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Abstract: In this study, a lignin-based polyacid catalyst was synthesized via two steps to enhance
water resistance of urea–formaldehyde (UF) resins. The first steps involved a hydroxymethylation
reaction to increase the hydroxyl content in lignin. Then, hydroxymethylated lignins were reacted
with maleic anhydride to form maleated lignin-based polyacids. The acid groups were expected to
function as acid catalysts to catalyze the curing process of UF resin. In order to elucidate the structural
variation, 3-methoxy-4-hydroxyphenylpropane as a typical guaiacol lignin structural unit was used
as a model compound to observe the hydroxymethylation and the reaction with maleic anhydride
analyzed by 1H and 13C NMR. After the structural analysis of synthesized lignin-based polyacid
by FTIR and 13C NMR, it was used to produce UF resin as an adhesive in plywood and medium
density fiberboard (MDF) production, respectively. The results showed that when the addition of
lignin-based polyacid was 5% in plywood, it could effectively improve the water resistance of UF
resins as compared to commercial additive NH4Cl. It also exhibited a lower formaldehyde emission.
Like plywood, lignin-based catalysts used in medium density fiberboard production could not only
maintain the mechanical properties, but also inhibit the water adsorption of fiberboards.
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1. Introduction

Urea–formaldehyde resins, generated by the polycondensation of formaldehyde, urea, and other
modifiers, are one of the most important members of thermosetting resins [1–3]. Due to their simple
synthesis process, excellent thermal properties, low curing temperature, resistance to microorganism,
low cost, and excellent mechanical properties, UF resins have been widely used as wood adhesives.
The total consumption of UF resins in the field of wood adhesives accounts for around 75% of
formaldehyde-based resin production [3–5]. However, some undesirable disadvantages, such as the
emission of formaldehyde and poor water resistance, have seriously hindered the wide application of
UF resins. The release of formaldehyde can potentially lead to a chronic toxicity and even cancer, while
the poor water resistance of resins inevitably reduces the service life of materials. Therefore, it is highly

Polymers 2020, 12, 175; doi:10.3390/polym12010175 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-0117-0186
http://www.mdpi.com/2073-4360/12/1/175?type=check_update&version=1
http://dx.doi.org/10.3390/polym12010175
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 175 2 of 12

attractive to synthesize UF resins with an enhanced water resistance and acceptable formaldehyde
emission [6–8].

In general, the polycondensation reactions that occur during the formation of UF resins are easily
activated by acid catalysts to a highly crosslinked three-dimensional crystalline structure. Nevertheless,
they are severely inhibited under neutral and alkaline conditions [9]. Thus, in order to promote the
curing and production efficiency, acid catalysts are essential additives for UF resin in the wood-based
panel industry. Currently, UF resins can be effectively catalyzed in practical production by inorganic
acids or acidic salts such as ammonium chloride, ammonium sulfate, phosphoric acid, etc. [1,4].
For example, Li et al. have investigated the effects of curing agents, including ammonium chloride
and hexamethylenetetramine, on the properties and performance of the UF resin [4]. The results
showed that the initial viscosity, crosslinking density, and thermal stability of UF resin were enhanced
by adding these curing agents. In addition, the prepress strength of UF resin was increased by 82%
and 111%, respectively. However, these inorganic compounds existing in the resins tended to absorb
and enrich the moisture from the air, which then resulted in the hydrolysis of UF resins [10,11]. As a
result, the toxic formaldehyde is released to the environment and bonding strength is sequentially
decreased. Obviously, the water resistance property and formaldehyde emission are highly relevant
to the utilization of inorganic curing agents [10]. Therefore, to overcome these deficiencies, a variety
of studies have recently been carried out to find alternatives to resolve the challenge in UF resin
utilization. Different from inorganic acids, organic acids are generally weak acids. No acidity and
water absorption are observed at room temperature. Therefore, some organic acids such as formic
acid, tartaric acid, oxalic acid, and citric acid have been used as curing agents for UF resins [12,13].
For example, Nikola et al. have investigated the effect of tartaric acid addition on the curing behavior
of UF resin. It showed that tartaric acid and ammonium sulfate composite catalyst system could
significantly shorten the curing time of urea-formaldehyde resin without compromising the water
resistance of the particleboard [13]. However, these organic acids used as curing agents of UF resins are
small organic molecules, which might be vaporized during the heating process. The organic vapors can
seriously affect environmental quality and human health. On the other hand, the cost of organic acids is
more expensive than that of acidic salts and inorganic acids. An ideal curing agent for UF resin should
be nontoxic, low-priced, and exhibit no pollution [14]. Therefore, it is still highly desirable to figure out
a solution to replace organic acids without compromising other properties. Inspired by the replacement
of small molecule plasticizers with macromolecules to overcome the leaking issue, we hypothesize
that the addition of a polyacid catalyst can not only avoid the toxicity of organic acids, but also can
effectively catalyze the curing progress to generate UF resin with enhanced water resistance.

Currently, the utilization of renewable resources to prepare catalysts, hydrogels, and elastomers has
attracted growing interest due to the sustainability concerns [15–19]. Being the most abundant renewable
aromatic polymers, lignins are usually underutilized as a byproduct in the paper manufacturing
and biorefining industries [19,20]. Only less than 2% of industry lignins are converted into high
value-added chemicals. Therefore, lignin valorization has become a hot topic in academic and industrial
society [21,22]. Because of the low cost, abundance, sustainability, degradable and environmentally
friendly properties, lignins have been widely used as fillers, reinforcing nanoparticle and adsorbent
materials [22]. Furthermore, due to various functional groups including phenolic hydroxyl, aliphatic
hydroxyl, and carboxyl, the modification of lignin is feasible and has been widely performed to
synthesize various interesting materials [21,23]. Therefore, we envision that lignins can potentially be
used as available candidates for the preparation of bio-based polyacids. On the other hand, lignins have
also been considered as promising substitutes for petroleum-based phenol to improve the properties of
formaldehyde-based synthetic resins. Unfortunately, most of the active sites of lignin phenylpropane
units (ortho-para positions of phenolic hydroxyl) have been occupied by methoxy groups [24].
The presence of severe steric hindrance can extremely diminish the reactivity of lignin. As compared to
commercial resins, lignin-modified thermosetting resins such as lignin-phenol-formaldehyde resins and
lignin-urea-formaldehyde resins require a higher temperature or more time to achieve the curing [25,26].
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Therefore, it is attractive but still challenging to use lignin as fillers in UF resins to effectively improve
the reactivity of lignins.

In this study, two steps were performed to synthesize lignin-based polyacid catalysts. Firstly, in
order to accurately elucidate the structural variation, 3-methoxy-4-hydroxyphenylpropane as a model
compound was used to observe the hydroxymethylation and the reaction with maleic anhydride.
All the structures of the model compound and its derivatives were analyzed by 1H and 13C NMR.
Then, the hydroxymethylation was used to increase the hydroxyl content in lignin, which could
effectively increase the reactivity of lignin not only for the subsequent modification reaction, but also
help lignins to participate into the UF resin formation. Hydroxymethylated lignins were grafted with
maleic anhydride to form maleated lignin-based polyacids. The structures of synthesized lignin-based
polyacid catalysts were confirmed by FTIR and 13C NMR analysis. The acid groups were expected to
function as acid catalysts to catalyze the polycondensation reaction in UF resin. The curing process,
UF resin structures, thermal stability, shear strength, and formaldehyde release of UF resins with
modified lignin, isophthalic acid, and NH4Cl were analyzed via variable temperature rheology, XRD,
TGA and tensile tests, etc. The water resistance property was also investigated using plywood as the
substrates. Moreover, the effect of the variation of lignin catalyst content on the mechanical properties
was analyzed for medium density fiberboards, in terms of internal bond strength (IB), modulus of
elasticity (MOE), and modulus of rupture (MOR). The results showed that when the addition of
lignin-based polyacid was 5% in plywood, it could effectively improve the water resistance of UF
resins. Moreover, a lower formaldehyde emission was observed. For medium density fiberboards,
lignin-based catalysts could not only maintain the mechanical properties, but also inhibit the water
adsorption of fiberboards. Due to the excellent performance of the lignin-based catalyst, it might be
industrially applied in UF resin production.

2. Materials and Methods

2.1. Materials

Analytical grade urea and formaldehyde (37%) were used for the synthesis of UF resin. Aqueous
solutions of both sodium hydroxide (30%) and phosphoric acid (20%) were used to adjust the pH level
during the UF resin synthesis. NH4Cl and maleic acid as hardeners were used. All the chemicals were
purchased from Nanjing Chemical Reagents Co., Ltd. (Nanjing, Jiangsu, China).

2.2. Hydroxymethylation of Lignin

A total of 20 g lignin was solubilized in 100 mL 10% aqueous NaOH, and then 20 g formaldehyde
was added. The hydroxymethylation was carried out at 90 ◦C for 1 h. After that, the mixture was cooled
to room temperature, and then acidified with 0.1 mol/L HCl aqueous. Subsequently, the precipitate
(hydroxymethylated lignin) was filtered, washed to neutral, and dried in an oven at 60 ◦C.

2.3. Synthesis of Lignin-Based Polyacid Catalyst

Lignin-based polyacids were synthesized as reported by Sun et al. with minor modification [27].
First, 15 g constant weight hydroxymethylated lignin was dissolved with DMSO (50 mL) in a four-necked
flask fitted with a mechanical stirrer and a reflux condenser. As a catalyst for the esterification reaction
200 µL 1-methylimidazole was added dropwise to the lignin solution, and 20 g maleic anhydride was
immediately introduced into the reaction system. Subsequently, the suspension was heated to 80 ◦C
and stirred continuously for 3 h. After that, the solution was cooled down and precipitated at pH 3 in
order to recover the maleated lignin. The solid was continuously washed with water to remove the
unreacted maleic anhydride. Finally, the residual solids were dried in an oven at 60 ◦C. The maleated
lignins were named as MA-HL.
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2.4. Model Reaction

In order to succinctly demonstrate the formation of lignin-based polyacid catalysts, 3-methoxy-4-
hydroxyphenylpropane, a compound of a typical guaiacol lignin structural unit, was used as a model
compound to react with formaldehyde and maleic anhydride. The detailed process was similar to the
modification of lignin. 1H and 13C NMR analysis were carried out to observe the hydroxymethylation
and maleation processes.

2.5. Synthesis of UF Resin

UF resins with a formaldehyde/(melamine + urea) molar ratio of 1:1 were prepared in the
laboratory, following a traditional alkaline–acid–alkaline technology. A total of 1200 g of formaldehyde
was added once into a 2000 mL four-neck round bottom flask with a condenser, a stirring rod, and a
thermometer. Subsequently, the theoretical weight of melamine and urea divided into three parts was
added into the reaction system in the initial, polycondensation, and termination stages, respectively.
The pH was accurately monitored and carefully adjusted via the addition of sodium hydroxide (30%)
or phosphoric acid (20%). Finally, the UF resin was generated and cooled to room temperature for
further utilization.

2.6. Properties of UF Resins

A PB-10 acidometer (Sartorius, Göttingen, Germany) with an automatic temperature compensation
was used to measure the pH value of UF resins. The UF resin viscosities were measured by a Brookfield
viscometer with s61 rotor and 50 rpm spinning rate. The gel time of the UF resin with different
hardeners was measured using a boiling water bath. Each curing agent was parallelly measured at
least three times.

2.7. Preparation of Five-Plywood Panels

The urea-formaldehyde resins were mixed with 25% flour (based on UF resin total weight) and a
certain amount of curing agent (ammonium chloride, maleic acid, and MA-HL) by a mechanical stirring.
The five-plywood panels were made from rotary-peeled eucalyptus veneers (400 mm × 400 mm × 1.5 mm)
under laboratory conditions. The adhesive blends were spread manually on the surface of eucalyptus
veneers using the following conditions: 280 ± 10 g/m2 (double-sided) glue spreading, prepressing
1 h with 0.8 MPa prepressing pressure at room temperature, 120–125 ◦C hot pressing temperature,
hot pressing time 60 s/mm, and 1.2 MPa hot pressing pressure.

2.8. MDF Panel Manufacture

All medium density fiberboards (400 mm × 400 mm × 6 mm dimension) with a density of
850 ± 20 kg/m3 were prepared in the laboratory. Firstly, 850 g wood fibers with a moisture content
of 10–15% were weighed into a rotary blender. And then, 280 g UF resins and emulsified wax (0.5%
w/w of dried fiber) were sprayed into the tank with a mechanical agitation. Subsequently, the coated
fiber was dried with an aeration dryer at room temperature to decrease the initial moisture and
afterwards was mixed with the required amount of lignin-based polyacids. At the end of this process,
wood fibers covered with UF resin were hot-pressed with a program-controlled pressure at 170 ◦C for
200 s. The fiberboard was placed at room temperature for 24 h for further analysis.

2.9. Plywood Bonding Strength Test

The bonding strength of the plywood was determined by an electronic universal testing machine
using the Chinese Standard GB/T 9846.3-2004. The testing speed was 5.0 mm/min. Test specimens for
shear strength were cut into 100 mm × 25 mm pieces (gluing area of 25 mm × 25 mm). Then, in order
to determine the catalytic efficiency of different curing agents, six test specimens were measured for
the plywood core and 10 pieces of specimens were tested for the outer layer bonding strength. All
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specimens were submerged in water at 63 ± 2 ◦C for 3 h, and then cooled to 20 ◦C before the shear
strength testing.

2.10. MDF Mechanical and Physical Test

Mechanical properties were determined following Chinese Standard GB/T 11718-2009 using a
universal testing machine. Internal bonding strength was measured in the cross-section direction at
a crosshead speed of 0.5 mm/min. Modulus of rupture and modulus of elasticity of the fiberboard
were obtained by performing the three-point flex test at a crosshead speed of 3 mm/min. The thickness
swelling (TS) and water absorption (WA) were determined after 24 h soaking in water in accordance
with GB/T 11718-2009.

2.11. Plywood and MDF Formaldehyde Emission Test

The formaldehyde emission from the plywood was measured by a desiccator method as described
in Standard GB/T 17657-2013. The emitted formaldehyde was absorbed by 300 mL of deionized water in
a 240 mm diameter container. The formaldehyde concentration of the sample solution was determined
by a Shimadzu Scientific Instrument (UV-1800, Shimadzu, Kyoto City, Japan) using ammonium acetate
and acetyl acetone solution method with a colorimetric detection at 412 nm. The formaldehyde
emission results were the average of three times tested in parallel. Formaldehyde emission of all MDF
panels was determined after seven days by a perforator method. According to this method, a 100 g
specimen (about 25 mm × 25 mm × 6 mm) for each MDF panel was continually extracted for 2 h after
the toluene extraction solution flowed back through the siphon tube. The formaldehyde concentration
of the solution was also determined at 412 nm. The formaldehyde emission results were the average of
three times tested in parallel and calculated as milligrams of formaldehyde per 100 g of dry board.

2.12. Characterization

The FTIR spectra of all samples were recorded using an FTIR instrument (Nicolet, USA IS10)
equipped with an attenuated total reflectance (ATR) accessory. All FTIR spectra were collected at a
spectrum resolution of 4 cm−1, with 32 co-added scans over the range from 4000 cm−1 to 650 cm−1.
A background scan was acquired before scanning the samples. NMR spectra were obtained on a
Bruker AVANCE3 (400 MHz) spectrometer. The chemical shifts of 1H and 13C were referenced to
TMS. Thermogravimetric analysis (TGA) was performed by NETZSCH TG 209 F1 thermogravimetric
analyzer. The samples were heated from 40 ◦C to 800 ◦C at a rate of 10 ◦C/min under a nitrogen
atmosphere. A wide-angle X-ray scattering (PANalytical X’Pert Pro MPD diffraktometer) was used to
investigate the crystallization of cured UF resins with different hardeners. The milled and powdered
samples were analyzed at ambient temperature using a Cu Kα X-ray source (40 kV, 40 mA) with a
wavelength (λ) of 1.5405 Å, in the angular range from 10◦ to 60◦ 2θ by a step of 0.02 ◦/s. Rheological
measurements were performed on a HAAKE MARS III oscillatory rheometer with a parallel plate
geometry to monitor UF resins with different curing agents. The plate diameter used was 20 mm, and
the gap between the plates was 1 mm. The samples were placed between plates and sheared.

3. Results and Discussion

3.1. Model Reaction

Due to the complexity of lignin structures, it is difficult to directly and accurately analyze
the modification process. Therefore, a model reaction using 3-methoxy-4-hydroxyphenylpropane
as the model compound was firstly performed (Figure 1A). The structures of model compound
and its derivatives were then analyzed by 1H and 13C NMR. After a hydroxymethlation reaction,
the characteristic peaks (b’ and c’) were clearly observed, indicating the occurrence of a nucleophilic
reaction between benzene rings and formaldehyde (Figure 1B). Then, the ring opening reaction of
maleic anhydride and hydroxyl groups was carried out using 1-methylimidazole as the catalyst.
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The proton signals of hydrogel groups (b’ and c’) disappeared. As a result, the protons peaks of double
bonds were shown at 8.0 to 9.1 ppm (d”). This result indicated the successful incorporation of acid
groups into the model compounds. In addition, 13C NMR exhibited a carbon signal at 167.2 ppm,
corresponding to the carbon of -COOH groups (Figure 1C), which further confirmed the occurrence of
maleation reaction.
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Figure 1. (A) Schematic illustration of hydroxymethylation and maleation of model compound
3-methoxy-4-hydroxyphenylpropane (LMG); (B) 1H NMR spectra of LMG and its derivatives
hydroxymethylated LMG (HLMG) and maleated HLMG (MA-HLMG); (C) 13C NMR spectra of
LMG and its derivatives.

3.2. Synthesis of Lignin-Based Catalysts

After the elucidation of feasibility of reaction using a model compound, lignin was then used as a
substrate to perform hydroxymethylation and to generate hydroxyl and carboxyl groups. FTIR analysis
was used to observe the variation of characteristic adsorption peaks (Figure 2A,B). Obviously, after the
hydroxymethylation reaction, a broad peak at 3200–3500 cm−1 ascribed to hydroxyl groups became
more obvious due to the formation of aliphatic hydroxyl groups. It indicated the occurrence of reaction
between benzene rings and formaldehyde groups [28–30]. In addition, when the hydroxyl groups
reacted with maleic anhydride, typical characteristic peaks corresponding to the =C–H and COOH
groups could be obviously observed at 3000 to 3150 cm−1 and 1725 cm−1, respectively. Furthermore,
13C NMR analysis also confirmed the presence of a characteristic peak (C–O) from the esterification
reaction between hydroxyl groups and maleic anhydride (Figure S1). These results were consistent
with the model reaction that hydroxymethylation and maleation could be simply performed under
current reaction conditions. Therefore, a lignin-based polyacid catalyst was successfully prepared and
used for further studies.
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3.3. Utilization of Lignin-Based Catalyst for UF Resins Synthesis

In order to reveal the performance of the lignin-based polyacid catalyst, it was added into UF
resin to catalyze the polycondensation reaction. NH4Cl (reacting with the free formaldehyde to release
hydrochloric acid), isophthalic acid (IPA), and different amounts of polyacid catalyst were compared
from the perspective of curing time. It can be seen from Table 1 that the curing rate of UF resin followed
the orders: maleic acid >> ammonium chloride > isophthalic acid > blank (with no acid addition),
which was positively related to the relative acidity of the curing agent. The stronger the acidity of the
curing agent, the faster the curing rate of the UF resin. For the lignin-based polyacid catalyst, when its
addition was 1%, the curing time was 6 min 42 sec, which was significantly higher than NH4Cl and
IPA. However, when MA-HL amounts increased to 5%, the curing time was comparable to NH4Cl,
indicating its potential as the acid catalyst for practical applications.

Table 1. Curing time, shear strength, and formaldehyde release of UF resins with different curing agents.

Curing Agent Species Curing Time
Shear Strength/MPa

Formaldehyde Emission/mg/L
Dry State Surface Layer Core Layer

Blank >15 min 1.04 0.54 0.22 1.08
1% NH4Cl 2 min 45 s 1.49 0.98 0.95 0.23

1% IPA 3 min 10 s 1.56 1.22 1.15 0.62
1% MA-HL 6 min 42 s 1.34 0.95 0.67 0.42
3% MA-HL 3 min 56 s 1.42 1.18 1.06 0.21
5% MA-HL 2 min 50 s 1.72 1.23 1.19 0.19

5% L >15 min 1.06 0.47 0.25 0.32

Maleic acid Gelling at room temperature in a few minutes

The variation of viscoelastic properties versus temperature could be used as an efficient indicator
to monitor the specific curing process of UF resins. Thus, we utilized the variable temperature rheology
to understand the curing process. As shown in Figure 3, the curing process of IPA and NH4Cl was
significantly different from MA-HL, particularly for the initial stage. For IPA and NH4Cl, firstly,
as the temperature increased from 30 ◦C to around 60 ◦C, the storage modulus was slightly decreased,
indicating that its viscoelasticity was mainly controlled by temperature. However, in the second stage
(60 to 150 ◦C), the modulus quickly increased mainly due to the occurrence of polymerization to the UF
resin. In addition, the evaporation of water also possibly improved storage modulus. Subsequently,
a relatively flat curve was shown in the range of 150 to 200 ◦C, probably indicating the end of the
polymerization reaction. A further increase in the temperature led to a decrease in modulus. This was
due to the degradation of resin at air atmosphere. For MA-HL, its addition could enhance the initial
modulus of the UF resin solution. It was important since the enhanced modulus was helpful to the
practical operation and could provide a high final mechanical strength. Moreover, in the range of 30 ◦C
to around 60 ◦C, the modulus remained increased, which was opposite to IPA and NH4Cl. This result
revealed that MA-HL could catalyze the polycondensation reaction at a relatively low temperature.
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It has been suggested that the development of UF resin crystalline regions could be harmful for
the properties of UF resins [31]. Moreover, the crystalline behavior was dependent on several factors,
such as the ratio of F/U, curing temperature, and hardener type [10,32]. Therefore, XRD was employed
to evaluate the crystallinity variation of samples with different catalysts (Figure 4). Four obvious peaks
appeared at around 2θ = 21◦, 24◦, 31◦ and 40◦, respectively, indicating the presence of crystalline
regions for these UF resins, which was consistent with previous studies [5,31,32]. In addition, although
the intensity of signals varied slightly, different types of additives showed no significant influence on
the position of signals. These results revealed that MA-HL could be used as acid catalysts in the curing
of UF resin with defined crystalline structures.
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The thermogravimetric analysis (TGA) was used to evaluate the thermal stability of the UF resin
with different catalysts. It can be seen from Figure 5 and Table S1, the thermal stability varied depending
on the types of additives. When 5% MA-HL was added, although the T5% was slightly decreased from
213.2 ◦C (NH4Cl) and 212.5 ◦C (IPA) to 194.6 ◦C, the DTGmax (−12.1 %/min) was significantly reduced
compared to that of IPA-catalyzed UF resin (−14.2 %/min). In addition, the UF resin cured by NH4Cl
showed a lower initial degradation temperature. As the content of the MA-HL addition increased, the
T5% was slightly increased from 194.6 ◦C (5%) to 205.1 ◦C (40%), and all the Tmax was around 280 ◦C.
These results indicated that the thermal stability of UF resins cured by MA-HL was improved when
different types of catalysts were added. In addition, it was observed that the residue was increased
greatly when the addition of MA-HL was 40%. The residual was 32.8%, as compared to 17.1% (5%
addition). It was possible that more lignin degradation products remained after TGA analysis.
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3.4. Mechanical Properties Using Lignin-Based Polyacid Catalysts

The mechanical properties and formaldehyde emission are two important parameters for UF
resin applications. Therefore, we investigated the utilization of lignin-based polyacid catalysts on the
properties of UF resins in two different substrates, plywood and medium density fiberboard. As shown
in Figure 6A (plywood), the shear strengths of all substrates were improved with the addition of
catalysts, as compared to blank. This was reasonable since the catalysts could be beneficial to the
network formation, and thus leading to an enhanced mechanical property. In addition, plywood with
1% NH4Cl or 1% IPA addition showed a higher dry state shear strength (around 1.50 MPa) as compared
to 1% and 3% MA-HL (1.34 and 1.42 MPa). However, when the content of MA-HL was 5%, the average
shear strength in dry state could reach 1.72 MPa, which was comparable to other catalysts. In addition
to the enhanced catalytic performance, the higher amounts of lignin might behave as the fillers to
efficiently improve the mechanical property. On the other hand, during the hot pressing process,
energy is gradually transferred from the surface layer of the plywood to the core layer, which may
result in the UF resin in the core layer to be insufficiently cured. Therefore, after immersion in 63 ◦C
water for 3 h, the bond strengths of the surface layer and core layer for plywood were also investigated
to evaluate the water resistance and relative curing degree of UF resin with different curing agents,
respectively. Although the wet shear strength for all the determined samples distinctly decreased,
all specimens were above the minimum requirements for II grade plywood (0.7 MPa) except for the
blank. Furthermore, it was observed that when the addition of MA-HL was over 3%, there was no
significant variation on the shear strength of the surface and core layers, indicating the high efficiency
of lignin-based polyacid catalysts. Importantly, the water resistance of plywood was elevated when
5% MA-HL was added (around 1.2 MPa), as compared to the commercial additive NH4Cl (around
1.0 MPa). Although MA-HL performance was similar to IPA (1.2 MPa), the non-volatile property
enabled it to be a potential substitute for organic acid. Additionally, it was observed that MA-HL could
significantly inhibit the formaldehyde emission when 5% MA-HL was added (0.12 mg/L, E0 grade
0.5 mg/L) in comparison to IPA (0.6 mg/mL, E1 grade 1.5 mg/L, Figure 6B). It was believed that the
remaining reactive sites in lignin could potentially react with formaldehyde to decrease its emission.
Finally, the unmodified lignin (5%) was also added into the UF resin to make a comparison. The results
showed that the strength of the surface layer with lignin addition (0.47 MPa) was even slightly lower
than the blank (0.54 MPa) due to the aggregation of lignin, while the one with modified lignin (5%) as
catalyst can reach 1.23 MPa. These comparisons further supported our conclusion that a lignin-based
polyacid catalyst can significantly improve the water resistance of UF resins.
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(A) Shear strength and (B) Formaldehyde emission.

For medium density fiberboards, mechanical properties in terms of internal bond strength (IB),
modulus of elasticity (MOE), and modulus of rupture (MOR) have been systematically investigated
(Figure 7A–C). When 5% MA-HL was added, its IB, MOE, and MOR were comparable to the control
(1% NH4Cl addition), indicating its potential use in the production of medium density fiberboards.
In addition, as the content of MA-HL increased, we found that its effect on the mechanical properties
was different. For example, when 7.5% MA-HL was used, it could slightly increase the IB and MOE,
whereas the MOR was decreased. When the content of MA-HL was further increased to 10%, it was
detrimental to the mechanical properties. This could be due to the poor dispersion of lignin. The water
adsorption analysis was further determined to evaluate the water resistance properties. As shown
in Figure 7D,E, the addition of lignin-based polyacid catalysts could effectively decrease the water
adoption in terms of volume and weight variation. This might be due to the hydrophobic property
of lignin, which increased the water resistance of UF resin. For the formaldehyde emission, MA-HL
addition (5% or 10%) slightly increased its emission as compared to NH4Cl, but it still met the
formaldehyde emission requirements of E0 grade fiberboard (5 mg/100 g). Moreover, for 7.5% MA-HL
addition, the formaldehyde emission is 2.32 mg/100 g, which below the minimum level of Japanese
F **** grade standard (3 mg/100 g).
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Figure 7. Mechanical properties of medium density fiberboard. (A) Internal bond strength (IB),
(B) modulus of elasticity (MOE), (C) modulus of rupture (MOR), (D) 24-h thickness swelling rate,
(E) water adsorption of fiberboard, (F) formaldehyde emission of medium density fiberboard.
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4. Conclusions

In this study, a lignin-based polyacid catalyst was synthesized via two steps to enhance the water
resistance of UF resins. Both hydroxymethylation and maleation reactions could effectively occur to
introduce acid and hydroxyl groups, which was confirmed by a model reaction and the structural
analysis of modified lignin. The lignin-based polyacid catalyst could be used as an efficient catalyst
to promote the polycondensation reaction in UF resin formation. When the synthesized UF resin
was used as the adhesive in plywood and medium density fiberboard production, the utilization of
the lignin-based catalyst could effectively improve the water resistance of UF resins as compared to
commercial additive NH4Cl. Moreover, in plywood preparation, it exhibited a lower formaldehyde
emission. For medium density fiberboards, lignin-based catalysts used in UF resins could not only
maintain the mechanical properties, but also inhibit the water adsorption of fiberboards, indicating
their potential to replace small molecule curing agents in the UF resins fields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/1/175/s1,
Table S1: TG and DTG results of cured UF resins with different additives. 13C NMR Spectra of lignin and modified
lignin; Figure S1 13C NMR spectra of lignin and modified lignin.
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