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Abstract: Many achievements have been made on the research of composite polyurethane foams
to improve their structure and mechanical properties, and the composite foams have been widely
utilized in building insulation and furniture. In this work, rigid polyurethane foams (RPUFs) with the
addition of different fillers (nano-SiO2, peanut shell, pine bark) were prepared through the one-step
method. The effects of inorganic nano-SiO2 and organic biomass on foam properties were evaluated
by means of physical and chemical characterization. The characterization results indicate that the
compressive strength values of prepared foams could fully meet the specification requirement for
the building insulation materials. The inorganic and organic fillers have no effect on the hydrogen
bonding states in composite RPUFs. Furthermore, compared to the biomass fillers, the addition of
nano-SiO2 greatly influenced the final residual content of the fabricated foam. All composite foams
exhibit closed-cell structure with smaller cell size in comparison with the parent foam. The prepared
composite foams have the potential for utilization in building insulation.
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1. Introduction

In order to achieve high-quality development for current society, energy efficiency and green
economy have been sustainably developing [1–4]. The construction industry is an important link to
sustainable development [5]. The use of environment-friendly materials in modern buildings cannot
only greatly reduce construction waste but also avoid excessive use of natural resources [6]. In view of
this, the utilization of biomass, especially crop wastes, is an effective way to save energy and protect
the environment in the building industry [7,8]. Furthermore, the estimated amounts of tremendous
crop wastes in China covered a large scale from 620 to 940 tons every year. Therefore, the utilization
of biomass resources will significantly reduce excessive CO2 emissions [9]. Rigid polyurethane
foams (RPUFs) are the most commonly used polymer materials in the field of building for thermal
insulation and sound absorption because of their preferable thermal stability; fire-, heat-, impact-,
and crack-resistance; etc. [10–15]. Therefore, the research on the preparation of bio-based RPUFs or
composite RPUFs with the addition of biomass fillers is necessary in future studies.

As for bio-based RPUFs, bio-based polyols, which could be produced from vegetable oils [16–18]
and plant fibers [19–21] are usually served as raw materials due to the existence of abundant hydroxyl
groups or double bonds in these polyols. However, chemical modification for vegetable oils or
liquefaction for plant fibers is always needed to transform them into bio-based polyols, and extra
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energy consumption is necessary for pretreating those biomass feedstocks. Compared to bio-based
RPUFs, the direct addition of biomass fillers into RPUFs has also gained much more attention.
The fillers, such as nanoparticles, insulating glass microspheres, and carbon fibers, have been used to
improve the functionality of polyurethane in many studies [22–26]. As previously reported, composite
polyurethane foam with tea-leaf fibers as filler could improve sound absorption performance [27].
The electrically conductive polymer material prepared by using multiwall carbon nanotubes had a
promising application in sensors and intelligent sandwich composite cores [28]. The flame-retardant
property of RPUF could be enhanced by adding expanded graphite, fly ash, etc. [29–33]. However, many
researches are still focusing on functionalization rather than sustainable development. The utilization of
biomass as filler, especially crop wastes, is an effective way to fabricate RPUFs for the purpose of saving
energy and protecting the environment in the construction industry to support sustainable development

The aim of this work was to synthesize the RPUFs composited with inorganic filler (nano-SiO2)
or organic fillers (peanut shell and pine bark). Their compressive strength, hydrogen bonding states,
thermal behavior, and morphology were characterized. The effects of different fillers on those physical
and chemical properties of RPUFs were intensively evaluated.

2. Experimental

2.1. Materials

Polyethylene glycol 400 (PEG 400) was purchased from Tianjin Damao Chemical Co., Ltd., Tianjin,
China. Polymeric methylene-4,4′-diphenyl diisocyanate (PM-200, 32.0 wt % of isocyanate group) was
obtained from Wanhua Chemical Group Co., Ltd., Yantai, China. Triethylene diamine (A-33), stannous
octoate (T-9), and silicone-based surfactant (L-580) were purchased from Air Products and Chemicals,
Inc., Allentown, PA, USA. The hydrophilic nano-SiO2 with the specific surface area of 200 m2

·g−1

was purchased from Aladdin biochemical technology co., Ltd., Shanghai, China. Pine bark (PB) and
peanut shell (PS) were respectively obtained from Rizhao and Qingdao, China. They were dried to
constant weight and then ground under the speed of 10,000 rpm. The obtained powders with the size
of ≤250 µm were collected for further utilization.

2.2. Synthesis of Polyurethane Foam

RPUFs were synthesized via a one-step procedure. The content of all the additives was a relative
weight percent to the PEG 400. Firstly, the PEG 400 (100 wt %), foaming agent (deionized water,
2.5 wt %), foam stabilizer (L-580, 2.0 wt %), catalysts (T-9 of 0.3 wt % and A-33 of 1.0 wt %), and auxiliary
filler (nano-SiO2, PB or PS) were mixed in a 500 mL plastic beaker with stirring of 800 rpm for 5 min.
Then the pre-weighted PM-200 (equivalent ratio of isocyanate group to hydroxyl group = 1/1) was
quickly fed into the beaker under constant stirring. Finally, the RPUFs were demolded from beaker after
24 h curing, and then they were post-cured at room temperature for 72 h before the characterization
tests. The foams composited with nano-SiO2, PS, and PB as filler are denoted as RPUF/SiO2, RPUF/PS
and RPUF/PB.

2.3. Foams Characterization

Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of RPUFs were
analyzed on the Bruker VERTEX 70 (Bruker Optik GmbH, Ettlingen, Germany) with 32 scans under the
frequency range of 4000–400 cm−1 and a resolution of 2 cm−1. The thermogravimetry (TG) scans were
collected on a Netzsch Simultaneous Thermal Analyzer STA 449F5 Jupiter (Netzsch, Selb, Germany)
from 30 to 800 ◦C at the heating rate of 10 ◦C·min−1 under the nitrogen atmosphere. The apparent
densities of RPUFs were measured according to GB/T 6343-2009. The compressive strength was tested
according to GB/T 8813-2008 on an electronic universal testing machine of H10KS (Hounsfield Test
Equipment Ltd., Redhill, Surrey City, UK) at a loading speed of 5 mm·min−1. The foam cell structure
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was observed through a cold-field emission scanning electron microscope of Hitachi S-4800 (Hitachi
High-Technologies Corp., Tokyo, Japan).

3. Result and Discussion

3.1. Compressive Strength

Compressive strength, which depends greatly on the foam density, is the crucial parameter
to evaluate the compression properties of RPUFs. The specific compressive strength (the ratio of
compressive strength to density) was used in this study for characterizing the compression properties
of the prepared composite forms [34]. It can be seen from Figure 1 that the apparent density increases
with the increase in nano-SiO2 content (up to 4 wt %), then almost reaches a plateau. However, when
the addition amount of nano-SiO2 was >7 wt %, the viscosity of blends experiences a sharp increase,
resulting in the shutdown of the foaming reaction [35]. In the case of the addition of lignocellulosic
biomass into the RPUF foaming process, the density of obtained foams decreases with the elevated
content of PS or PB. The lignocellulosic biomass filler could act as the nucleating agent for promoting
foam growing process to rapidly form a low-density foam.
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As illustrated in Figure 2, the compressive strength has the same change tendency as the specific
compressive strength of prepared composite RPUFs. Their values increase with the increase of
nano-SiO2 content in the RPUF/SiO2 samples. The presence of nano-SiO2 would lead to the formation
of thick and dense pore walls, thus could improve the compressive strength of RPUF/SiO2 samples.
However, the compressive strength and specific compressive strength of RPUF/PS or RPUF/PB samples
represent a rapid decrease with the addition of PS or PB (≤2%), then varies slightly with further
increase in PS or PB content. This could be attributed to the loose pores arrangement and relatively
thin pore walls in those foams, which would be also discussed in the following discussion of the
morphology investigation. These results indicated that the type and the addition content of fillers
could significantly tune the physical properties of the fabricated RPUFs as compared to the previous
reports [36,37]. According to GB/T 21558-2008, the compressive strength value of RPUFs used as the
building insulation materials should be higher than 80 kPa. Therefore, the compressive strength of the
above composite RPUFs meets the requirement for external wall insulation in building fields.
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3.2. Hydrogen Bonding States from ATR-FTIR

The ATR-FTIR is generally used for characterizing the hydrogen bonding (H-bonding) states in
polyurethanes. Figure 3 shows the integrated (a) and partial (b) ATR-FTIR spectra of RPUFs with
and without the addition of fillers. It can be seen from Figure 3a that all the prepared RPUFs exhibit
the similar spectra, and there is no stretching vibration peak at around 2275 cm−1 for isocyanate
(N=C=O) group, demonstrating that the isocyanate groups have reacted completely with polyols and
water during polymerization [38]. Furthermore, two principal vibration regions for N–H stretching
and C=O stretching band, with free (non-H-bonding), ordered (strongly H-bonding) and disordered
(amorphous) states, can be observed in Figure 3b. Apparently, the ordered and disordered N–H
stretching vibrations appear at around 3363 cm−1 and 3295 cm−1, respectively. The free N–H stretching
vibration is present at 3496 cm−1 as a shoulder peak on the side of those bands [39]. The hydrogen
bonding of N–H with ether oxygen (N−H−EO) is responsible for the absorbance peak at 3220 cm−1.
Moreover, the characteristic absorbance peaks of H-bonding C=O groups generally appear at lower
wavenumbers [40]. The stretching vibration peaks located at 1721 cm−1, 1705 cm−1, and 1657 cm−1

could be ascribed to the free, disordered and ordered hydrogen bonding state in the C=O groups,
respectively [41,42]. These results imply that the organic or inorganic fillers have no effect on the
hydrogen bonding states in composite RPUFs in comparison with the parent RPUF. The fillers did not
react with the ingredients in the foaming process, but participated as inert materials to only change the
physical properties of the prepared composite RPUFs.
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3.3. Thermal Behavior

The thermal stability of polyurethanes is related to the intrinsic nature as well as the equivalent
ratio of functional groups of the hard and soft segment. Moreover, the degree of phase separation
between the hard and soft segments also plays a considerable role in determining the thermal
stability of polyurethanes [43]. The thermal behavior of the prepared RPUFs was characterized by
thermogravimetry (TG) and the corresponding differential thermogravimetry (DTG), as depicted in
Figure 4. Compared to parent RPUF, there are no obvious changes in TG curve shape after the addition
of nano-SiO2, PS or PB. The substantial degradation stage above 200 ◦C is attributed to the urethane
bond decomposition through the breakdown of isocyanate and polyols [44], forming the primary
amines and terminal olefinic group on the polyester chain [45], and the maximum weight loss rate can
be observed at around 320–330 ◦C from DTG curves. Moreover, a weak weight loss peak can be found
at the higher temperature (430–550 ◦C), probably resulting from the C–C bond cleavage [46], and the
final residual content for RPUF, RPUF/SiO2, RPUF/PS and RPUF/PB is 16.4%, 20.0%, 18.0%, and 17.1%,
respectively. The thermal stability of RPUFs is improved by the addition of the fillers, especially the
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inorganic one. The organic fillers could be decomposed when heated, while the inorganic nano-SiO2

filler remained stable, thus leading to the high residual content of the RPUF/SiO2.
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3.4. Morphology Investigation

The camera pictures and SEM images of prepared RPUFs are shown in Figures 5 and 6, respectively,
to investigate the foam structure such as pore size, cell walls, and wall joints. Morphology changes
of RPUFs mainly depend on the preparation condition of samples. It can be seen from Figure 5 that
the cell size of RPUF/SiO2 is smaller than that of the RPUF/PS and RPUF/PB, which is consistent
with the results of the apparent density analysis (Figure 1). RPUFs samples for SEM observation
were cut from the perpendicular orientation to the foam growth direction. It can be observed from
Figure 6 that all prepared RPUFs possess the closed-cell structure with many windows, and the cell
size of composite RPUFs with the addition of fillers is much smaller than that of the parent foam.
The closed-cell structure of the prepared composite RPUFs could be beneficial for the application of
acoustical and thermal insulation.
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4. Conclusions

In this work, the effects of inorganic and organic fillers on compressive strength, density, thermal
behavior, and morphology of rigid polyurethane foams were investigated. The results indicated the
density of RPUF/SiO2 increased with the increase in the filler content while the density of RPUF/PS and
RPUF/PB experienced the opposite trend. The compressive strength values of prepared RPUFs could
fully meet the specification requirement for the building insulation materials. Moreover, the organic or
inorganic fillers have no effect on the hydrogen bonding states in composite RPUFs in comparison
with the parent RPUF. The addition of inorganic nano-SiO2 filler could bring relatively higher residual
content in the corresponding RPUF/SiO2, while the organic fillers could be easily decomposed when
heated, leading to the lower residual content of the RPUF/PS and RPUF/PB. The close-cell structure
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and appropriate compressive strength make the composite RPUFs suitable for serving as building
insulation materials.

Author Contributions: Methodology, Q.Z.; formal analysis, H.Z.; writing—review editing, D.H.; investigation
and writing—original draft preparation, X.L.; data curation, W.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 51803107),
Shandong Provincial Natural Science Foundation of China (Grant No. ZR2017MC032), and Open Fund of Guangxi
Key Laboratory Cultivation Base for Polysaccharide Materials and Modification (GXPSMM18YB-03). Dezhi Han
thanks the support of the Start-up Foundation for Advanced Talents of Qingdao University of Science and
Technology (010022919).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. The G20 Seoul Summit Leaders’ Declaration. Available online: http://www.g20.utoronto.ca/ (accessed on
5 November 2019).

2. Hwang, B.-G.; Zhao, X.; See, Y.L.; Zhong, Y. Addressing Risks in Green Retrofit Projects: The Case of
Singapore. Proj. Manag. J. 2015, 46, 76–89. [CrossRef]

3. Ravindu, S.; Rameezdeen, R.; Zuo, J.; Zhou, Z.; Chandratilake, R. Indoor environment quality of green
buildings: Case study of an LEED platinum certified factory in a warm humid tropical climate. Build. Environ.
2015, 84, 105–113. [CrossRef]

4. Roetzel, A.; Tsangrassoulis, A.; Dietrich, U. Impact of building design and occupancy on office comfort and
energy performance in different climates. Build. Environ. 2014, 71, 165–175. [CrossRef]

5. Wolfson, A.; Litvak, G.; Dlugy, C.; Shotland, Y.; Tavor, D. Employing crude glycerol from biodiesel production
as an alternative green reaction medium. Ind. Crops Prod. 2009, 30, 78–81. [CrossRef]

6. Sricharoenchaikul, V.; Atong, D. Fuel Gas Generation from Thermochemical Conversion of Crude Glycerol
Mixed with Biomass Wastes. Energy Procedia 2012, 14, 1286–1291. [CrossRef]

7. Briga-Sá, A.; Nascimento, D.; Teixeira, N.; Pinto, J.; Caldeira, F.; Varum, H.; Paiva, A. Textile waste as an
alternative thermal insulation building material solution. Constr. Build. Mater. 2013, 38, 155–160. [CrossRef]

8. Rajput, D.; Bhagade, S.S.; Raut, S.P.; Ralegaonkar, R.V.; Mandavgane, S.A. Reuse of cotton and recycle paper
mill waste as building material. Constr. Build. Mater. 2012, 34, 470–475. [CrossRef]

9. Liu, H.; Jiang, G.; Zhuang, H.; Wang, K. Distribution, utilization structure and potential of biomass resources
in rural China: With special references of crop residues. Renew. Sustain. Energy Rev. 2008, 12, 1402–1418.
[CrossRef]

10. Sung, G.; Kim, J.W.; Kim, J.H. Fabrication of polyurethane composite foams with magnesium hydroxide
filler for improved sound absorption. J. Ind. Eng. Chem. 2016, 44, 99–104. [CrossRef]

11. Wang, Y.; Zhang, C.; Ren, L.; Ichchou, M.; Galland, M.A.; Bareille, O. Influences of rice hull in polyurethane
foam on its sound absorption characteristics. Polym. Compos. 2013, 34, 1847–1855. [CrossRef]
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