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Abstract: Polymer-based nanocomposites properties are greatly affected by interfacial interaction.
Polyacrylate nanocomposites have been widely studied, but few studies have been conducted
on their interface mechanism. Therefore, there was an urgent demand for providing a thorough
understanding of the polymethyl acrylate/SiO2 (PMA/SiO2) nanocomposites to obtain the desired
macro-performance. In this paper, a methodology, which combined molecular dynamics simulation
with experimental researches, was established to expound the effect of the surface structure
of SiO2 particles which were treated with KH550, KH560 or KH570 (KH550-SiO2, KH560-SiO2

and KH570-SiO2) on the mechanical characteristic and water vapor permeability of polymethyl
acrylate/SiO2 nanocomposites. The polymethyl acrylate/SiO2 nanocomposites were analyzed in
binding energy and mean square displacement. The results indicate that PMA/KH570-SiO2 had the
highest tensile strength, while PMA/KH550-SiO2 had the highest elongation at break at the same filler
content; KH550-SiO2 spheres can significantly improve water vapor permeability of polyacrylate film.

Keywords: interfacial interaction; molecular dynamics simulation; composites; surface modification

1. Introduction

Nanoparticles have received significant attention from researchers in the fields of electronics,
metallurgy, aerospace, chemical engineering, biology and medicine due to their unique properties [1–10].
However, on account of the high surface energy of nanoparticles and the fact that they usually do
not contain active functional groups, the dispersion of nanoparticles in polymers is very poor,
thus leading to weak reinforcing effects [11,12]. A number of studies have shown that most properties
of composite materials depend on the nanoparticles dispersion in polymer matrix and their interfacial
interaction [13–15]. Therefore, there are numerous examples have been proposed for improving the
dispersion of nanoparticles in polymer matrix thus improving the interfacial interactions by grafting
or surface modified materials on the surface of nanoparticles for functionalization [16–18]. Meanwhile,
effects of surface structure of nanomaterials on the properties of composites are still the focus of
research [19–21].
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Polyacrylate due to its excellent film forming properties, light stability, weather resistance and
compatibility is widely used as a coating material for leather, textile materials, wood, metal surfaces,
etc. However, the linear molecular structure and side chain polar groups always cause negative effects
on mechanical properties, water resistance and water vapor permeability of the as-obtained films,
which limits its scope of use. With the development of nanotechnology, many nanoparticles have
been attempted to introduce into polyacrylate to improve its film-forming properties. Chen et al.
synthesized polyacrylate/modified-TiO2 coating film [22]. The results prove that the Modification of
TiO2 particles can build up their dispersibility in polyacrylate coating and fall off water absorption
of coating. Zhao et al. prepared an organic nano-SiO2/fluorinated polyacrylate composite latex [23].
The results showed that the films exhibit strong hydrophobicity. From our previous studies, Pickering
emulsion steadied by silica sol has fine effects on pigment printing adhesives [24]. The improvement
of latex film performance is due to the addition of nano-TiO2 [25]. We have done a lot of research on
polyacrylate/silica [26–29]. The results show that the introduction of silica improves the mechanical
properties, thermal properties and water vapor permeability of polyacrylate film. However, intensive
studies on the interfacial interaction between polyacrylate and SiO2 particles have rarely been reported.
The interaction between polymers and SiO2 particles originate from molecules, atoms, and their
underlying quantum mechanical arguments (nanoscopic and/or sub-nanometer), which interactions
are hard to observe and examine by traditional experimental tests.

A strong supporting tool for studying the interfacial interactions between the polymer matrix and
nanoparticles is molecular dynamics (MD) simulations, which has been diffusely used to view the
interaction machine-processed between different materials [30–37]. Rissanou et al. analyzed several
graphene/polymer nanocomposites by atomistic molecular dynamics simulations [38]. The results
indicate that chain segmental dynamics is slower at the PE/graphene interface than the bulk one.
Wang et al. have performed the mechanical properties of PET/silica composites by MD simulations in
detail [39]. The simulation results shown that nanocomposites have the higher mechanical properties
in comparison with those in pure PET system, ascribing a stronger interaction between the modified
silica and polymer chains. We have successfully employed MD simulation to check on the presence of
p-p stacking interaction between poly (styrene-butyl acrylate) latex (P(St-BA)) and sulfonated graphene
nanosheet (S-GNS) [40].

In this work, we study the effects of interfacial structure between SiO2 particle and polymer matrix
on the properties of their composites. SiO2 was modified by polysiloxane (KH550, KH560 and KH570)
with similar chain length to enhance its interfacial compatibility and binding with PA. The properties
of its composites were studied through experiments and MD to explore its influence rule. This study is
expected to provide a theoretical basis for the structural design of nanoparticles and their applications
in functional composites.

2. Materials and Methods

2.1. Materials

All chemicals were of analytical grade and used without any further purification.
Octyltrimethoxysilane (OTMS, 97%), ammonia, ethanol, tetraethoxysilane (TEOS), 3-aminopropyl
triethoxy silane (KH550, 97%), γ-glycidoxypropyl trimethoxy silane (KH560, 97%), γ-methacryloxypropyl
trimethoxy silane (KH570, 97%), xylene, methyl acrylate (MA), sodium dodecyl sulfate (SDS) and
potassium persulfate (KPS) were all purchased from Tianjin Fuchen Chemical Reagent Factory.

2.2. Preparation of SiO2 Nanoparticles and Modified-SiO2 Nanoparticles

The procedure for preparing SiO2 nanoparticles was as follows: firstly, 5 mL of ammonia, 100 mL
of ethanol and 5mL of TEOS were added into 250 mL three-necked flask. Then, the mixture was stirred
for 5 h at 60 ◦C. Finally, the product was centrifuged and washed by deionized water and ethanol for
several times, then dried for 12 h at 60 ◦C to produce a white SiO2 powder.
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The procedure for preparing SiO2 nanoparticles modified by KH570 as follows:
About 5 mL ethanol solution of KH570 was gradually added to 100 mL SiO2 nanoparticles ethanol

dispersion under a magnetic stirrer. Then, the mixed solution was stirred at room temperature for
72 h. The mixed solution was centrifuged and washed with xylene, ethanol and deionized water
several times, then SiO2 nanoparticles modified by KH570 were attained via drying for 12 h at 60 ◦C
(KH570-SiO2).

The procedure for preparing SiO2 nanoparticles modified by KH550, which is defined as
KH550-SiO2 (SiO2 modified by KH560, which is defined as KH560-SiO2) as follows: SiO2 nanoparticles
were ultrasonic dispersed into 100 mL of ethyl alcohol at 25 ◦C for 30 min, and the pH of the mixed
solution dispersion reached 6 with glacial acetic acid. Then 5 mL of KH550 (or KH560) was added
into the solution under the stirring at 60 ◦C for 6 h. The obtained solution was then centrifuged and
washed by xylene, ethanol and deionized water for several times, and dried at 60 ◦C for 6 h to obtain
KH550-SiO2 (or KH560-SiO2) nanoparticles.

2.3. Preparation of PMA/Modified-SiO2 Nanocomposite and its Composite Film

Some modified-SiO2 (2 wt% of PMA mass) and SDS were ultrasonic dispersed for 10 min at 75 ◦C.
Then KPS and MA were added to the emulsion drop wisely, while the polymerization was conducted
at 75 ◦C for 6 h.

Finally, the PMA/modified-SiO2 composite emulsion was poured into polytetrafluoroethylene
(PTFE) mold and laid on the horizontal surface until dried completely at room temperature to obtain
PMA/modified-SiO2 composite film. PMA/SiO2 composite film was prepared in the same method.

2.4. Characterization and Measurements

The microstructures and morphology of all samples were measured by scanning electron
microscope (SEM, S4800, Rigaku) and transmission electron microscope (TEM, Tecnai G2 F20, FEI).
The chemical structures of all materials were analyzed by fourier transform infrared spectrum (FT-IR,
VECTOR-22, Brucker) and Ultraviolet-visible-near infrared spectrophotometer (Cary 5000, Agilent).
The thermal stability of the samples was studied by thermogravimetric analysis (TGA, STA409PC,
Netzsch) at the nitrogen atmosphere from room temperature to 600 ◦C with a heating rate of 5 ◦C/min.
The glass transition process of samples was characterized using a differential scanning calorimeter
(DSC, Q5000 IR) The mechanical properties were tested by a servo material multi-functional high and
low temperature control testing machine (AI-7000-NGD, Goodtechwill) at a loading rate of 100 mm/min
according to QB/T 1331-1998. The water vapor transmission rate (WVP) was tested by a Water vapor
transmittance tester (W3/060, Labthink) according to QB/T 1279-2012.

2.5. Simulation Methodologies

The reactant molecules were built in the Visualizer module of Material Studio 8.0 software (Accelrys
Inc., San Diego, CA, USA). For the MD simulations, the Forcite and Amorphous cell modules of the
Materials Studio suite of software were used. All the theoretical calculations were performed using the
Condensed-Phase Optimized Molecular Potentials for Atomistic Simulation Studies COMPASS force
field [41,42].

2.5.1. Construction of SiO2 Nanoparticles

The xsd molecular model of SiO2 is imported from MS software material library.
After the unit cell model of silica is obtained, it is geometrically optimized to obtain a lower

energy structure. Next, the silica particles with a radius of 1 nm (10 Å) are constructed, and a spherical
silica nanoparticle with a surface saturated with unsaturated bonds between Si atoms and O atoms is
obtained. Select the broken bond on the Si atom on the surface of the SiO2 unit cell and combine it with
-OH, and combine the broken bond on the surface O atom with the H atom. Increase the reliability,
and optimize the structure to obtain a spherical SiO2 model (Figure 1).
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converged to 1 × 10−4 kca1/mol. Figure 2 shows the structure of three modifiers, and Figure 3 shows 
the surface of modified-SiO2. In this paper, four identical silane coupling agent chains were grafted 
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energy to 1 × 10−4 kca1/mol. In order to search for the optimal structure, the cell is then annealed at 
0.1 MPa from the low temperature of 300 K to the upper temperature of 500 K for 200 ps to prevent 
the system to form being trapped at a local high energy minimum. Subsequently, 200 ps of NVT 
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Figure 3. Model of modified-SiO2: (a). KH550-SiO2, (b). KH560- SiO2, (c). KH570-SiO2. 

Since the double bond on KH570-SiO2 is polymerized with MA, in this paper a model of 
polymerizing one double bond on the surface of KH570-SiO2 with MA (PMA-KH570-SiO2) is 
constructed. PMA polymer chain has 20 repeat units, as shown in the Figure 4. 

Figure 1. SiO2 nanoparticle without broken bonds on the surface.

Three different modifiers were grafted on the silica surface, and the three modifiers were KH550
(2a), KH560 (2b) and KH570 (2c). The structure of the modified surface was optimized, and the energy
converged to 1 × 10−4 kca1/mol. Figure 2 shows the structure of three modifiers, and Figure 3 shows
the surface of modified-SiO2. In this paper, four identical silane coupling agent chains were grafted
onto SiO2 sphere, and the grafted microspheres were optimized by the Smart method to optimize the
energy to 1 × 10−4 kca1/mol. In order to search for the optimal structure, the cell is then annealed at
0.1 MPa from the low temperature of 300 K to the upper temperature of 500 K for 200 ps to prevent the
system to form being trapped at a local high energy minimum. Subsequently, 200 ps of NVT (constant
number of particles, volume, and temperature) simulation is performed at 298 K.
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Figure 3. Model of modified-SiO2: (a). KH550-SiO2, (b). KH560- SiO2, (c). KH570-SiO2.

Since the double bond on KH570-SiO2 is polymerized with MA, in this paper a model of
polymerizing one double bond on the surface of KH570-SiO2 with MA (PMA-KH570-SiO2) is
constructed. PMA polymer chain has 20 repeat units, as shown in the Figure 4.
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2.5.2. Construct the Composite System Model

PMA/SiO2 (KH550-SiO2, KH560-SiO2): Amorphous cells containing composites of PMA polymer
chains with 20 repeat units and a SiO2 (or modified-SiO2) nanoparticle (diameter 20 nm) were
constructed, and periodic boundary conditions were applied.

PMA/KH570-SiO2: Amorphous cells containing composites of PMA polymer chains with 19
repeat units and one PMA-KH570-SiO2 (Figure 4) were constructed, and periodic boundary conditions
were applied.

To study the diffusion coefficient of H2O in composite systems, the MSDs of H2O in composite
systems were analyzed. Some composite systems containing water molecules were constructed as
follows (Supplementary Materials, Figure S1):

PMA/SiO2 (KH550-SiO2, KH560-SiO2)/H2O: Amorphous cells containing composites of PMA
polymer chains with 20 repeat units, one SiO2 (or modified-SiO2) nanoparticle (diameter 20 nm) and
10 H2O molecules were constructed, and periodic boundary conditions were applied.

PMA/KH570-SiO2/H2O: Amorphous cells containing composites of PMA polymer chains with 19
repeat units, one PMA-KH570-SiO2 (Figure 4) and 10 H2O molecules were constructed, and periodic
boundary conditions were applied.

2.5.3. Molecular Dynamics Simulation Process

After building PMA/SiO2 (or modified-SiO2) composite systems, the energy of each generated cell
is minimized to a convergence value of 1.0 × 10−4 kcal mol−1 by using the Smart Minimizer method to
relax the state of minimal potential energy. Whereafter, 200 ps of NVT (constant number of particles,
volume, and temperature) simulation is performed at 298 K. The cell is then annealed at 0.1 MPa from
the low temperature of 300 K to the upper temperature of 500 K for 200 ps to prevent the system to
form being trapped at a local high energy minimum [43]. Subsequently, 200 ps of NVT (constant
number of particles, volume, and temperature) simulation is performed at 298 K, 500 ps of NPT
(constant number of particles, pressure, and temperature) simulation is performed at 0.1 MPa and 2 ns
of NVE (constant number of particles, volume, and energy) simulation is performed to further relax
the polymer structure by using the Andersen Thermostat for temperature control and the Berendsen
Barostat for pressure control [44,45] (Figure 5).

At last, the cell can be used to analyze properties of the system. In order to further verify the effect
of the number of polymer chains on the properties of composites, a composite system with 30 polymer
chains was studied (Figure S2). The results show that the binding energy between the polymer and
SiO2 is not significantly different from the data of the composite system of 20 polymer chains in the
article, which is reasonable (Tables S1 and S2). This result indicates that the composite system of 20
polymer chains may basically match the experiment. With the increasing of the number of polymer
chains, the performance of the composite system has not changed significantly.
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SiO2, (d). PMA/KH560-SiO2, and (e). PMA/KH570-SiO2.

System equilibrium is judged by temperature and energy balance. Figure 6 shows the trajectory
temperature and energy fluctuation chart of 200 ps NVT in the MD equilibrium stage. From the
Figure 5, the trajectory energy fluctuation of each frame is gentle, indicating that the system energy has
reached equilibrium.
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Figure 6. Temperature (a) and energy (b) of PMA/SiO2 nanocomposite at a temperature of 298K during
the MD simulation.

The above two criteria showed that the PMA/SiO2 composite system has indeed reached
equilibrium through MD simulation, and the subsequent analysis results are reliable. The remaining
PMA and modified-SiO2 interaction systems could all reach the same conclusion.

3. Results

3.1. Morphological and Structural Characterization of Modified-SiO2

Surface modification is essential for the synthesis and functionality of composites. FT-IR is often
used to characterize surface modification. FT-IR spectra of SiO2 and modified-SiO2 are shown in
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Figure 7a. The characteristic peaks assigned to the stretching vibration of Si-O-Si at 1101 cm−1 are
observed in the spectrum of SiO2. After modification with silane coupling agent, there appeared
absorption peaks at 1705 cm−1 (C=C stretching vibration) in the spectrum of KH570-SiO2, as well
as peaks at 1730 cm−1 (–C–H– asymmetric stretching vibration), 1623 cm−1 (N–H in-plane bending
vibration) in the spectrum of KH550-SiO2. The peak at 2977 cm−1 reveals the existence of –CH3 or
–CH2– on SiO2 surface. These may suggest that silane coupling agent is successfully grafted onto the
SiO2 surface.

Polymers 2020, 12, x FOR PEER REVIEW 7 of 16 

 

observed in the spectrum of SiO2. After modification with silane coupling agent, there appeared 
absorption peaks at 1705 cm−1 (C=C stretching vibration) in the spectrum of KH570-SiO2, as well as 
peaks at 1730 cm−1 (–C–H– asymmetric stretching vibration), 1623 cm−1 (N–H in-plane bending 
vibration) in the spectrum of KH550-SiO2. The peak at 2977 cm−1 reveals the existence of –CH3 or –
CH2– on SiO2 surface. These may suggest that silane coupling agent is successfully grafted onto the 
SiO2 surface. 

 
Figure 7. (a) FT-IR spectrum of SiO2 and modified-SiO2, (b) UV curve of SiO2 and modified-SiO2. 

To reveal the chemically bonding between SiO2 and the silane coupling agent, UV absorption 
spectrum of the modified-SiO2 was characterized. It can be seen in Figure 7b that there is a small shift 
in the position of the absorption peak, which may be attributed to changes in the surface structure of 
SiO2. 

SEM images (Figure 8) present that the as-prepared SiO2 and modified-SiO2 samples are uniform 
in size with spherical shape, and the average size was about 80 nm. Meanwhile, SiO2 are well 
dispersed (See Figure 8a). Nevertheless, the modified-SiO2 are not particularly well dispersed (Figure 
8b–d), which may be caused by self-polymerization of the silane coupling agent. 

 
Figure 8. SEM images of nano-SiO2 (a). SiO2, (b). KH550-SiO2, (c). KH560-SiO2, (d). KH570-SiO2. 

3.2. Morphological and Structural Characterization of PMA/SiO2 Composite Emulsion and Film 

Figure 9 shows the TEM image of PMA and PMA/SiO2 composite latex particles. As shown in 
Figure 9a, the pristine PMA latex particles display a well-defined spherical morphology and the latex 
particle size is 100–200 nm. The black phase which are SiO2 particles are on the surface of latex 
particles (the fuzzy layers). SiO2 is located onto the surface of latex particles (Figure 9b), KH550-SiO2 
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To reveal the chemically bonding between SiO2 and the silane coupling agent, UV absorption
spectrum of the modified-SiO2 was characterized. It can be seen in Figure 7b that there is a small shift
in the position of the absorption peak, which may be attributed to changes in the surface structure
of SiO2.

SEM images (Figure 8) present that the as-prepared SiO2 and modified-SiO2 samples are uniform
in size with spherical shape, and the average size was about 80 nm. Meanwhile, SiO2 are well dispersed
(See Figure 8a). Nevertheless, the modified-SiO2 are not particularly well dispersed (Figure 8b–d),
which may be caused by self-polymerization of the silane coupling agent.
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3.2. Morphological and Structural Characterization of PMA/SiO2 Composite Emulsion and Film

Figure 9 shows the TEM image of PMA and PMA/SiO2 composite latex particles. As shown in
Figure 9a, the pristine PMA latex particles display a well-defined spherical morphology and the latex
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particle size is 100–200 nm. The black phase which are SiO2 particles are on the surface of latex particles
(the fuzzy layers). SiO2 is located onto the surface of latex particles (Figure 9b), KH550-SiO2 is onto the
surface of latex particles (Figure 9c), and KH560-SiO2 is also on the surface of latex particles (Figure 9d).
There are more KH550-SiO2 and 560-SiO2 particles are on the surface of latex particles, this is mainly
because that stronger hydrogen bonds or electrostatic interactions is formed between modified-SiO2

nanoparticles and latex particles, compared with SiO2 nanoparticles. KH570-SiO2 nanoparticles which
enter the interior of PMA latex particles seem less clear (Figure 9e), and other nanoparticles appear on
the latex particle surface as black phase [46]. Different surface modification between the above four
SiO2 sources explains the difference in the distribution of SiO2 nanoparticles.
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Figure 9. TEM images: (a) PMA latex, (b) PMA/SiO2 composite, (c) PMA/KH550-SiO2 composite,
(d) PMA/KH560-SiO2 composite, and (e) PMA/KH570-SiO2 composite (Red circles refer to latex
particles, yellow circles refer to SiO2 particles).

The dispersion of SiO2 particles in the PMA film before and after modification can be observed by
SEM, as shown in Figure 10. The untreated SiO2 particles aggregated severely in PMA film with the
size equivalenting about to 500 nm (Figure 10b). The KH560-SiO2 particles have better dispersibility in
PMA, and good interfacial adhesion with PMA film. Which is better than those of the unmodified
particles (Figure 10c). Nevertheless, there are still some aggregates in PMA film. KH550-SiO2 particles
are well dispersed as small aggregates (Figure 10d). When PMA film was filled with KH570-SiO2

particles, the nanoparticles are uniformly dispersed in PMA film, and it is difficult to see the aggregate
of the nanoparticles (Figure 10e). The interfacial compatibility between KH570-SiO2 nanoparticles and
PMA film is well.

The unmodified-SiO2 particles aggregate in PMA film on account of their high polar surface
energy. The poor compatibility of aggregated SiO2 particles with the PMA film is due to the
hydrophilic surface. When SiO2 particles are modified with KH560, their surface is covered by long
alkyl chain, which gives the particles a well interfacial compatibility to PMA film [47]. The interface
compatibility between KH550-SiO2 particles and PMA film is a bit better, which introduce the amidogen
group. The KH570-SiO2 particles can form chemically bond with PMA matrix through double bond
polymerization. Good compatibility makes better dispersion of SiO2 particles in PMA film.
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3.3. Properties of PMA/SiO2 and PMA/Modified-SiO2 Composite Films

3.3.1. Mechanical Properties of PMA/SiO2 and PMA/Modified-SiO2 Composite Films

Figure 11 reveals the tensile strength and elongation at break of PMA/SiO2 nanocomposites,
in which SiO2 is modified by different silane coupling agents. As everyone knows, the interfacial
interaction between polymer and nanoparticles has a greater influence on the tensile strength
of composites [20]. The weak interfacial interaction between polymer and nanoparticles results
in less stress being transferred from polymer to nanoparticles [47]. The stronger the interfacial
interaction between polymer and nanoparticles, the greater the stress transmitted by the polymer
to the nanoparticles, resulting in higher tensile strength. As can be seen in Figure 11a, the tensile
strength of PMA/modified-SiO2 film is higher than that of PMA/SiO2 film. And, the tensile strength of
PMA/KH570-SiO2 film have the highest value than that of other films.
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Figure 11. Effect of fillers on mechanical properties of composite films: (a) Tensile strength,
(b) Elongation at break (0. PMA, 1. PMA/SiO2, 2. PMA/KH550-SiO2, 3. PMA/KH560-SiO2 and
4. PMA/KH570-SiO2).

The dispersion and interfacial interaction between polymer and nanoparticles have a great
influence on elongation at break of nanocomposites [48,49]. Good dispersibility and proper interfacial
interaction can enhance the value of elongation at break, while excessive strong interfacial interaction
can reduce it. The elongation at break of composite films is shown in Figure 11b, compared with
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KH550-SiO2, the addition of KH570-SiO2 reduced the elongation at break of the film, which is consistent
with the strong interfacial interaction between PMA and KH570-SiO2.

3.3.2. Water Vapor Permeability of PMA/SiO2 and PMA/Modified-SiO2 Composite Films

Water vapor permeability is an important index when emulsion products are used in coatings
requiring air permeability. The water vapor permeation rate is primarily assumed by the diffusion
process and adsorption/desorption process, which are influenced by the composition and structure
of the polymer chains. The soft polymer chains of polyacrylate can give more free volume for the
passage of water vapor molecules, although hydrophobic segments of polyacrylate are detrimental to
the adsorption process [50].

The effects of functionalized SiO2 on water vapor permeability of as-obtained films are shown in
Figure 12a. Compared with pure PMA film (Figure 12a), water vapor transmission rate of composite
films is improved. It is evident that by blending the KH550-SiO2 or KH560-SiO2 nanoparticles in the
PMA film, water vapor permeability of PMA/SiO2 nanocomposite films increases significantly. This is
mainly attributed to the fact that KH550-SiO2 and KH560-SiO2 contain a hydrophilic amino group or
an epoxy group to facilitate water vapor transmission through the film. It can be seen that the water
vapor transmission rate of PMA/SiO2 and PMA/KH570-SiO2 composite films are higher than that of
PMA composite film, which is mainly result from that: On the one hand, there is a large number of
interfacial pores between SiO2 nanoparticles and PMA film, which provides a good channel for water
vapor molecules. On the other hand, an enhancement in the amount of hydrophilic groups in film
leads to an increase in water vapor permeability [51]. The surface of SiO2 nanoparticles contains a
large amount of hydroxyl groups, which increases the number of hydrophilic groups inside the film.
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Figure 12. (a) Effects of fillers on water vapor permeability and (b) water resistance of composite films
(0. PMA, 1. PMA/SiO2, 2. PMA/KH550-SiO2, 3. PMA/KH560-SiO2 and 4. PMA/KH570-SiO2).

3.3.3. Water Resistance of PMA/SiO2 and PMA/Modified-SiO2 Composite Films

Under normal circumstances, water absorption of the composite film is used to reflect its water
resistance, and the higher the water absorption rate, the worse the water resistance. It can be seen from
Figure 12b that compared with PMA film, water absorption of PMA/KH550-SiO2 and PMA/KH560-SiO2

composite films show higher value than that of PMA. While water absorption of PMA/SiO2 and
PMA/KH570-SiO2 composite films show lower value than those of PMA, and the PMA/KH570-SiO2

composite film has the lowest water absorption. This is mainly due to the fact that KH550-SiO2

and KH560-SiO2 contain a hydrophilic amino group and an epoxy group to facilitate water vapor
transmission through the film, while PMA/KH570-SiO2 contains a hydrophobic C=C which is not
favorable for water vapor transmission through the film.

3.3.4. Thermal Properties of PMA/SiO2 Composite Films

TGA curves of as-prepared films are shown in Figure 13. Compared with PMA film, the T5 of
PMA/SiO2 and PMA/modified-SiO2 increased.
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Figure 13. TGA curve of composite films.

The corresponding characteristic heat data for all samples is shown in Table 1. By comparing,
heat-resistance index of the PMA/SiO2 and PMA/modified-SiO2 composite films obviously increased.
This is mainly because that the addition of SiO2 nanoparticles causes entanglement of polymer
chain, which slows down the decomposition of the molecular chain. The heat-resistance index of
PMA/modified-SiO2 composite films is higher than that of PMA/SiO2. In addition, the heat-resistance
index of PMA/KH570-SiO2 composite film is the highest. This is mainly ascribed to the stronger
interface interaction between PMA and KH570-SiO2 [52,53].

Table 1. Thermal data of the composite films from TGA analysis.

Samples Weight Loss Temperature (◦C)
Heat-Resistance Index a (◦C)

T5 T30

0 318.43 375.43 172.79
1 325.42 374.92 174.01
2 327.88 375.88 174.77
3 332.99 374.49 175.37
4 329.98 376.98 175.51

0. PMA, 1. PMA/SiO2, 2. PMA/KH550-SiO2, 3. PMA/KH560-SiO2 and 4. PMA/KH570-SiO2. a Heat resistance index
= 0.49[T5 + 0.6(T30 − T5)]; T5, T30 is the decomposing temperature at 5%, 30% weight loss, respectively.

3.4. Molecular Dynamics Simulation

3.4.1. Binding Energy Analysis

Molecular dynamics simulations are currently effective methods for verifying the strength of
interfacial interactions. The strength of the interaction between the PMA film and the SiO2 particles can
be reflected by the amount of binding energy between them. Generally, the greater the binding energy,
the stronger the interaction force between PMA film and SiO2 particles. As a result, the simulation
of the binding energy between PMA film and SiO2 (or modified-SiO2) particles can be used to study
the interaction mechanism. The binding energies of PMA/SiO2 and PMA/modified-SiO2 composite
materials can be used by:

Ebingding = −Einter = −(Etotal − EPMA − ESiO2),
Ebingding = −Einter = −(Etotal − EPMA − Emodi f ied−SiO2)

(1)

where Etotal is the energy of the PMA/SiO2 or PMA/modified-SiO2, EPMA is the energy of PMA, and ESiO2

is the energy of SiO2 particles, Emodified-SiO2 is the energy of modified-SiO2 particles. The binding
energies between PMA and SiO2 (or modified-SiO2) are given in Table 2.



Polymers 2020, 12, 170 12 of 16

Table 2. Binding energy of PMA/SiO2 and PMA/modified-SiO2 composites.

Systems Etotal
(kcal/mol)

EPMA
(kcal/mol)

ESiO2 (or Emodified-SiO2 )
(kcal/mol)

Einter
(kcal/mol)

Ebinding
(kcal/mol)

PMA 10,043.97 10,043.97 - - -
PMA/SiO2 −1812.38 12,722.97 −14,260.52 −274.83 274.83

PMA/KH550-SiO2 −2323.97 12,545.98 −14,552.63 −317.32 317.32
PMA/KH560-SiO2 −381.20 13,785.56 −13,810.49 −356.27 356.27
PMA/KH570-SiO2 −1646.98 - - - -

The total energy of the PMA/SiO2 (modified-SiO2) system, the energy of PMA, and the energy of
SiO2 (modified-SiO2) are presented in Table 2.

The binding energy of PMA/KH550-SiO2 reaches a higher value than PMA/SiO2, showing the
strongest interfacial interaction between PMA film and KH550-SiO2 particles. A higher binding energy
shows good compatibility between PMA film and KH550-SiO2 particles. As the KH560-SiO2 was added
into PMA, the binding energy of the PMA/KH560-SiO2 film is better than that of PMA/KH550-SiO2

film, a sign of well compatibility of PMA film with KH560-SiO2 particles [54].

3.4.2. MSD (Mean Square Displacement) and Diffusion Coefficient (D) of Water in Composite System

The diffusion coefficient (D) of water molecules in nanocomposite reflects the water vapor
permeability of nanocomposite. The higher the diffusion coefficient is, the better the water vapor
permeability is. To study the diffusion coefficient of H2O in films, the MSDs of H2O in the films were
analyzed (Figure 14). Diffusivity was calculated by using the slope of MSD diagram (Figure 14a) [55].

The results show that the diffusivity changes as the change of fillers (Figure 14b). The addition
of SiO2 (modified-SiO2) nanoparticles improves the diffusivity of H2O molecules in PMA films.
The addition of SiO2 nanoparticles results in bigger voids at the interface of PMA/SiO2 (modified-SiO2)
film, which facilitates the rapid passage of H2O molecules. The diffusion coefficient of water molecules
in PMA/KH550-SiO2 composite system is the best. And after that, the order of diffusion coefficient of
water molecules in composite systems from high to low is PMA/KH560-SiO2, PMA/KH570, PMA and
PMA/SiO2, respectively. This is consistent with the results of the water vapor permeability of the
previous films.
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permeability is. To study the diffusion coefficient of H2O in films, the MSDs of H2O in the films were 
analyzed (Figure 14). Diffusivity was calculated by using the slope of MSD diagram (Figure 14a) [55]. 

The results show that the diffusivity changes as the change of fillers (Figure 14b). The addition 
of SiO2 (modified-SiO2) nanoparticles improves the diffusivity of H2O molecules in PMA films. The 
addition of SiO2 nanoparticles results in bigger voids at the interface of PMA/SiO2 (modified-SiO2) 
film, which facilitates the rapid passage of H2O molecules. The diffusion coefficient of water 
molecules in PMA/KH550-SiO2 composite system is the best. And after that, the order of diffusion 
coefficient of water molecules in composite systems from high to low is PMA/KH560-SiO2, 
PMA/KH570, PMA and PMA/SiO2, respectively. This is consistent with the results of the water vapor 
permeability of the previous films. 

 

Figure 14. (a) MSD diagrams of H2O in the PMA, PMA/SiO2, PMA/KH550-SiO2, PMA/KH560-SiO2, 
and PMA/KH570-SiO2 films during the 40-ps MD duration, (b) The diffusion coefficient (D) of H2O 
in composite system: 0. PMA, 1. PMA/SiO2, 2. PMA/KH550-SiO2, 3. PMA/KH560-SiO2, and 4. 
PMA/KH570-SiO2. 

Figure 14. (a) MSD diagrams of H2O in the PMA, PMA/SiO2, PMA/KH550-SiO2, PMA/KH560-SiO2,
and PMA/KH570-SiO2 films during the 40-ps MD duration, (b) The diffusion coefficient (D) of H2O
in composite system: 0. PMA, 1. PMA/SiO2, 2. PMA/KH550-SiO2, 3. PMA/KH560-SiO2, and 4.
PMA/KH570-SiO2.

4. Conclusions

In this study, experimental methods combined with molecular simulation ways have been
successfully applied to study the microstructure-property relationship in various polyacrylate/
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modified-SiO2 composite systems. To investigate the effect of different surface structures on mechanical
property and water vapor permeability of resultant PMA/SiO2 nanocomposite films, SiO2 particles
were treated with polysiloxane (KH550, KH560 and KH570). Different functional groups on the surface
of SiO2 lead to different interfacial interactions with PMA, which give different mechanical properties
of composite films. At the same time, due to the different hydrophilic and hydrophobic surface of SiO2,
water vapor permeability of composite film is different. It can be used to study the interfacial interaction
and microstructure-property relationships of polyacrylate-based nanocomposites, thus guiding the
design of high performance polyacrylate-based nanocomposites.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/1/170/s1,
Figure S1: Models for water diffusion in composite system, Figure S2. Models for MD simulation of composite
system, Table S1: Binding energy of PMA/SiO2 and PMA/KH560-SiO2 composites, Table S2: Binding energy of
composites system.
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