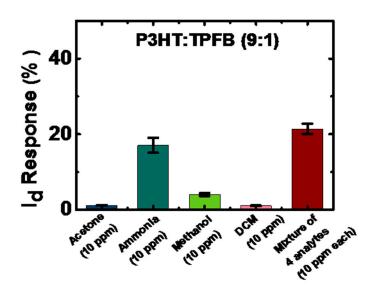
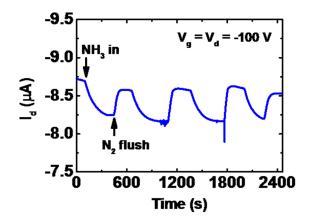
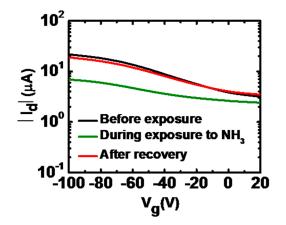

Supporting Information

Selective Ammonia-Sensing Platforms Based on a Solution-Processed Film of Poly(3-Hexylthiophene) and p-Doping Tris(Pentafluorophenyl)Borane


Alem Araya Meresa and Felix Sunjoo Kim *

School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Korea; alemaraya12man@gmail.com


* Correspondence: fskim@cau.ac.kr; Tel.: +82-2-820-5200


Figure S1. Selectivity of sensors made from thin polymer films: (**a**) P3HT and (**b**) P3HT:TPFB=9:1. The current was recorded at the gate voltage of 0 V. The film thickness was controlled to be ~31 nm.

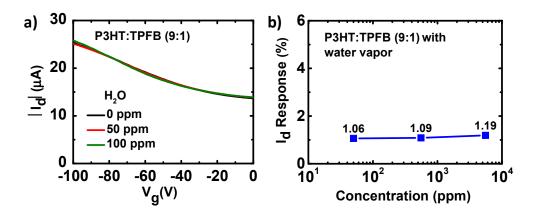

Figure S2. Percentage current responses of the P3HT:TPFB (9:1) devices for individual analyte at 10 ppm and the mixture of four analytes (10 ppm each). The current was recorded at the gate voltage of -100 V.

Figure S3. Real-time responses of a P3HT:TPFB (9:1) device during multi-cycling of sequential exposure to NH₃ (10 ppm) and N₂-gas flush. The current was recorded at the drain and gate voltages of –100 V.

Figure S4. Transfer curves of a P3HT:TPFB (9:1) device before NH₃ exposure, during NH₃ exposure, and after recovery in N₂ environment.

Figure S5. (a) Transfer curves of a P3HT:TPFB (9:1) device in water vapor. (b) Percentage current responses of a P3HT:TPFB (9:1) device to a various concentration of H₂O vapor. The current was recorded at the gate voltage of -100 V.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).