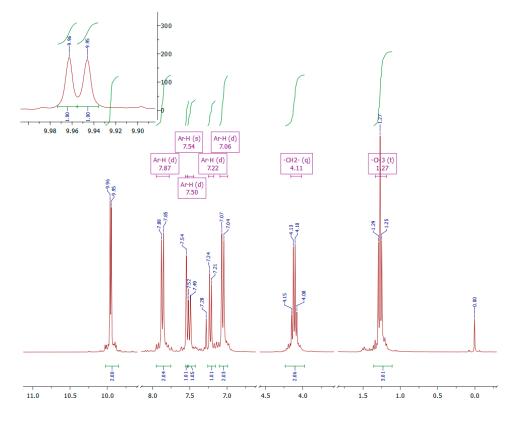

Supporting Information

Synthesis, Crystal Structures and Spectroscopic Characterization of *bis*-aldehyde Monomers and Their Electrically Conductive Pristine Polyazomethines


Abdul Hafeez^a, Zareen Akhter^{a*}, John F. Gallagher^b, Nawazish Ali Khan^c, Asghari Gul^d and Faiz Ullah Shah^{e*}

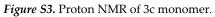

- a. Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- ^{b.} School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
- ^c Materials Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
- d. Department of Chemistry, COMSATS University, Islamabad, Pakistan.
- e. Chemistry of Interfaces, Luleå University of Technology, 971 87 Luleå, Sweden
- * Corresponding authors. <u>zareenakhter@yahoo.com</u> and <u>faiz.ullah@ltu.se</u>

Figure S2. Proton NMR of 3a monomer.

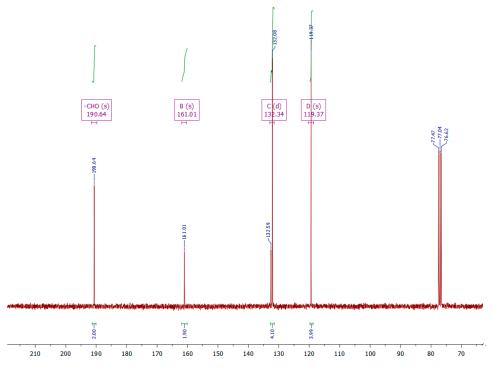
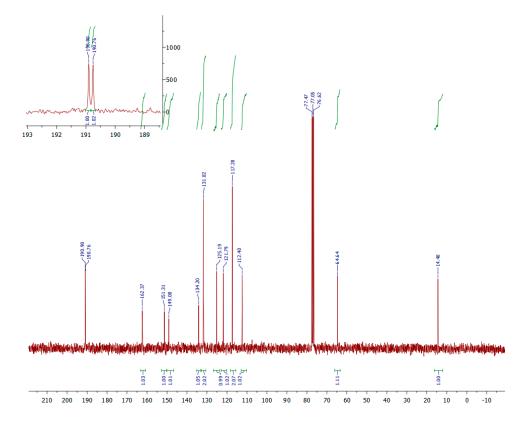
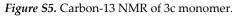




Figure S4. Carbon-13 NMR of 3a monomer.

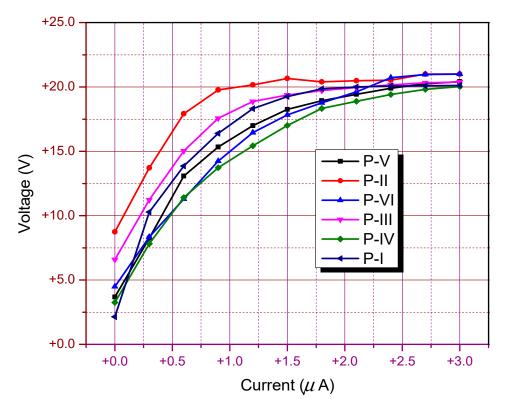


Figure S6. current vs voltage (I-V) curves of polyazomethines polymers.

Organosolubility and inherent viscosities

The organosolubility of polymeric azomethines was checked at 30 °C in various solvents such as *n*-hexane, DMF, DMSO, NMP, CHCl₃ and sulfuric acid by dissolving 10 mg powdered polymer sample in 1 mL of solvent and the results are presented in Table S1. It was found that the polymers synthesized from non-substituted aromatic dialdehyde (*i.e.* 3a) were almost insoluble in most of the solvents whereas others having –OCH₃, and –OC₂H₅ showed reasonable solubility in all the solvents. The limited solubility of wholly aromatic polyazomethines may be attributed to the chain rigidity, regularity and inter-chain packing efficiency. It may also be noted that the polymer **P-I** and **P-IV** showed semi-crystalline characteristics in powder XRD which reinforces the fact that polymer chains stacked over one another. However, all the polymeric azomethines showed good solubility in *conc*. H₂SO₄ at room temperature and Table S1 shows the respective solubility behavior of polyazomethines in aforementioned solvents. The polymers had viscosity in the range 1.98-1.72, as shown in Table S2.

Polymer	n-hexane	DMF	DMSO	NMP	CHCl ₃	H_2SO_4
P-I	h	– – h	– – h	– – h	– – h	+++
P-II	h	+++	+ + h	+ + h	+++	+++
P-III	h	+++	+++	+++	+++	+++
P-IV	h	– – h	– – h	– – h	– – h	+++
P-V	h	+ – h	+ – h	+ – h	+ – h	+++
P-VI	h	+ + h	+ + h	+ – h	+ + +	+ + +

Table S1. Organosolubility of polyazomethines in common organic solvents.

+ + + = soluble at room temperature, + - h = partially soluble on heating - - h = insoluble on heating, + + h = soluble on heating

Code	$\eta_{ m rel}$	$\eta_{ m sp}$	$\eta_{ m red}$ (dl/g)	$\eta_{\rm inh}$ (dl/g)
P-I	1.17	0.17	0.86	1.77
P-II	1.25	0.25	1.28	1.84
P-III	1.12	0.12	0.60	1.72
P-IV	1.136	0.14	0.68	1.74
P-V	1.45	0.45	2.25	1.98
P-VI	1.18	0.18	0.94	1.78

Table S2. Viscometric Data of polyazomethine Polymers.