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Abstract: A new strategy for the preparation of an integrated three-source intumescent flame
retardant (IFR) has been developed to improve the flame-retardant and smoke suppression
performance of epoxy resin (EP) with a synergistic flame retardant effect. Herein, the synthesis
of a macromolecular spirocyclic phosphorus/nitrogen-containing IFR poly sulfonamide spirocyclic
pentaerythritol bisphosphonate (SAPC) is reported via a two-step method that uses pentaerythritol,
phosphorus oxychloride and sulfonamide (SAA) as raw materials. Subsequently, the SAPC was
incorporated into EP to prepare the composite to investigate its thermal stability, flame retardancy,
and smoke suppression performance. Herein, a differential scanning calorimetry (DSC) analysis
showed that the addition of SAPC increased the glass transition temperature (Tg) of the composite.
Cone test results indicated that the incorporation of 8 wt % SAPC significantly improved the
flame-retardant performance for the composite, with a 43.45% decrease in peak of heat release rate,
a 28.55% reduction in total heat release, and a 30.04% decrease in total smoke release. Additionally,
the composite received the V-0 rating in a UL-94 vertical burning test, accompanied by the “blowout”
phenomenon. After the addition of SAPC, the amount of flammable gas products from the EP
composite decomposition was obviously suppressed, and the amount of non-flammable as was
increased. All of this suggests a good dilution role of SAPC. There are enough reasons to believe
that the enhanced flame-retardant and toxicity suppression performance for the EP composite can be
attributed to the good coordination of carbonization agent, acid source, and blowing agent in the
SAPC structure.
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1. Introduction

The industrial production of epoxy resin (EP) has been in practice for more than 60 years. EP is
a kind of multi-purpose resin that is widely used in various industrial fields such as adhesives,
transportation, aerospace, electronics, and composite materials [1–3]. However, the limiting oxygen
index (LOI) of unmodified EP is only 19.8%, accompanied by more severe smoke during the burning
process [4–6]. This defect seriously hinders EP’s development and application [7]. The incorporation
of flame retardants into EP can effectively alleviate this situation [8–10].

With the revision and promulgation of the “Waste Electrical and Electronic Equipment” and the
“Restriction of Hazardous Substances” directives, the use of traditional halogen-containing flame
retardants have been greatly restricted. However, the intumescent flame retardant (IFR) is considered
to be an important way to make the flame retardant process halogen-free and green [11]. Since the
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1990s, the flame retardant mechanism of IFRs has been continuously updated, and modified IFR
systems have also emerged [12,13].

Phosphate flame retardants have the advantages of low smoke, low toxicity, relatively
high flame retardant efficiency, and good compatibility with a matrix, thus presenting a good
development prospects [14–18]. Compared to aliphatic phosphonates, spirocyclic phosphates show
a superior flame retardant efficiency due to their rich carbonization agent and phosphorus content.
SPDPC (3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5,5] undecane-3,9-dioxide) is prepared
through the nucleophilic substitution of pentaerythritol and phosphorus oxychloride, and it is a flame
retardant intermediate that is widely used in spirocyclic phosphates. It is a double-ring rigid structure
with high symmetry, which gives it a high thermal stability [19,20]. SPDPC is a bifunctional compound
with highly reactive P–Cl bonds at both ends, and these can be used as additive flame retardant by
themselves [21], as well as intermediates to react with amino compounds containing amino (–NH2)
or imino groups (–NH), thus obtaining IFRs that are integrated with an acid source, a carbonization
agent, and a blowing agent [22–25].

In this past decade, the preparation of the spirocyclic IFRs that integrate three sources has
attracted increasing interest. Jiang reported the preparation of the flame retardant imidazole spirocyclic
phosphoramidate (ISPA) by the substitution reaction of SPDPC and imidazole for flame retardant
cotton fabrics. However, there are problems in this process, such as a high amount of addition and
an increase in the amount of smoke released during combustion [26]. In this regard, it is necessary
to further study the flame retardant and smoke suppression functions of IFRs. Many studies have
shown that macromolecular IFRs tend to exhibit a better comprehensive performance than small
IFRs [27–29]. Wu prepared a phosphorus–nitrogen-containing IFR poly ethanediamine spirocyclic
pentaerythritol bisphosphonate (PEPS) by the reaction of SPDPC and ethylenediamine to create a
flame retardant rigid polyurethane foam. The results showed that the composite presented good flame
retardancy and water resistance. In addition, PEPS was uniformly dispersed in the matrix, and its
mechanical property was less lost than usual [28]. Su synthesized a novel reactive polyphosphamide
flame retardant poly 4,4-diaminodiphenylsulfone spirocyclic pentaerythritol bisphosphonate (PCS)
through the polycondensation of SPDPC with 4, 4-diaminodiphenyl sulfone. The prepared EP
composite exhibited a good flame retardant effect, but the addition amount was relatively high [21].
Zhao synthesized a novel organophosphorus polymeric flame retardant poly (hydroxyphenyl imino
methyl phenol spirocyclic pentaerythritol diphosphonate) (PPISP) for unsaturated polyester resin
(UP) that contained both a Schiff base and spirocyclic diphosphate structures. The prepared UP/PPISP
showed excellent flame-retardant durability and water resistance. Moreover, this study also enriched
the research on functional flame retardants [30]. Recently, a kind of intumescent, flame-retardant
curing agent poly-(cyclohexane-1, 3-diyldimethanamine spirocyclic pentaerythritol bisphosphonate)
(PCDSPB) that endowed a distinguished flame-retardant property in the EP composites, even at a
low phosphorus content, was synthesized. However, compared with pure epoxy resin, the initial
decomposition temperature (T5%) of PCDSPB was relatively low at 282 ◦C, which resulted in a significant
reduction in the thermal stability of the epoxy composite [31]. Layered double hydroxide (LDH)
exhibits a high anion-exchange capacity and a good thermal stability, and these properties have also
provided new ideas for the flame retardant field. Previous studies have shown that proper modification
of LDH can help improve the flame retardancy of composites [32,33]. Studies on employing SPDPC
to improve LDH dispersion and flame retardancy have been reported via the hydrothermal method
based on SPDPC and Mg–Al–LDH (N–LDH). Moreover, this flame retardant modification can also
effectively improve the mechanical properties of nanocomposites [34].

On the whole, IFRs generally have problems such as low flame retardant efficiency and a relatively
ineffective smoke suppression effect. At present, many IFRs reduce the glass transition temperature of
EP composites while exerting flame retardant effects, resulting in restrictions in electronic packaging
and other fields. In addition, there are many reports on IFRs, but investigations of their flame retardant
mechanism are generally not profound. To this end, this paper introduces a spirocyclic IFR SAPC to
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prepare EP composites. The thermal stability, flame retardancy, and flame retardant mechanism of EP
composites were analyzed.

2. Experimental Section

2.1. Materials

The pentaerythritol (≥98%), phosphorus oxychloride (≥98%) and glacial acetic acid (98%) used in
this study were obtained from the Tianjin Nankai Yungong Synthesis Technology Co., Ltd. (Tianjin,
China). Acetonitrile (AR) and 4, 4-diaminodiphenylmethane (≥98%) were purchased from the Beijing
Chemical Plant (Beijing, China). Acetone, dichloromethane, and triethylamine were provided by
Weiss Chemical Reagent Co., Ltd. (AR, Beijing, China). Sulfonamide (98%) was purchased from the
Tianjin Komiou Chemical Reagent Co., Ltd. (Tianjin, China). The diglycidyl ether of bisphenol A (E-44,
epoxy equivalent = 0.44 mol/100 g) was procured from Nantong Xingchen Synthetic Material Co., Ltd.
(Hunan, China). Acetonitrile and triethylamine (TEA) were dried over 4 Å molecular sieves before use.

2.2. Synthesis of SAPC

The preparation of the flame retardant SAPC was divided into two steps. First, the intermediate
SPDPC was synthesized, and then it was reacted with sulfonamide (SAA) to obtain SAPC. The synthetic
route is illustrated in Scheme 1.

In the first step, pentaerythritol (20.4 g; 0.15 mol) was added into 100 mL of anhydrous acetonitrile
and then stirred for 20 min at 55 ◦C under a nitrogen atmosphere. Then, phosphorus oxychloride (69.3 g;
0.45 mol) was added to the above solution and stirred for 2 h at 60 ◦C. After the reaction temperature
went up to 80 ◦C, the reaction was continued until no HCl gas was generated. Subsequently, the mixture
was filtered, and the filter cake was collected was washed 3 times with acetone and dichloromethane to
obtain a white powder. Finally, the powder was recrystallized in glacial acetic acid to obtain a higher
purity intermediate SPDPC in a yield of 71.6%.

In the second step, sulfonamide (5.424 g; 0.0315 mol) was dissolved in 100 mL of anhydrous
acetonitrile under a nitrogen atmosphere. Then, SPDPC (8.94 g; 0.03 mol) was added to the above
solution. After stirring for 20 min, 8.4 mL of triethylamine (TEA) was added. The mixture was stirred
for 2 h at 60 ◦C and then stirred for another 12 h with the reaction temperature up to 80 ◦C. Then,
the product was obtained with a filter and was washed three times with acetone and dichloromethane,
successively. Finally, it was dried at 80 ◦C in a vacuum oven to obtain SAPC in a yield of 78.4%.

Polymers 2020, 12, x FOR PEER REVIEW 3 of 16 

 

spirocyclic IFR SAPC to prepare EP composites. The thermal stability, flame retardancy, and flame 
retardant mechanism of EP composites were analyzed. 

2. Experimental Section 

2.1. Materials 

The pentaerythritol (≥98%), phosphorus oxychloride (≥98%) and glacial acetic acid (98%) used 
in this study were obtained from the Tianjin Nankai Yungong Synthesis Technology Co., Ltd. 
(Tianjin, China). Acetonitrile (AR) and 4, 4-diaminodiphenylmethane (≥98%) were purchased from 
the Beijing Chemical Plant (Beijing, China). Acetone, dichloromethane, and triethylamine were 
provided by Weiss Chemical Reagent Co., Ltd. (AR, Beijing, China). Sulfonamide (98%) was 
purchased from the Tianjin Komiou Chemical Reagent Co., Ltd. (Tianjin, China). The diglycidyl ether 
of bisphenol A (E-44, epoxy equivalent = 0.44 mol/100 g) was procured from Nantong Xingchen 
Synthetic Material Co., Ltd. (Hunan, China). Acetonitrile and triethylamine (TEA) were dried over 4 
Å molecular sieves before use. 

2.2. Synthesis of SAPC 

The preparation of the flame retardant SAPC was divided into two steps. First, the intermediate 
SPDPC was synthesized, and then it was reacted with sulfonamide (SAA) to obtain SAPC. The 
synthetic route is illustrated in Scheme 1. 

In the first step, pentaerythritol (20.4 g; 0.15 mol) was added into 100 mL of anhydrous 
acetonitrile and then stirred for 20 min at 55 °C under a nitrogen atmosphere. Then, phosphorus 
oxychloride (69.3 g; 0.45 mol) was added to the above solution and stirred for 2 h at 60 °C. After the 
reaction temperature went up to 80 °C, the reaction was continued until no HCl gas was generated. 
Subsequently, the mixture was filtered, and the filter cake was collected was washed 3 times with 
acetone and dichloromethane to obtain a white powder. Finally, the powder was recrystallized in 
glacial acetic acid to obtain a higher purity intermediate SPDPC in a yield of 71.6%. 

In the second step, sulfonamide (5.424 g; 0.0315 mol) was dissolved in 100 mL of anhydrous 
acetonitrile under a nitrogen atmosphere. Then, SPDPC (8.94 g; 0.03 mol) was added to the above 
solution. After stirring for 20 min, 8.4 mL of triethylamine (TEA) was added. The mixture was stirred 
for 2 h at 60 °C and then stirred for another 12 h with the reaction temperature up to 80 °C. Then, the 
product was obtained with a filter and was washed three times with acetone and dichloromethane, 
successively. Finally, it was dried at 80 °C in a vacuum oven to obtain SAPC in a yield of 78.4%. 

 
Scheme 1. Synthetic route of SPDPC (3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5,5] 
undecane-3,9-dioxide) and SAPC. 

2.3. Preparation of the Composites EP/SAPC 

Different mass fractions of SAPC (0, 2, 5, 8, 10, and 15 wt %) were first dispersed in epoxy resin 
while stirring at 80 °C for 1 h. The hardener 4,4-diaminodiphenylmethane (DDM) (ratio of 
DDM/epoxy was 1:4) was then added to the above solution. The mixture was stirred at 80 °C for 1 
min to form a homogeneous liquid, which was transferred into the vacuum oven at 80 °C for 3 min 
to remove bubbles; it was then immediately poured into pre-heated molds of certain sizes. In the final 
step, the epoxy mixtures were cured in the blast oven at 120 °C for 2 h, and then they were heated to 

Scheme 1. Synthetic route of SPDPC (3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5,5]
undecane-3,9-dioxide) and SAPC.

2.3. Preparation of the Composites EP/SAPC

Different mass fractions of SAPC (0, 2, 5, 8, 10, and 15 wt %) were first dispersed in epoxy resin
while stirring at 80 ◦C for 1 h. The hardener 4,4-diaminodiphenylmethane (DDM) (ratio of DDM/epoxy
was 1:4) was then added to the above solution. The mixture was stirred at 80 ◦C for 1 min to form
a homogeneous liquid, which was transferred into the vacuum oven at 80 ◦C for 3 min to remove
bubbles; it was then immediately poured into pre-heated molds of certain sizes. In the final step,
the epoxy mixtures were cured in the blast oven at 120 ◦C for 2 h, and then they were heated to
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150 ◦C for 4 h to obtain EP composites. The prepared samples were denoted as EP control, EP/SAPC-2,
EP/SAPC-5, EP/SAPC-8, EP/SAPC-10, and EP/SAPC-15. The schematic diagram of the preparation
method is shown in Scheme 2.
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2.4. Characterization

Fourier-transform infrared (FTIR) spectroscopy: FTIR spectra were recorded on a Tensor 27 IR
spectrometer (BRUKER OPTICS, Beijing, China). Spectra were collected at 32 scans with a spectral
resolution of 4 cm−1, and the test range was 500~4000 cm−1.

Nuclear magnetic resonance (NMR) spectroscopy: 1H-NMR, 13C-NMR and 31P-NMR spectra
were recorded on an FT-80A NMR spectrometer (VARIAN, Palo Alto, CA, USA). (Methyl sulfoxide)-d6
(DMSO-d6) was used as the solvent, and the solution was measured with tetramethyl silane (TMS)
and phosphoric acid as internal standards.

Gel permeation chromatography (GPC): Waters Breeze 2 high performance liquid chromatography
(Waters, Milford, MA, USA) was employed to detect the flame retardant SAPC. The mobile phase was
tetrahydrofuran, and the solvent elution rate was 0.5 mL/min. During the detection, the column and
detector were kept at a constant temperature of 40 ◦C.

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed
with a TOLEDO STARE thermal analyzer (Mettler-Toledo, Zurich, Switzerland). Measurements were
carried out in a nitrogen and air atmosphere from 50 to 800 ◦C at a heating rate of 20 ◦C/min and from
50 to 180 ◦C with a heating rate of 5 ◦C/min under a nitrogen atmosphere, respectively.

Limiting oxygen index (LOI) tests were performed with an FTAII 1600 LOI instrument (Phoenix
Instruments Co., Ltd., Suzhou, China) by using the standard ASTM D 2863 procedure. The sample
dimensions were 130 × 6.5 × 3 mm3.

Vertical burning tests were performed with a CZF-5 horizontal vertical burning tester (Phoenix
Instruments Co., Ltd., Suzhou, China) with the UL-94 standard on samples with dimensions of
130 × 13 × 3 mm3.

Cone calorimeter measurements were performed with a Fire Testing Technology (FTT) apparatus
(Phoenix Instruments Co., Ltd., Suzhou, China) with a truncated cone-shaped radiator, and the
measurements taken according to the ISO 5660 protocol with an incident radiant flux of 50 kW/m2.
The specimen (100 × 100 × 3 mm3) was measured horizontally without any grids. The reported results
were averaged from two measurements.

Scanning electron microscopy (SEM) was performed with a Hitachi SU8020 (Hitachi Limited,
Tokyo, Japan) with a 15 kV accelerating voltage. The samples were sprayed with a thin gold layer to
make good electrical surface conductivity.
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The X-ray photoelectron spectroscopy (XPS) patterns of the samples were obtained by using
Quantera II X-ray photoelectron spectroscopy (Ulvac-PHI, Chigasaki, Japan), and the measurements
were carried out at 25 W power and 10−6 Pa vacuum.

The thermogravimetric analysis (Mettler-Toledo, Zurich, Switzerland) was coupled with
Fourier-transform infrared spectroscopy (BRUKER OPTICS, Beijing, China), and this was carried out
under a nitrogen atmosphere from 50 to 800 ◦C at a heating rate of 20 ◦C/min−1.

3. Results

3.1. Characterization of the Structure and Thermal Stability of SAPC

FTIR spectra were measured to confirm the emergence of a polycondensation reaction between
the SPDPC and SAA. As shown in Figure 1, the typical peaks of the SAPC and SPDPC spectra at 2983
and 1468 cm−1 corresponded to –CH2– stretching and bending vibrations; three apparent peaks at 1320,
1150, and 780 cm−1 were attributed to P=O, P–O–C and pentaerythritol carbon skeleton stretching
vibration, respectively. The existence of these absorption peaks proves that SAPC retained the basic
structure of SPDPC. The sharp peaks at 551 cm−1 corresponding to the stretching vibration of the
P–Cl bond and the multiple absorption peaks at 3250–3500 cm−1 were assigned to the amino in SAA
units. For the SAPC spectrum, there was no significant P–Cl absorption peak at 551 cm−1, but a new
secondary amino group appeared at 3476 cm−1. Additionally, three apparent peaks at 1630, 1582,
and 1503 cm−1 corresponded to the benzene ring structure in SAA units. Based on these results,
the P–Cl in the SPDPC units completely reacted with the –NH2 of the SAA units [35,36].

The 1H NMR, 31P NMR and 13C NMR spectra of SPDPC and SAPC are presented in Figure 2.
The characteristic peaks with two equal heights at 4.21 and 4.24 ppm were resonance peaks of the
methylene groups (Figure 2a), and the ratio of protons was approximately 1:1, which proves that a
spirocyclic existed in the structure. As can be seen in Figure 2b, there was only one single peak at
−7.2 ppm, and this corresponded to the resonance peak of phosphorus of SPDPC. In addition, the peaks
at δ = 35.7–35.9 ppm could be assigned to quaternary carbon atom in the spirocyclic moiety, and the
peaks at 68.20–68.4 corresponded to methylene of the spirocyclic moiety (Figure 2c). In summary, this
all shows that SPDPC was successfully obtained.

As shown in Figure 2d, the resonance peaks at 4.20 and 4.25 ppm corresponded to methylene.
Two characteristic protons of the aromatic appeared at 6.55–6.65 and 7.50–7.60 ppm. In addition,
the resonance peaks at 3.8 and 3.9 ppm were assigned to N–H. The 31P NMR spectra of both SAPC
and SPDPC had only one resonance peak, indicating that phosphorus was in the same chemical
environment (Figure 2e). As can be seen in Figure 2f, SAPC had benzene-carbon resonance peaks at
115–150 ppm. Based on these results, SAPC was effectively synthesized.

Moreover, the molecular weight and molecular weight distribution of the flame retardant SAPC
were characterized by GPC (Figure 3). SAPC presented a relatively uniform molecular weight
distribution, and the degree of polymerization (Xn) was calculated to be approximately 7.
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3.2. Analysis on Thermal Properties of EP/SAPC Composites

As shown in Figure 4a, SAPC presented a one-step thermal decomposition process with
approximately 53.6% residual char at 800 ◦C under the nitrogen atmosphere, mainly ascribed to
the degradation of the macromolecular chains, indicating that SAPC showed a good thermal stability
and char forming ability. For both the EP/SAPC composites, the onset decomposition temperature (T5%,
the temperature at 5% mass loss) and the maximum decomposition temperature (Tmax, the temperature
at maximum mass loss) were lower than that of the EP control due to the faster thermal degradation
of SAPC and the catalytic effect of phosphorus and nitrogen. As far as the residual char yield is
concerned, SAPC resulted in the improvement of residues at 800 ◦C, which could possibly be ascribed
to SAPC’s function as a barrier that inhibited the complete decomposition of the epoxy molecular chain.
The acid source of SAPC decomposed to form a polyphosphoric acid compound, which promoted the
dehydration carbonization of epoxy molecular chain and reduced the loss of decomposition products
from the condensed phase to the gas phase [37–39]. Moreover, the thermal decomposition behavior of
the SAPC and EP/SAPC composites under the air atmosphere was the same as that under the nitrogen
atmosphere (Figure 4b).

The EP/SAPC composites showed only one Tg, thus indicating that SAPC had a good compatibility
with EP (Figure 4c). For both the EP/SAPC composites, the Tg was slightly higher than the EP control,
and the improvement was more obvious with the increase of SAPC content, which could mainly
be attributed to two factors. On the one hand, the amino groups of the SAPC participated in the
curing reaction, increasing the crosslinking density of the epoxy molecular chain. On the other hand,
the hydrogen bonding interaction between SAPC and the epoxy molecular chain further limited the
movement of molecular segments [40]. Scheme 3 depicts the schematic of the possible hydrogen
bonding between SAPC and EP.

To further study the influence of the SAPC on the curing reaction, experiments regarding the
curing process of the EP control, the mixture of SAPC and epoxy resin (EP-SAPC) without the
curing agent DDM (the ratio of SAPC/epoxy resin was 2:23), and EP/SAPC-8 DSC were performed.
From Figure 4d, it can be seen that the EP control and EP/SAPC-8 showed obvious exothermic peaks
around 140 ◦C, which was due to the curing reaction between DDM and epoxy resin. However, for
EP-SAPC, exothermic peaks could be observed at 143.4 and 174.5 ◦C, the latter of which was more
pronounced. Therefore, it could be proven that SAPC can react with the epoxy resin during the
curing process.
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3.3. Analysis on Fire Safety of EP/SAPC Composites

The fire behaviors of the EP composites were evaluated by using the LOI and UL-94 tests [41].
From Figure 5a, it can be seen that the addition of SAPC increased the LOI values of the EP composites.
When the added amount of SAPC was increased from 0 to 8 wt %, the LOI of the composite increased
from 25.1% to 30.3%, reaching the V-0 rating with the “blowout” phenomenon (Figure 5b). Interestingly,
when the amounts of SAPC were increased from 10 to 15 wt %, the LOI values and the UL-94 rating of
the composites decreased to some extent, which may have been due to a strong gas flow that destroyed
the integrity of the char layer. A cone calorimeter test was performed on these samples to further
investigate their fire performance.

Heat release rate (HRR), total heat release (THR), and total smoke release (TSR) curves of the EP
control and its composites were obtained from cone calorimeter (Figure 6). Compared to the EP control,
EP/SAPC-8 resulted in about a 43.45% maximum decrease in HRR, a 28.55% maximum decrease in
THR, and a 30.04% maximum decrease in TSR. This was mainly attributed to the phosphoric acid that
was produced by the early decomposition of SAPC and that promoted the dehydration of the epoxy
molecular chain to form a dense char layer [42–44].

From the results shown in Figure 6f, it can be seen that the amounts of the mean CO2 yield (mean
CO2Y) of EP/SAPC-8 decreased from 1.96 to 1.59, and that of the mean CO yield (mean COY) increased
from 0.08 to 0.11. This was closely related to the phosphorus-containing free radicals that were
produced by the SAPC decomposition. Phosphorus-containing free radicals captured active radicals
such as H•, HO• and O• in the combustion chain reaction, exerting a quenching effect. Incomplete
combustion resulted in a decreased mean CO2Y and an increased mean COY from combustion [45].
Interestingly, the mean CO2Y tended to decrease with the increasing SAPC content. However, the peak
value of the CO2PR curve was the same as the peak of the COPR curve. Compared with the EP
control, the peaks of CO2PR and COPR for EP/SAPC-8 increased by 29.63% and 126.92%, respectively.
The above results reveal that the “blowout” phenomenon of EP/SAPC-8 in the UL-94 test was closely
related to the large amount of CO and CO2 generated in a short time.
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3.4. Analysis on the Flame-Retardant Mechanism of Condensed Phase for EP/SAPC Composites

The char residues of the EP control and its composites after cone calorimeter tests were compared
from different visual angles (Figure 7a–d). It can be seen that the EP control was completely burned.
However, the char residues of EP/SAPC-8 appeared to be more intumescent and compact with a hard
surface, showing a better integrity than the EP control.

The microstructures of char layers are shown in Figure 7e–h. The exterior and interior char layers
of EP/SAPC-8 were more compact and continuous than that of the EP control, and these layers could
have functioned as physical barriers. In particular, quite small pores were formed in the exterior char
layers of EP/SAPC-8 after burning, which may have been due to a strong airflow. It could be seen
that, in accordance with the HRR, THR and TSR curves, honeycomb-shaped and a certain thickness of
“foam” char layers were formed in the interior char layers, indicating that heat and smoke were gently
released through these channels [46,47]. The honeycomb char structure acted as a good physical barrier
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to seal most of the smoke and flue gas that were generated by combustion, reducing the exchange rate
of heat, combustibles and oxygen to the substrate [48,49].

The interior and exterior char residues of the EP control and EP/SAPC-8 after cone calorimeter
tests were further observed and compared by XPS (Figure 8). The EP/SAPC-8 char residues presented a
distinct characteristic peak of the P element at 139 eV, and its exterior char layer was stronger than that
of the interior char layer, implying that the phosphorus-containing compound that was produced by
the combustion tended to migrate to the exterior. In addition, the O content of EP/SAPC-8 residual char
was significantly increased, especially for exterior char layer, when compared to the EP control. On the
one hand, this could be ascribed to the fact that the introduced SAPC contained a certain amount of
O elements. On the other hand, the P element and the O element formed phosphorus-containing
compounds such as phosphoric acid and metaphosphoric acid in the form of OP+, O2P+ and HO2P+ [50].
This could also be explained by the fact that the P and O contents in the exterior char layer were higher
than those in the interior char layer.
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3.5. Analysis of Gas Phase Flame Retardant Mechanism of EP/SAPC Composites

TG-FTIR was performed to further analyze the gaseous pyrolysis products that were generated
during thermal decomposition process. As shown in Figure 9, 3D TG-FTIR spectra were obtained
during the thermal decomposition of the EP composites. It is obvious that the peak intensity of
EP/SAPC-8 was reduced and reached a steady state in advance, as compared to the EP control.

The FTIR spectra of the pyrolysis products for the EP control and EP/SAPC-8 at different
temperatures are shown in Figure 10, and the corresponding data are collected in Table 1.
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Several flammable and non-flammable gaseous products of EP/SAPC-8 were weaker than the EP
control, as identified by characteristic FTIR signals after Tmax. However, the EP/SAPC-8 started to
release the pyrolysis products slightly earlier than the EP control, indicating that addition of SAPC
catalyzed the thermal degradation of EP. It is worth noting that the absorption peaks at 3735 and
1744 cm−1 had almost disappeared at 500 ◦C, indicating that the amount of the water or phenolic
compounds was decreased. Meanwhile, the carbonyl compound was also substantially completely
released. At 600 ◦C, there was no significant difference between the infrared absorption peaks of the
two, indicating that the decomposition tended to be stable.

The FTIR spectra of the representative pyrolysis products for EP and EP/SAPC at different
times are presented in Figure 11. Comparing the decomposition processes of the EP control and
EP/SAPC-8, the positions of the absorption peaks were basically the same, suggesting that the pyrolysis
products were basically consistent. Differently, EP/SAPC-8 decomposed in advance and reaches a
stable state earlier.

In order to make a further comparison, the FTIR spectra of representative pyrolysis products
were obtained for the composites (Figure 12a–g). Regarding the decomposition time, the carbonyl
compound was first released due to the lower C=O bond energy in the crosslinked network. Next,
the aromatic compound, the fatty chain compound, methane, and water vapor were successively
released. Finally, the decomposition products were esters/ethers and ammonia.

With the incorporation of 8% SAPC, the maximum absorbance intensity of the representative
pyrolysis products—esters/ethers compounds, aromatic and carbonyl compounds, hydrocarbons,
and methane—was shifted to a lower value than that of the EP control sample. In addition,
the introduction of SAPC advanced the release time of the pyrolysis volatiles. This was inextricably
linked to the early decomposition of SAPC and its catalytic action. Moreover, there were significant
difference for H2O and ammonia, which may have been due to the fact that SAPC changed the
decomposition path of the EP to some extent. It is worth noting that the rising H2O and ammonia
content diluted the concentration of combustible gas (Figure 12h), which was beneficial for the
improvement of the flame retardant effect. The EP/SAPC composites achieved the purpose of
suppressing combustion by increasing the release of non-combustible gas and reducing the generation
of combustible gas.

A flame retardant mechanism for the EP/SAPC composites was speculated based on the analyses of
char residues and pyrolysis products (Scheme 4). In the condensed phase, the phosphorus-containing
compounds that were produced by the SAPC decomposition catalyzed the formation of the char
residues. In addition, the pyrolysis volatiles participated in the foaming role in the molten char residues,
which acted as physical barriers [51]. In the gas phase, on the one hand, the phosphorus-containing
radical generated by the SAPC decomposition captured the active free radicals, inducing a quenching
effect. On the other hand, SAPC inhibited the amount of flammable gases generated and promoted the
release of non-flammable gases in the EP decomposition process, exerting asphyxiation and dilution
effects [52]. In short, the significant improvement of flame retardancy and smoke suppression were
mainly due to the catalytic expansion effect of SAPC and the good synergy between the acid source,
carbonization agent, and blowing agent.
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Table 1. Infrared characteristic peak of the main pyrolysis product groups.

Wavenumber (cm−1) Structure

3735,3650 –OH in H2O and phenols
3038,829 C–H in aromatic compounds

3540,3340 N–H in amine compounds
2970 –CH3, –CH2–in hydrocarbons
1744 C=O in aldehyde/ketone

1605,1510,1338 aromatic compounds
1257,1178 C–O in esters/ethers
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4. Conclusions

In summary, a macromolecular spirocyclic IFR SAPC with an integrated acid source, carbonization
agent, and blowing agent was designed and synthesized. Its structure and performance were identified
with FT-IR, 1H NMR and 31P NMR, and TGA. SAPC presented a good compatibility with EP, and the
Tg of the composites gradually increased with the increase of SAPC content. The EP composites
with 8 wt % SAPC had an LOI of 30.3% and passed the UL-94 test with a V-0 rating. Interestingly,
the EP/SAPC-8 presented a “blowout” phenomenon during the vertical combustion test. Moreover,
the PHRR, THR and TSR values for EP/SAPC were obviously reduced. The TG-FTIR results showed
that the amount of flammable volatile products from the EP composites’ decomposition of different
degrees was suppressed after incorporating the SAPC, implying an attenuated flammability. Due to its
multiple functions, SAPC may play a substantial role in improving fire safety and many other areas.
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