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Abstract: To predict the cyclic stability of secondary battery electrodes, the mechanical behaviors of
polymer binders and conductive composites (BCC) is of great significance. In terms of uniaxial tension,
tensile stress relaxation, and bonding strength tests, the present study encompasses a systematic
investigation of the mechanical properties of two typical aqueous binders with different contents of
Super-S carbon black (SS) under a liquid electrolyte. Meanwhile, the microstructure of cured film and
the surface morphology of the bonding interface are investigated in detail. When the weight ratio of SS
increases from 0% to 50%, the cured BCC films manifest a higher ratio of tensile strength to modulus
and a shorter characteristic relaxation time. Moreover, suitable loadings of SS can improve the tensile
shear strength and remarkably reduce the percentage of interface failure of aqueous polymer-bonded
Cu current collector. Nevertheless, an excess of carbon black amount cannot maintain its enhancing
effect and can even impair the adhesive layer. Finally, a sodium alginate-based polymer composite
holds much more superior mechanical properties than the mixture of sodium carboxymethyl cellulose
and styrene-butadiene rubber at the same content of carbon black. Noticeably, the two kinds of
aqueous polymer doped by 50 wt % of SS exhibit the best adhesive properties.

Keywords: aqueous polymer binder; conductive carbon black; mechanical properties; adhesive
performance; microstructure

1. Introduction

A polymeric binder that is applied as an inactive in the composite anode and composite cathode
for lithium secondary battery is only 1–10 wt % loading of active particles [1–3]. However, a polymeric
binder is an essential component for keeping the mechanical stability and electrical integrity of
an electrode structure. Compared to the popular poly(vinylidene difluoride) (PVdF) binder that
contains toxic organic solvent, aqueous polymer adhesives have prominent advantages such as high
bonding strength, good electrochemical properties, relative cheapness, and environmental friendliness.
Therefore, sodium carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR), polyacrylic acid
(PAA) [4,5], polyvinyl alcohol (PVA) [6], and sodium alginate (SA) [7–9], among others that use
water as a solution, have been the potential choices for the electrodes in advanced lithium secondary
batteries. Among the investigations of advanced electrodes based on water soluble polymer adhesives,
considerable efforts have been made to reveal the effect of binder nature on the reversibility and
cyclability of the cell. It is found that the mixtures of CMC and SBR reveal the higher coating adhesion
contrast to PVdF, which leads to an obvious enhancement in the cycle stability and rate performance
of metal oxide electrodes [10–12], graphite [13], silicon [14] anodes, and sulfur cathode [15]. Due
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to a great deal of carboxyl groups, SA can boost the adhesion strength of high-capacity anodes on
the copper current collect, thus improving the cycle life of secondary batteries [7–9]. For example,
activated carbon/SA electrodes can sustain up to 2000 charge/discharge cycles in electrolytes that
contain Li-salt [8]. Similarly, PAA has strong hydrogen bonds with active particles and the current
collector. As a result, electrodes with a PAA binder exhibited good cyclic performance [16]. Further, it
has been identified that the cohesion properties of polymer binders have played a pivotal role on the
electrode integrity and electrochemical stability during lithiation/delithiation. Owing to high tensile
strength and stiffness of the cured binder film, a Mo6S8 cathode with PAA and PVA exhibited good
mechanical stability, capacity retentions, and rate capabilities for rechargeable magnesium batteries [17].
Li et al. also reported the influence of binders elastic modulus on bending deformation and Vegard
stress in Si composite electrodes with SA, Nafion, and PVdF [18].

It is well recognized that composite electrodes are generally composed of an active particle,
polymer binder, and conductive carbon black (CB). As the specific surface area of CB is far larger than
that of the active material, the electrode system can be regarded as an active particle being bound
together by a CB filled polymer composite [19], which electrical and mechanical properties naturally
impact the electrode performance. Hence, the effect of conducive additive on polymer binder has been
gradually attracting scientific and industrial interest [19–24]. Generally, increasing the conductive agent
contributes to a higher electronic conductivity of the polymer composites. However, Liu investigated
the impedance of PVdF evolved with the different content of acetylene black (AB) and observed that the
DC conductivity increased and plateau at AB/PVdF = 0.2 (weight ratio) [20] for the electrode with a high
loading of active material; the lower the AB/PVdF ratio, the better the cell power performance [20,21].
In order to uncover the effect mechanism of AB on the electrode properties, Takahashi et al. tested
the stress-strain behavior of the conductive agent filled polymer binder composite (AB/PVdF = 0.2),
which was immersed in an electrolyte solution. Further, the maximum stress and Young’s modulus
of PVdF were found to be weakened when adding carbon black [23]. Similar effects of conductive
carbon black on the mechanical properties of PVdF were obtained by Zheng et al. [21] and Grillet′s
group [24]. However, as the content of Super-S carbon black increased, it enhanced poly(vinylidene
fluoride-co-hexafluoropropylene)-based composites. Hence, the CB appears to act upon a complicated
mechanical role when added into the fluorinated elastomer. It is still not clear how the conducting
agent impacts the mechanical behavior of the electrode binders, especially for an aqueous polymer
adhesive system. The knowledge of adhesive and cohesive properties of the water-soluble binder with
various carbon black loadings under electrolyte solution conditions can not only allow for a better
understanding of the mechanical behavior and failure mechanism of electrode structures but the basis
of aqueous adhesive design and application for high- performance secondary batteries. Up until now,
no previous studies have paid close attention to this issue.

In this study, we focus on exploring the influence of conductive carbon black on mechanical
properties of aqueous polymer binders under realistic condition. Herein, we aim to provide a simple
and accurate basis for theoretical modeling and applications with high-energy density electrodes. The
typical water-soluble polymers (SA and CMC/SBR) were filled with CB at different loadings when
preparing electrode binders. Following that, a series of uniaxial tension and stress relaxation were
carried out to identify the quasi-static mechanical behavior of cured adhesive films subjected to organic
electrolytes, the tensile strength, Young′s modulus, and characteristic retardation time. Furthermore,
the bonding strength of the adhesives with varying concentrations of carbon black were compared
according to ASTM D3165. In order to clarify the effect mechanism of inorganic nanoparticles on
the mechanical response of the polymer binder composite, scanning electron microscopy (SEM) and
optical microscopy were used to check the change in the microstructure of cured film and the failure
interface between the binder and current collector, respectively.



Polymers 2019, 11, 1500 3 of 11

2. Experimental

2.1. Materials and Samples

The mixtures of CMC (CMC 2200, Daicel, Japan) and SBR (BM450, Zeon, Japan) with a 1:1 weight
ratio, as well as SA (Alladin, Shanghai, China), were separately adopted as the matrices of the binder
and conductive composites (BCC). Moreover, Super-S carbon black (SS, CM65, Kejing, Shenzhen,
China) had a weight ratio of 0%, 20%, 35%, 50%, and 60% and used as the dispersed phases in BCC,
respectively. SA aqueous solutions were prepared by dissolving polymer powder in distilled water at
80 ◦C for 3 h under stirring at 90 r/min. SS with an average particles size of 40 nm were added into the
solution which was cooled at 50 ◦C, and thoroughly mixed under mechanical and ultrasound agitation.
Meanwhile, SS-CMC/SBR solutions were obtained via a similar procedure. Subsequently, the samples
were prepared as follows:

(1) Cured BCC films: after being degassed for 30 s, the SS-polymer mixed aqueous solutions were
spread on Teflon-coated glass plates and dried at 25 ± 2 ◦C and 50% relative humidity (RH) for seven
days. Then, the obtained films with thickness of 100 µm were cut into rectangular samples (5 mm ×
20 mm) for uniaxial tension and stress relaxation and preserved in a desiccator with recently dried
silica gel as samples for use.

(2) BCC bonded current collector specimen: Cu foil used in this experiment had dimensions of
100.0 mm (L) × 25.4 mm (W) × 1.7 mm (T) with an adhesive area (S) of 25.4 × 12.5 mm2. The adherend
surfaces cleaned with acetone were bonded for single-lap-joint laminated assemblies and the thickness
of the BCC adhesives were about 0.2 mm.

2.2. Test Methods

The samples were immersed in the liquid electrolyte with 1.1 M LiPF6 in a mixed solution
of EC and DMC at 1:1 volume ratio (LiPF6-EC/DMC) for 48 h under room temperature before the
mechanical experiments.

(1) In order to obtain the mechanical behavior of cured BCC films with the electrolyte solution,
a quasi-static tension experiment was carried out in the strain rate of 5 × 10−3

·s−1 using a DMA (TA
Q800, TA Instruments-Waters LLC, New Castle, DE, USA) with a submersion film/fiber clamp.

(2) With the view of elucidating the relaxation response of cured BCC films, tensile stress relaxation
experiments were fulfilled at 1.0% strain, which was chosen from the linear section of the stress-strain
curve of the polymer composites. The stress required to maintain constant strain was recorded during
about 60 min in uniaxial tension, with a sampling rate of 10 Hz.

(3) For the purpose of clarifying the effect mechanism of the carbon black on the mechanical
properties of the aqueous polymer binder, the surface morphology of cured BCC films with different
SS contents were imaged using SEM (Gemini SEM-300, Carl Zeiss, Jena, Germany).

(4) The bonding properties of BCC were assessed according to ASTM D3165. The tensile shear test
for BCC glued Cu foil was performed at a crosshead speed of 1.27 mm/min by a universal test machine
(Zwick-Z020, Ulm, Germany) under ambient temperature. Following this, an optical microscope (Zeiss
Smart zoom 5, Carl Zeiss, Jena, Germany) was used to check the surface morphology of the failure
interface between the binder and current collector. The obtained optical microscopy images were then
transformed into binary images using a MATLAB program based on the region growing method.

3. Results and Discussion

3.1. Uniaxial Tensile Properties of Cured BCC Film

The uniaxial tensile deformation of cured BCC in 1.1 M LiPF6-EC/DMC is shown in Figure 1.
For SBR/CMC or for SA films as seen Figure 1a,b, respectively, the engineering stress-strain curves
of testing samples without SS carbon black nearly exhibited a characteristic behavior of the brittle
polymers, which broke after yielding without a cold drawing. Due to the addition of SS carbon black,
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the stiffness decreased, while the strain after yielding increased, resulting in approach to a fractured
response of the ductile polymer. Meanwhile, it was observed that the tensile mechanical properties
of BCC film samples were strongly dependent on the aqueous polymer type and conductive agent
loading. Furthermore, the variation of the maximum stress and Young′s modulus determined from
the stress–strain curves with carbon black content are plotted in Figure 2.
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Figure 1. Effects of carbon black (SS) content on the tensile stress-strain curves of cured conductive
composites (BCC) films.

As seen in Figure 2a,b, SA and its composite revealed better resistance to tensile rupture than
SBR/CMC matrices with the same SS content. When the loadings of carbon black increased, tensile
strength and stiffness decreased remarkably for the cured BCC film. It can be clearly observed from
Figure 2c,d that the composite samples doped with 60% SS had about 25% maximum stress (σb) and
Young′s modulus (E) of their unfilled counterparts. These results are similar to the evidence that
conductive acetylene black filled PVdF composites showed a lower strength and stiffness [21,23,24].
On the contrary, the evolution of σb and E contrasted with the ratio (σb/E) of BCC films rose as the
loading of SS increased from 0% to 50%, as shown in Figure 2e. However, it gradually decreased with
the further increase of carbon black. Moreover, with an increasing concentration of SS particles, BCC
films exhibited higher elongation (εf) at a fracture. Therefore, adding the suitable loading of conductive
carbon black (≤50% SS) can help the aqueous polymer improve its resistance to tensile rupture due to
an increased σb/E and εf of the elastomers.

It should be noted that neat SA films revealed better tensile properties compared to CMC/SBR;
the effect of the conductive agent addition on the reduction of σb and E is relatively noticeable for SA
matrices. Nevertheless, the ratio of the tensile strength to modulus and the breaking elongation of SS-SA
is larger than SS-CMC/SBR at the same carbon black content from 0% to 60%. This indicates that any
SA-based composite may hold great promise for application in the field of secondary battery electrodes.
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Figure 2. Evolution of (a) maximum stress; (b) Young′s modulus; (c) strength reduction; (d) stiffness
reduction and (e) ratio of strength to stiffness of BCC films with SS content for different aqueous
polymer matrices.

3.2. Tensile Stress Relaxation Behaviors of Cured BCC Film

Under constant tensile strain, the variation of normalized stress versus time for conductive carbon
black filled aqueous polymers in 1.1 M LiPF6-EC/DMC is shown in Figure 3a,b, respectively. All
curves exhibited typical viscoelastic behavior (time-dependent stress reduction), but with different
degrees of relaxation, which demonstrated that the polymer type and SS content had played a pivotal
role in the stress relaxation process. We found that the stress level of SS-CMC/SBR steeply decreased
up to about 40% of initial value (t = 0) after 5 min and the higher the loading of carbon black, the
more rapid the decrease in stress. Similar stress relaxation behavior was observed for SA as the host
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polymer. The decays also got much more distinct with increasing SS concentration. This implies that
the addition of conductive carbon black accelerated the relaxation process of aqueous polymers in the
liquid electrolyte. In order to delve into the underlying mechanism, the Kohlrausch-Williams-Watts
(KWW) model, as seen in Equation (1), was attempted to further analyze the decay in tensile stress—σ(t)
of the aforementioned polymer composites. For all of the above tensile stress relaxation curves, the
relaxation time (τ) was obtained using a 1stOpt® non-liner regression software; its evolution against
carbon black content are plotted in Figure 4. As the regression correlation coefficients are close to 1, the
KWW time-decay formula can describe the stress relaxation behavior of aqueous polymers filled with
SS carbon black.

σ(t)
σ0

= exp
(
−

t
τ

)β
(1)

where σ0 is the initial relaxation stress (t = 0), t is time, τ is characteristic relaxation time at which
σ(t)decays to the value 1/e, and the exponent β describes the distribution in the limits of 0 < β <1.
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Figure 3. Normalized stress relaxation curves of cured (a) SS-SBR/CMC and (b) SS-SA films.
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As seen Figure 4, due to the relatively higher stiffness (elasticity) of the polymer chain, pure
SA and SS-SA experienced a far shorter relaxation process beyond CMC/SBR and its composites.
Moreover, the conductive carbon black significantly impacted the characteristic retardation time (τ),
which was smaller in the doped composites than their undoped counterparts. Noticeably, the values of
τ decreased up to over 90% as the SS concentration in the polymer composite rose from 0% to 60%.
Therefore, the addition of the filler greatly enhanced and sped up the stress relaxation process in BCC
films. This may be because SS particles were inserted into different polymer molecular chains. The
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electrostatic forces of these nano-fillers created a mutually exclusive system that forced molecular
chains to become a looser framework, leaving extra free volume. Meanwhile, the plasticization effect of
organic electrolyte exacerbated the speed of the slip movement of molecular chains, which facilitated
the structure relaxation of BCC films.

3.3. Microstructure of Cured BCC Films

In order to disclose the effect mechanism of the carbon black on the aqueous polymer binder, we
used further analysis according to the surface morphology of cured BCC film via SEM, as shown in
Figure 5. At a low carbon black concentration (Figure 5a,d), SS particles were nonuniformly embedded
into the continuous polymer phase. With increasing carbon black content (Figure 5b,c,e,f), the polymer
island was reduced to much smaller domains. Meanwhile, SS aggregates became more visible on the
surface with the retreat of the polymer host and these phenomena were comparatively obvious for
SS-SA composites. At the 50% SS loading, the individual domains of CMC/SBR or SA were difficult to
observe. Thus, the inhomogeneous distribution of carbon black particles may have induced a mass of
open volume defects and free volume in the polymer composite, leading to a decrease in the tensile
strength and stiffness of cured BCC films.
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3.4. Bonding Performance of BCC Adhesive

Besides the afore mentioned mechanical behavior of the cured polymer film, another key issue is
the interface performance between the current collector surface and the bulk BCC adhesive. In order to
evaluate the role of conductive carbon black on the bonding properties of water-based polymers, ASTM
D3165 was employed as the basis for measuring the tensile shear strength of the Cu foil specimens
glued with BCC. The results from the performance tests are shown in Figure 6.
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Figure 6. Effect of carbon black (SS) content on tensile shear strength of BCC with various
aqueous polymers.

In sharp contrast to the evolution in mechanical properties of the cured BCC film, the tensile shear
strength of the Cu foil bonded specimens initially increased and then decreased as SS loading rose
from 0% to 60%. When the weight ratio of SS against BCC film was 50%, it endowed the adhesives
with the highest average strength. The maximum shear stress for 50% SS-SA and 50% SS-CMC/SBR
were 1.89 and 0.71 MPa, respectively, which were separately eight times and twice of that for unfilled
polymers. The results demonstrated that an appropriate amount of SS had a fairly positive influence
on the bonding performance of the electrode adhesive system. In addition, the neat SA and 10% SS-SA
provided lower shear strength than CMC/SBR. However, SA-based composites with relative high SS
loading (>15%) had much better adhesion properties than CMC/SBR-based counterparts at the same
content of carbon black; this difference further enlarged as the SS concentration increased from 20% to
50%. Remarkably, SA adhesives with 50% SS offered at least twice the resistance to shear failure than
50% SS-CMC/SBR. From a mechanical point of view, these results may well explain why the electrodes
with the SA binder exhibited much better electrochemical cyclic performance than the counterparts
bonded with CMC/SBR.

In order to go deep into understanding the effect of SS loading on the bonding performance of SA
and CMC/SBR, an optical microscope was employed to check the surface morphology of the rupture
interface between BCC binder and Cu foil. As shown in Figure 7, the surface of Cu foil after the tensile
shear test can be divided into white and black regions, which represent the Cu current collector and
BCC coating, respectively. It is clearly observed that the black zone in Cu surface gradually enlarged
as carbon black concentration in BCC increased from 20% to 50%, which indicated that predominant
fracture modes increasingly switched from “adhesion failure” to “cohesion failure”. In another word,
bonding strength was primarily dependent of the mechanical properties of BCC coating. On the basis
of the strength theory, an increase in the ratio of strength to modulus (σb/E) boosted the mechanical
integrity. As higher SS content (0–50%) in the composite lead to enlargement of σb/E, as seen in
Figure 2e, it can be understood that BCC doped with SS loading of 50% offered the best results for
bonding the Cu current collector. However, excess carbon black particles also reduced the resistance
of BCC-bonded Cu to the interface rupture due to the decrease in ratio of strength to stiffness of the
BCC coating layer. Moreover, compared with the surface morphology of the failure interface between
SS-CMC/SBR and Cu, much of current collector surface was covered with SS-SA coating at the same
content of carbon black. In terms of the area ratio of white region to whole cross-section, percent
interface failure (PIF) against SS loading was obtained as plotted in Figure 8.
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Figure 7. Optical photographs of failure interface between current collector (white color) and BCC
(black color) containing various carbon black contents (CMC/SBR: (a–d); SA: (e–h)).
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Figure 8. Effect of SS content on percent interface failure (PIF) of BCC with various aqueous polymers.

As shown in Figure 8, by increasing the carbon black to 50% loading of composite adhesives,
the percent interface failure of Cu specimens glued by BCC significantly decreased to less than 20%.
Nevertheless, at a higher weight ratio of SS (≥60%), the value of PIF rapidly rose regardless of the
SA or CMC/SBR matrices. Further, “adhesion failure” was again controlled by the rupture process
for the polymer adhesive with 60% SS. This finding was consistent with many reported results of
electrochemical stability for secondary battery electrodes that consisted of conductive agent and
polymer adhesive with a weight ratio of 1:1. As expected, SA-based composites showed higher
bonding strength than the CMC/SBR system at the normal contents (≥20%) of carbon black in BCC
recipe for secondary battery electrode.
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4. Conclusions

(1) The ratio of tensile strength to stiffness and rupture elongation of the cured composite films
rose when Super-S carbon black (SS) was increased in addition to the aqueous polymer. Meanwhile,
the characteristic relaxation time markedly decreased.

(2) The tensile shear strength of the composite adhesives with 50% SS greatly augmented to
at least twice of that for neat polymers. “Cohesion failure” of coating dominantly controlled the
rupture mechanism. Suitable loadings of SS greatly reduced the percent interface failure of the aqueous
polymer-bonded Cu current collector. However, excess carbon black loading did not maintain its
enhancing effect and resulted in a weakening adhesive layer.

(3) At the same content of conductive agent, SS-SA exhibited much better tensile properties and
bonding performance when compared to SS-CMC/SBR. Its rate of relaxation was also higher than
its counterparts.

(4) When carbon black particles were doped into the aqueous polymer at the weight ratio of 1:1,
it not only endowed the highest the ratio of strength to stiffness of cured film but also had adhesive
properties regardless of SA or CMC/SBR.
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