7

C=O 92.0 62.2 56.0 59.1 65.8 65.8

Table 6. Spin-lattice relaxation time T1ρ (ms) in the rotating frame for each carbon in the TLCP-II series
at room temperature.

TLCP II-A II-B II-C II-D II-E II-F

CH3-a 55.1 42.5 38.5 34.0 24.5 36.6
CH2-b 8.2 5.8 5.8 6.4 4.5 6.7

c,d 29.3 21.2 18.0 19.0 18.0 27.4
e,f 68.9 53.1 42.7 23.9 22.3 20.5
g 119.9 118.0

h,i 191.7 144.1 136.5 130.1 106.5 108.1
j 80.5 75.2
k 107.8 114.2 101.1 94.6

C=O 182.6 101.1 100.4 102.3 83.1 77.6

The 13C-NMR T1ρ values for the TLCP-II series are shown in Table 6. Here, the 13C peak for the
benzene ring in HBA somewhat overlaps the peak for the aromatic rings of ETA and HQ, as shown
in Figure 12, making it difficult to obtain the T1ρ values. For C=O in sample II-A, the T1ρ value is
remarkably high. Thus, the alkoxy group and C=O in the TLCP-II series have higher mobilities than
those in the TLCP-I series. Carbons e and f in sample I-A and carbons g, h, and i in sample II-A have
longer relaxation times than the other carbons, as shown in Tables 5 and 6. These greater T1ρ values
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indicate a higher rigidity of the main chains, which implies that there are strong interfacial interactions
between the aromatic rings and the polymer main chains and between the alkoxy groups and polymer
main chains. The T1ρ values for the TLCP-I and -II series indicate the effect of the HBA molar ratio
on the mobility. All of the C atoms in the TLCP-II series have higher mobilities than those in the
TLCP-I series.

4. Conclusions

Copolymers in the TLCP-I series included ETA, HQ, and HBA, whereas those in the TLCP-II series
included ETA, DHN, and HBA. Both series were synthesized with varying molar ratios between HBA
and the other two monomers (0–5). The thermal properties, liquid crystalline mesophases, and degrees
of crystallinity of the polymers in the two TLCP series were investigated and compared. In both the
TLCP series, the minimum Tg, Tm, Ti, and TD

i values were observed at an HBA molar ratio of 3. The
liquid crystalline mesophases showed nematic schlieren textures in both series, but for the TLCP-II
series, nematic textures were not observed at HBA ratios lower than 3 owing to the kinked DHN
structure in the main chain. The degrees of crystallinity of the TLCP-I series containing the linear HQ
monomer were higher than those of the TLCP-II series with the kinked DHN monomer.

The chemical structures of the polymers in the TLCP-I and TLCP-II series were confirmed based
on the 13C chemical shifts. From the T1ρ values, the effects of the HBA molar ratio on carbon mobility
were determined for the TLCP-I and -II series. The 13C-NMR T1ρ values decreased for all carbon atoms
as the molar ratio of HBA monomers bound to the HQ, and DHN rings increased. In the TLCP-I
series, the T1ρ values decreased gradually with an increase in the HBA molar ratio, whereas in the
TLCP-II series, the T1ρ values decreased more sharply. This difference indicates that the polymers in
the TLCP-II series are more rigid than those in the TLCP-I series and that the molar ratio of HBA has a
greater influence on the TLCP-II series. Thus, the HBA rings in the TLCP-I series have higher mobility
than those in the TLCP-II series. The 13C-NMR T1ρ was dominated by fluctuations in the anisotropic
chemical shifts and became shorter when the amplitude of the molecular motions decreased.
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