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Abstract: Here, we analyze the degassing process of a byproduct (methane) formed during the
peroxide-induced crosslinking of polyethylene. A diffusion model based on Fick’s law is used to
obtain the controlling factors of degassing in a crosslinked polyethylene (XLPE) insulated power cable
(132 kV with 18 mm of insulation). We quantitatively analyze different scenarios of the diffusion of
methane through the XLPE insulation and two semiconductor layers under various in situ degassing
conditions. The analyzed degassing conditions include heat transfer and its effect on the diffusion
properties, the different transport and boundary conditions due to the free spaces within the cable
conductor, and the nonuniform distribution of methane concentrations within the insulation layers.
Our simulation results clearly demonstrate that the free spaces between the copper strands in the cable
conductor significantly affect the degassing efficiency. However, the temperature-diffusion coupling has
a relatively minor effect on the overall degassing efficiency due to the rapid temperature increase of the
polymer layers during the initial stages of degassing. Moreover, we find that the nonuniform distribution
of methane in the initial stages also plays an important role in degassing in the cable, but this effect varies
significantly during the degassing process.

Keywords: crosslinked polyethylene (XLPE) insulation; methane degassing; Fick’s law of diffusion;
temperature-dependent diffusion; cable conductor; nonuniform concentration

1. Introduction

Power cables are an essential part of modern urban power transmission and distribution [1,2].
The representative structure of such cables is mostly typically comprised of a conductor core, insulation,
and a shield/jacket. The insulation plays a crucial role in determining the quality and properties of the
cable, especially for high-voltage (HV) and extra-high-voltage (EHV) cables. As an alternative technique to
the traditional impregnated paper-oil insulation, polyethylene (PE) is globally preferred as cable insulation
due to its easy processing properties, good electrical and thermo-mechanical behaviors, and relatively low
cost [3]. Chemical crosslinking is commonly performed on PE during the cable extraction process. This
has led to the development of crosslinked polyethylene (XLPE), which provides improved mechanical
properties such as structural integrity, abrasion, and chemical resistance, especially at high temperatures.

In the cable industry, peroxide-induced crosslinking is one of the most popular and easiest approaches.
Dicumyl peroxide (DCP) is usually used as a highly-efficient crosslinking agent due to its desirable
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decomposition rate at normal processing temperatures. During the crosslinking process, however, several
byproducts can be generated and can remain within the XLPE. Typical unwanted byproducts include
methane, acetophenone (AP), and cumyl alcohol (CA) [4–6]. The presence of these byproducts has a
detrimental impact on a cable’s quality and long-term properties; they not only affect the performance of
cables and their associated properties (e.g., by increasing the internal pressure and reducing the integrity
of the insulation/splice interface), but they also cause significant environmental and safety issues due to
the flammability of methane [7–10]. Thus, an efficient reduction in peroxide-related byproducts is a crucial
factor in the manufacturing process to prevent excessive accumulation of unwanted byproducts, especially
methane and its associated combustion risk.

To reduce byproduct concentration levels properly within the XLPE insulation layer, thermal treatment
is recommended during the cable production process. This process, known as byproduct degassing, takes
place after the insulation layer has cooled down and has solidified in the continuous vulcanization
line. The produced cable is coiled on reels, transported to the degassing chambers, and heated to a
specific temperature for approximately one week to remove methane and other byproducts from the
XLPE insulation [9,11,12]. Degassing is an expensive and time-consuming process, which depends on the
time that the byproducts migrate through the XLPE insulation and are released to the air. To improve
and optimize the degassing process, the mechanism of the diffusion of the byproducts from the XLPE
insulation should be comprehensively studied and understood. In the past decades, there have been
several studies focusing on the degassing process via experimental and numerical approaches. Several
analytical methods were employed for such analytical studies, such as gas chromatography (GC), Raman
spectroscopy, thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), high-pressure
liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), etc. In the CIGRE TB501
standard [12], the current state-of-the-art on these methods was described in detail, including the precision
and reliability of these methods. We briefly review some representative works on byproduct measurement
experiments. Smedberg et al. [13] performed several analytical experiments such as TGA, GC, and FTIR
line scan to measure the amount of degassing and compared the advantages and drawbacks of these
measurement techniques. Kolley [14] tested multiple experimental methods and combined HPLC with an
ultraviolet detector to improve the measurement of byproducts. To account for changes in diffusion with
changing temperature, Kemper et al. [15] proposed an enhanced measurement technique by applying
large-spot Raman spectroscopy and monitored the quantities of CA and AP. Sahyoun et al. [16] presented
a study on the diffusion mechanism under different experimental conditions, i.e., the diffusion coefficient
of each byproduct as a function of desorption conditions and byproduct characteristics. Ji et al. [17]
developed a multiple headspace gas bag method that combined the techniques of gas sampling and
multiple headspace extraction. Compared with conventional methods, the advantage of the multiple
headspace gas bag method is that it minimizes methane loss during sample preparation.

Although experimental measurements are of great importance for understanding the complex
degassing process, it is not practical to implement all kinds of experiments for different cable designs,
production conditions, degassing parameters, etc. Alternatively, the numerical simulation technique is
a powerful tool to supplement experiments and achieve a fundamental understanding of the degassing
process. The diffusion behaviors of the byproducts are influenced by various factors and parameters,
such as initial concentrations, degassing temperature, cable design, etc. Andrews et al. [9] described
the changing of byproduct concentrations mathematically using Fick’s law. The finite element-based
approach was applied to solve the diffusion equation, and a number of calculations were used to examine
the effect of different cable geometries, static temperature gradients, and multilayer structures on the
degassing time. Christen [18] developed a diffusion model by deriving a Smoluchowski equation and
defined the effect of the spurious drift on diffusion in the solid polymers, which showed an Arrhenius
temperature-dependent mobility. Vissouvanadin et al. [19] proposed a diffusion model considering the
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effect of a heterogeneous polarization charge on the byproduct diffusion process. Smedberg et al. [20]
presented a study on the degassing process of HV XLPE-insulated cables and numerically investigated the
influence of CA and AP on the electrical properties of the cable. Sun et al. [11] and Sun and Person [21]
applied a finite slab diffusion model to account for the degassing process of a small XLPE sample used
in laboratory experiments. Sahyoun et al. [16] derived a mathematical expression for a plane sheet of
constant thickness with the surfaces maintained at a constant byproduct concentration based on Fick’s
diffusion laws in sorption or desorption mode.

In recent years, there has been an ever-increasing demand for HV and EHV power cables,
with equal demand that the cable manufacturing process meet technical requirements, as well as safety
and environmental standards. However, with a thicker XLPE insulation layer, degassing becomes
an increasingly critical bottleneck for cable production. As the studies mentioned above highlighted,
the degassing of byproducts from XLPE-insulated cables has drawn considerable attention from many
researchers and cable manufacturers. However, due to the complicated effects of various changing
parameters on the diffusion behaviors of byproducts, much remains to be clarified on the degassing process
of byproducts, especially for methane, and more analysis is needed. In previous works, cable geometry
was simplified into a slab model, the nonuniform initial concentration of byproducts in fresh cables was
ignored, and there was no consideration for the changes in the diffusion coefficient due to temperature
variations in the degassing chamber.

To obtain a more complete understanding of the degassing process and to explore more efficient
degassing conditions, we performed a series of comprehensive parametric studies on the degassing process,
as well as on the influence of the geometrical characteristics of the cables and the degassing chambers.
Our simulation results described in this paper show how varying conditions in the cable insulation and
degassing chamber affect byproduct transport and the overall degassing efficiency. In Section 2, we present
the details of the computational method, including numerical assumptions, governing equations, cable
geometry, and modeling conditions. In Section 3, we discuss the degassing simulation results with respect
to various degassing conditions, such as the temperature-dependent diffusion coefficient, the effect of
internal holes in the cable conductor, the initial nonuniform methane concentration, and their quantitative
effect on degassing. Our conclusions and suggestions for future research regarding byproduct degassing
are presented in Section 4.

2. Computational Model

We calculated the methane concentration change over time based on Fick’s law of diffusion by
using a finite element-based approximation. Several assumptions were firstly made to account for the
methane transport mechanism and the in situ degassing chamber conditions efficiently and reliably, as
outlined below.

• The XLPE and semiconductor are homogeneous and isotropic in terms of the methane diffusion and
heat transfer.

• Methane transport is solely governed by the conventional Fick’s laws with the
concentration-independent diffusion coefficient and the concentration gradient of the methane.

• The XLPE and semiconductors stick tightly together, and thus, there is no free space between the layers.
• The radial flow of the methane is much larger than the longitudinal flow during cable degassing due

to the much greater cable length scale (over 500 m) compared to the cross-section (the diameter is less
than 10 cm).

• The methane concentration in the degassing chamber is always close to zero due to the large volume
of the degassing chamber and the sufficient amount of fresh air intake.
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Due to the significantly different scales of the cross-section and length of the power cables, almost all
the methane must be transferred along the radial direction, and the longitudinal methane flow does not
greatly contribute to the degassing process or its efficiency. Therefore, we used a two-dimensional cable
geometry in our degassing simulations, which is representative of methane diffusion occurring in the
middle of the cable.

2.1. Governing Equations

Methane transport in an XLPE insulated cable is commonly assumed to be a diffusional flow due to the
relatively low concentration levels and the transport efficiency of the byproducts within the polymer layers.
Reduction of the byproduct concentration from an XLPE cable, therefore, can generally be represented by
Fick’s law, as in Equations (1) and (2) [9,13,16,17], which is based on the assumptions that the diffusion
flux is proportional to the concentration gradient and the rate of concentration change is proportional to
the second derivative of concentration with space.

J = −D∇c (1)

where J is the diffusion flux, D is the diffusion coefficient, and c is the concentration of fluid under
consideration, i.e., methane in this work. Combined with the continuity equation, Equation (1) is extended
to Fick’s second law, as shown in Equation (2), which is a parabolic linear partial differential equation to
estimate how the concentration changes with time and the diffusion coefficient, D.

∂c
∂t

= D∇2c (2)

where t is the time. The diffusion coefficient, D, heavily depends on temperature T, and the
temperature-dependent variation is commonly defined by the Arrhenius equation as in Equation (3) [16,21].

D(T) = D0 exp
(
−Ea

RT

)
(3)

where D0 is a dimensionless pre-exponential factor defining the quantitative relation of the measured diffusion
at various temperatures, Ea is the activation energy, and R is the universal gas constant, 8.314 J/mol K.

For the estimation of temperature changes in the cable over time, the governing equation of heat
transfer is derived as in Equation (4) from the law of thermodynamics, by assuming that the heat transfer
of the cable is independent of the mechanical behavior.

ρCp
∂T
∂t

= ∇ · q +∇(k∇ · T) (4)

where ρ is the density, Cp is the specific heat capacity at constant pressure, q is the heat flux, and k is the
heat conductivity. We also assumed that the cable materials were isotropic with constant thermophysical
properties, but without any volumetric sources. Hence, Equation (4) is rewritten as in Equation (5).

ρCp

k
∂T
∂t

= ∇2T (5)

For thermal-diffusion coupling analysis, the heat transfer analysis was firstly carried out using
Equation (5). The calculated temperature data were then applied to Equation (3) to update the diffusion
coefficient, and later, the recalculated diffusion coefficient was applied to Equation (2) to approximate the
concentration change at a monitoring time. This iteration process was repeated at each predefined time
step up to the total degassing time, which is usually 7–9 days [9,16].
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2.2. Cable Geometry and Modeling Conditions

To perform representative degassing analyses, we first selected a single core HV cable with typical
XLPE insulation configuration, a 132-kV power cable with an 18-mm XLPE insulation layer. The cable
included a conductor of 36 mm in diameter located at the cable center, and the conductor was
sequentially surrounded by additional polymer layers, namely inner semiconductor (ISC), XLPE, and outer
semiconductor (OSC). The 132-kV HV cable geometry is demonstrated in Figure 1a.

The initial concentration of methane was set to 28.68 mol/m3 (equivalent to 500 ppm), and this
quantity was uniformly applied within the XLPE layer for all of the initial parametric studies, except for
cases where a set of specific nonuniform methane distributions were required for the study. We chose
this methane concentration based on various in situ methane concentration data collected in previous
analytical works mostly by the sample bottling method and gas chromatography [9,11,13,20,21]. Although
some amount of the methane in the XLPE may be released into the semiconductor before degassing starts,
we assumed that the quantity was relatively low, and the amount of methane within the semiconductor
layers did not meaningfully influence the general methane transport pattern or its degassing efficiency.

XLPE

Copper

36 mm18 mm

2 mm
1 mm

Inner 
semiconductor

Outer 
semiconductor

(a)

Initial gas 
concentration

No-flow 
boundary

No-flow 
boundary

No-flow or 
limited flow

Open boundary

(b)

Figure 1. A two-dimensional schematic representation of a 132-kV HV cable with an 18-mm XLPE
insulation: (a) geometry and (b) initial and boundary conditions for the methane diffusion.

Based on the degassing chamber conditions described above, we applied an open boundary condition
with zero methane concentration on the external surface of the cable. Due to the applied boundary
conditions, the methane was released along the cable surface, and the flow direction on the cable surface
was always normal to the cable surface, as shown in Equation (6).{

−n · D∇c = 0, if n · u ≥ 0

c = c0, if n · u < 0
(6)

where n is the unit vector defining the normal direction of the cable surface, u is the fluid diffusion velocity
vector, and c0 is the concentration of the fluid at the initial or the previous time step. In addition,
the assumption regarding zero-methane concentration along the surface of the cables could be the
best-case-scenario for in situ degassing practice, mostly due to the closed spaces located between the cable
bindings on the drums. If the spaces are completely closed, the methane concentration may temporarily
increase within the localized spaces, and this greater methane concentration may reduce the degassing
efficiency nearby due to the lower concentration gradient. However, higher concentrations within such
closed spaces can be minimized by adding sufficient additional spaces between the cable bindings to
maintain an air circulation channel that is well connected to the outside of the drum.
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Compared with the external boundary, however, previous studies assumed that the internal boundary
along the contact area of the ISC and the conductor was in a no-flow boundary condition. This was
due to the cable conductor that majorly consisted of a number of copper strands that had much lower
fluid diffusion characteristics than the other polymer materials. Based on the significant difference of
the diffusion properties between the conductor and surrounding polymer layers, applying a no-flow
boundary condition along the interface seemed computationally reasonable and efficient, rather than
including the whole conductor in the discretized finite element system. However, note that the no-flow
boundary condition on the conductor surface can significantly exaggerate the cable condition in terms of
methane diffusion in some cases. Although the geometrical characteristic was very difficult to capture and
quantify, the cable conductor generally included some amount of additional free spaces, not only inside
the conductor, but also along the contact area of the ISC and cable conductor, as presented in Figure 2.
Furthermore, the space spreading along the interface between the ISC and the conductor may store some
methane released from the polymer layers and also provide an important pathway for methane to flow
into the inside of the conductor. In such cases, we determined that an internal hole boundary, i.e., a spatial
combination of open and no-flow boundary conditions to allow a limited amount of methane flow into
the conductor, may partly account for the effect of the flow channels on the degassing efficiency, and the
details are described in the following section. Lastly, only the upper half of the cable was analyzed with
no-flow boundary conditions assigned along the bottom boundary due to the symmetric geometry and
boundaries of the cable representation shown in Figure 1b.

Figure 2. An XLPE-insulated power cable sample showing the internal holes along the interface of the ISC
and the cable conductor and within the conductor.

3. Case Studies and Results

Based on our observation of the cable degassing process, we noted that several geometric
characteristics of the XLPE insulated power cables and their degassing conditions may significantly
influence methane transport and degassing efficiency. Thus, such conditions had to be carefully
selected and applied to the computational model to reliably examine their quantitative effect on the
overall degassing efficiency. In this regard, possible controlling factors chosen for this research were:
(1) the temperature-dependent diffusion coefficient of the polymer layers such as XLPE and semiconductor,
(2) the free spaces distributed within the cable core and along the contact area between the inner
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semiconductor and cable core, and (3) the nonuniform distribution of the initial methane concentrations.
To solve the governing equations described above, we applied a finite element method, and the entire cable
geometry was discretized by applying the triangular mesh. The size of the mesh was generally controlled
based on the thickness of the polymer layers and the existence of the internal holes along the conductor
surface. For time discretization, an adaptive time stepping was applied so that the time step, ∆t, was
very small initially, but became greater as the degassing time increased. Using the finite element-based
numerical model, we conducted a series of numerical studies on the degassing conditions, and the results
are demonstrated in the following.

3.1. Temperature-Dependent Diffusion

We analyzed the effect of heat transfer within the cable and its influence on methane diffusion. At the
beginning of the degassing process, the cable experienced a rapid temperature increase, up to 343.15 K
(70 ◦C). This is the preferred degassing temperature generally accepted in the cable manufacturing
industry [9,22,23], although this temperature can be increased further up to 353.14 K (80 ◦C) in some
cases [9,13]. Such temperature changes may significantly influence methane diffusion because the diffusion
coefficient of methane in XLPE (Dxlpe) is heavily temperature dependent, as described in Equation (3).

In order to quantify specifically the relationship between temperature and diffusion in XLPE, Sun and
Person [21] applied an analytical slab model and compared the simulation results with experimental data.
Based on their results, the D0 and Ea of the XLPE were found to be 2.78 × 102 m2/h and 55 kJ/mol,
respectively. In this study, we applied these diffusion parameters to Equation (3) to estimate the
temperature-dependent Dxlpe and the variation of Dxlpe due to the temperature change between 293.15
and 353.15 K, as shown in Figure 3. In Figure 3, the diffusion coefficient variation showed that a higher
temperature caused a larger Dxlpe, which eventually increased the degassing rate and vice versa. According
to Andrews et al. [9], increasing the degassing temperature to 40 ◦C caused a reduction in the degassing
time by an order of magnitude.
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Figure 3. Diffusion coefficient of methane in the XLPE changed due to the temperature change from room
temperature, 293.15 K (20 ◦C), to the maximum degassing chamber temperature, 353.15 K (80 ◦C).
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In contrast to the XLPE, the role of semiconductors in byproduct diffusion has received scant attention;
there has been no quantitative analysis of the diffusion properties of semiconductors. This lack of attention
is mostly due to the much smaller volume of semiconductors compared to other parts of an XLPE insulated
power cable, such as the XLPE and cable conductor. Therefore, in this work, we assumed that the diffusion
coefficient of the XLPE and semiconductors was the same over the applied temperature range, which may
cause degassing efficiency variation compared to the degassing practice.

For the heat transfer analysis, we also included the cable conductor in the model owing to its highly
deviating thermal properties next to the surrounding polymer layers. As summarized in Table 1, the major
material of the cable conductor, copper, had greater density and thermal conductivity and less varying
heat capacity compared to the cable insulation polymers. These highly deviating thermal properties of the
cable conductor can greatly affect the heat transfer within the cable insulation layers, and therefore, this
component must be taken into consideration in the model to robustly account for the effect of temperature
change within the polymer layers.

Table 1. Properties of cable materials for heat transfer analysis [22–24].

Property Copper XLPE Semiconductor

Density, ρ (kg/m3) 8960 920 1150
Thermal conductivity,

k (W/m K) 401 0.22–0.28 0.57–0.65
Specific heat capacity,

Cp (J/kg K) 385 135–983 115–433

For the initial condition of the heat transfer analysis, we first assumed that the cable temperature
sufficiently decreased to atmospheric temperature, 293.15 K (20 ◦C), via the cooling process of the
continuous vulcanization line [9,25,26]. Thus, in the computational model, we set the initial temperature
of the entire cable at 293.15 K, and we applied a temperature of 343.15 K (i.e., the degassing chamber)
only along the external boundary of the cable. Based on the thermal properties applied in the model,
the boundary temperature was transferred through the XLPE and semiconductor layers over time, as
shown in Figure 4. Due to the greater thickness of the XLPE compared to the semiconductor layers,
a relatively longer time was required to increase the temperature of the entire XLPE compared to the
semiconductors. The overall temperature of the cable, however, increased sharply up to the target
temperature, and it only took less than three hours for all the polymer layers to reach the thermal
equilibrium condition at 343.15 K. Specifically, average temperatures of the OSC, XLPE, and ISC
sequentially reached the target degassing temperature after 1.48, 2.66, and 2.93 h of degassing, respectively.

Using the temperature-diffusion correlation in Equation (3) and the diffusion properties from Sun and
Person [21], we obtained the temperature variation and the corresponding diffusion coefficient distribution,
as shown in Figures 5 and 6. Figures 5 and 6 clearly demonstrate that the diffusion coefficient rapidly
rose due to the temperature increase. This diffusion coefficient distribution and its increase over time
were directly applied in the computational diffusion model to account for the effect of heat transfer on the
degassing process explicitly. However, the temperature-dependent diffusion coefficient was held constant
in the latter part of the degassing process because the temperature equilibrium condition was acquired
after the first three hours of degassing.



Polymers 2019, 11, 1439 9 of 22

0 0.5 1 1.5 2 2.5 3

Time (hour)

293.15

303.15

313.15

323.15

333.15

343.15

353.15

A
v
e

ra
g

e
 t

e
m

p
e

ra
tu

re
 o

f 
e

a
c
h

 l
a

y
e

r 
(K

)

OSC

XLPE

ISC

Figure 4. Average temperature variations of the OSC, XLPE, and ISC during the first three hours of
degassing where the target degassing chamber temperature is 343.15 K.
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Figure 5. Temperature (K) of the cable at different degassing times where the target degassing chamber
temperature is 343.15 K: (a) 0.05 hours, (b) 0.30 hours, (c) 0.60 hours, (d) 1.20 hours.
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(a) 0.05 hours (b) 0.30 hours

(c) 0.60 hours (d) 1.20 hours

Figure 6. Diffusion coefficient (m2/s) of the XLPE and semiconductors, which corresponds to the
temperature change where the target degassing chamber temperature is 343.15 K: (a) 0.05 hours,
(b) 0.30 hours, (c) 0.60 hours, (d) 1.20 hours.

To compare the progress of methane degassing under various conditions, we estimated the
proportional amount of the remaining methane over time compared to the total amount of methane
stored in the fresh cable, i.e., the fraction of the remaining methane (

∫
Ω c/

∫
Ω ct=0 in %). The methane

amounts were numerically calculated by integrating the methane concentration over the total surface area
of the polymer layers, Ω. In terms of the fraction of the remaining methane, we analyzed the methane
degassing progress between two cases, namely the thermal-diffusion coupling case and the constant
diffusion case; the results are presented in Figure 7. The thermal-diffusion coupling case indicated that
the model accounted for the effect of the temperature-dependent diffusion coefficient, while the constant
diffusion case was based on an assumption that the cable and degassing chamber temperatures were
the same during degassing, and thus, the constant diffusion coefficient corresponding to the chamber
temperature was only applied in the model regardless of the degassing time.

Figure 7 demonstrates that the temperature-dependent diffusion coefficient negatively affected the
degassing efficiency, and the coupled diffusion coefficient varied with the degassing chamber temperatures.
The greater the degassing temperature applied to the cable, the larger the deviation found in the degassing
efficiency, because a longer time was required to heat the polymer layers up to a higher boundary
temperature. Specifically, the maximum reductions of the degassing efficiency due to the coupled diffusion
coefficient were approximately 1.73, 2.58, and 3.67% in terms of the fraction of the remaining methane
where the degassing chamber temperatures were 333.15, 343.15, and 353.15 K, respectively. This result is
quite reasonable because the constant diffusion case used only the maximum diffusion coefficient for the
whole degassing time, while a relatively lower diffusion coefficient was applied to the thermal-diffusion
coupled case at the beginning of the degassing process. Hence, such deviations in the degassing efficiency
mainly arose during the initial degassing process when the cable temperature was lower than the degassing
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chamber temperature. Nevertheless, the overall difference in degassing efficiency between the constant
and coupled diffusion cases was not significant. Although the maximum deviations were detected around
the second day of degassing, the amounts decreased later as the degassing process continued. After
eight days of degassing, for example, all the degassing efficiency deviations due to the coupled diffusion
coefficient became less than 1.50%, regardless of the applied degassing chamber temperature.
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Figure 7. Degassing efficiency between constant and coupled diffusion cases with various degassing
temperatures, 333.15, 343.15, and 353.15 K (equivalent to 60, 70, and 80 ◦C, respectively).

In summary, using the temperature-dependent diffusion coefficient, our study showed how heat
transfer in the cable affected the overall degassing process quantitatively. Based on these results, we saw
that the effect of the temperature-dependent diffusion on the degassing efficiency was quite subtle,
even with a wide variation of the degassing temperature that substantially affected methane diffusion.
Due to the minor effect of temperature-dependent diffusion on methane degassing, we therefore did
not include diffusion coefficient variations due to temperature change in the following subsections and
considered only the constant diffusion coefficient at the target temperature at 343.15 K.

3.2. Free Spaces in the Conductor

Smedverg et al. [13] applied various experimental techniques to measure methane concentration
distributions in a one-meter HV cable sample with an XLPE insulation of 15 mm in thickness. From the
cable sample, the XLPE insulation was divided into three separate layers, near the ISC, in the middle of
the insulation, and near the OSC, and several specimens were taken out from the three different layers to
repeat the measurement. The observed concentration variation along the insulation thickness is presented
in Figure 8. Although the concentration data in Figure 8 include some variability among the two sample
sets, they clearly showed that the highest and lowest concentrations were found at the middle and near the
OSC, respectively, and the concentration level near the ISC was intermediate between the maximum and
minimum. The nonuniform distributions of methane in the XLPE strongly indicated that some amount of
the methane was released during the cable manufacturing process or the sample preparation process.
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Figure 8. Nonuniform methane concentration datasets for a new XLPE insulated cable measured by
Smedberg et al. [13].

This methane distribution pattern also delivered other key information on the byproduct diffusion in
the cable system. Since the methane concentration near the ISC was lower than that in the middle of the
XLPE, we noticed that some of the methane could be released into the air through the external boundary
of the cable, as well as into the cable conductor via the internal boundary of the ISC. If the conductor
completely blocked the methane flow, the highest methane concentration should be near the ISC. Although
a small fraction of the methane in the XLPE could be transferred and stored in the ISC, the available free
volume of the ISC (approximately 5% of the semiconductor bulk) was not large enough to admit the total
amount of the methane released from the inner part of the XLPE (between the ISC and the middle of the
XLPE). Based on this observation, we determined that the no-flow boundary condition did not account for
the real diffusion condition of the conductor surface.

To allow some of the methane to be released into the cable conductor, we applied the internal hole
boundary condition in the diffusion model as described in the previous section. The internal hole boundary
condition was to consider the free spaces spreading along the contact area of the conductor and ISC.
Therefore, the holes along the interface were computationally represented by a series of small open
boundaries, while the rest of the contact area was completely blocked by the copper strands. For convenience
of modeling and analysis, we also assumed that the sizes of all the open boundaries were the same, and
the holes were uniformly distributed along the conductor surface. From our observation of the real EHV
cable sample shown in Figure 2, a total of twenty-five open boundaries were assigned along the conductor
surface. To quantify the size of the open boundaries, we additionally defined a proportional size relation of
the open and no-flow boundaries as shown in Equation (7), and a schematic representation of the cable is
demonstrated in Figure 9 (the green and red arrows in Figure 9 represent lopen and lno-flow, respectively).

lopen = Cl lno-flow (7)

where lopen and lno-flow are the lengths of the open and no-flow boundaries, respectively, and Cl is the
unitless coefficient defining the length ratio between the open and no-flow boundaries. Thus, the size of
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the internal holes, lopen, was controlled by changing Cl , and we assumed that Cl varied from 1/10–1/90 in
this simulation work. Regarding the suggested quantities in Cl , the boundary length data applied in the
model is summarized in Table 2.

Copper 
strands

ISC

XLPE

ISC

Copper 
strand Copper 

strand

Figure 9. A schematic of an XLPE insulated power cable near the cable conductor, representing two
boundary conditions, open (green arrow) and no-flow (red arrow) boundaries.

Table 2. Lengths of open and no-flow boundaries with respect to Cl .

Cl lopen lno-flow

1/10 0.207 mm 2.056 mm
1/30 0.073 mm 2.189 mm
1/90 0.025 mm 2.237 mm

The effect of the interface holes on methane degassing and its comparison to two ideal cases (either
open or no-flow boundary conditions applied along the whole conductor surface) are demonstrated in
Figure 10. Figure 10 indicates that the greater the holes applied in the diffusion model by assigning greater
Cl , the larger the degassing efficiency attained during the entire degassing time. However, the internal
holes substantially increased the degassing efficiency even when the internal holes were very small, and
all the degassing efficiency curves in Figure 10 are much closer to the open boundary case compared to
the no-flow boundary case. Although we found the maximum deviation between the open boundary
and internal hole boundary conditions after three days of degassing, the remaining amount of methane
with the internal holes became even closer to the open boundary case (blue line in Figure 10) as degassing
continued. After eight days of degassing, the remaining volumes of methane eventually became very close
to that for the open boundary case, and the deviation between the cases ended up at 0.97, 1.75, and 2.48%,
where Cl = 1/10, 1/30, and 1/90, respectively.

Figures 11 and 12 show the methane concentration change patterns within the polymer layers with
either the internal hole or the no-flow boundary condition for the conductor surface.

For the case with the internal holes, the greatest methane concentration was located near the middle
of the XLPE layer during the whole degassing process because the methane was simultaneously released
through both the external boundary and the internal holes. For the case with the no-flow boundary
condition, however, the methane can only be degassed through the external boundary. Thus, the location
of the maximum methane concentration was gradually shifted from the middle of the XLPE to the inner
boundary of the cable during a relatively short time (less than 24 h). Moreover, some methane in the inner
part of the XLPE was also transferred to the ISC because of the zero-methane concentration initially applied
within the ISC. This amount of methane does not affect the concentration gradient of the entire cable. It is
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very obvious that the greater degassing efficiency with the internal hole condition was mainly due to the
additional methane release through the internal holes, but this reduced concentration gradient with the
no-flow boundary condition can also be an additional source of the the degassing efficiency reduction.
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Figure 10. Degassing efficiency changes due to the boundary conditions for the cable conductor.

(a) 1 hour (b) 12 hours

(c) 24 hours (d) 48 hours

Figure 11. Methane concentration (mol/m3) over time with the internal holes where the target degassing
chamber temperature is 343.15 K and Cl = 1/90. (a) 1 hours, (b) 12 hours, (c) 24 hours, (d) 48 hours.
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(a) 1 hour (b) 12 hours

(c) 24 hours (d) 48 hours

Figure 12. Methane concentration (mol/m3) over time with the no-flow boundary condition where the
target degassing chamber temperature is 343.15 K and Cl = 1/90. (a) 1 hours, (b) 12 hours, (c) 24 hours,
(d) 48 hours.

In summary, we demonstrated the effect of internal holes on the methane degassing efficiency under
various sizes of the internal holes. Our results showed that the presence of internal holes substantially
increased the overall degassing efficiency even when the hole size was extremely small. Therefore,
the degassing efficiency measured with the internal hole condition was generally much higher than
for the case with no-flow boundary conditions for the conductor; this was observed for most previous
cable degassing studies and was due to the substantially lower diffusion property of the pure copper.
However, the simulation results showed that the no-flow boundary condition for the cable conductor
overly simplified the role of cable conductor on the methane degassing from the cable. The internal
holes distributed near the conductor surface substantially contributed to the methane degassing. Without
accounting for the holes, accurate estimation of the methane degassing is barely possible, especially for
the methane exchange between the cable conductor and the surrounding polymers during the degassing.
Due to the importance of the internal holes as for the methane degassing phenomena, the next parametric
study regarding the methane distribution pattern in the following subsection was also carried out with the
internal hole boundary condition.

3.3. Nonuniform Methane Concentration

As shown in the previous subsection, the initial distribution of methane within the XLPE was not
simply uniform. Such a nonuniform distribution of the initial methane concentration directly influenced the
methane diffusion efficiency within the cable due to the different spatial distributions of the concentration
gradient compared to that in the uniform distribution case. In this subsection, therefore, we apply
the nonuniform methane concentration as the initial condition of the degassing analysis under various
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boundary conditions and compare its effect on the degassing efficiency against the case with a uniform
methane concentration.

To compare the effect of methane distribution types on the degassing efficiency directly, the same
degassing simulations as for the initial condition were conducted with either a uniform or nonuniform
methane distribution, while the total amount of methane at the beginning of the degassing was the same
regardless of the methane distribution types. From the nonuniform methane distribution data presented
in Figure 8, the average values were firstly measured at each XLPE location, and the averaged bi-linear
distribution was applied similarly to the initial methane concentration of the nonuniform distribution case.
Later, the total methane concentration in the nonuniform distribution case was divided by the surface area
of the XLPE to estimate the average methane concentration over the entire XLPE domain for the uniform
distribution case. These two different methane distributions from the same total of methane were separately
applied to the diffusion model, and fractions of the remaining methane were analyzed with regards to the
additional boundary conditions on the conductor surface.

Figure 13a displays the methane degassing efficiency results for the different types of methane
distribution. Generally, the nonuniform methane distribution case presented less degassing efficiency
than the uniform methane distribution case, regardless of the boundary condition applied for the cable
conductor. However, the extent of deviation of the degassing efficiency between the two cases was
influenced by the degassing time and the boundary conditions, as shown in Figure 13b. The deviations
initially increased from the beginning of the degassing process for a relatively short period (less than one
day), but later, they gradually decreased as the degassing continued. Specifically, the maximum quantities
of the deviation were 6.30, 4.53, and 3.39% after 0.97, 0.52, and 0.44 days of the degassing with no-flow,
and they began to decrease and eventually became significantly minor quantities (1.54, 0.17, and 0.03%,
respectively) after eight days of degassing.

Such a time-dependent deviation quantity change was based on the methane distribution and
corresponding concentration gradient along the polymer layers. An initial amount of the degassed methane
was mostly from narrow areas near the external boundaries due to the relatively high concentration
gradient (relatively short distance and high concentration change), and the nonuniform methane
distribution case initially included less methane within the region compared to the uniform distribution
case, as shown in Figures 14 and 15. Hence, the degassing efficiency of the nonuniform methane
distribution case was lower than that of the uniform methane distribution case, and the deviation between
the cases increased during the initial degassing stage.

After some point, however, this methane transport pattern gradually diminished once most of the
methane within the limited regions was released from the cable. While the initial degassing process
continued, for the uniform methane distribution case, the methane concentration level in the middle of
the XLPE was mostly maintained constant due to the extremely minor concentration gradient within the
middle of the XLPE layer (see the layer in orange shown in Figure 14). Therefore, methane transport was
barely possible within the uniform concentration region until the front end of the methane concentration
reduction approached near the area to initiate some concentration gradient. Thus, this passive diffusion
characteristic of the methane in the middle layer did not support the degassing efficiency for the initial
stages of the degassing process. In contrast to the uniform case, the nonuniform methane distribution
maintained a relatively constant level of the concentration gradient distributed over the whole XLPE
layer. As shown in Figure 15, therefore, all the methane within the XLPE actively transferred during the
entire degassing time. This continuous methane diffusion within the whole XLPE increased the degassing
efficiency and, thus, reduced the degassing efficiency deviation later in the degassing process as presented
in Figures 13b and 14. In addition to the general comparison of the methane distribution, the deviation
between the uniform and nonuniform distribution patterns strongly depended on the internal boundary
condition for the conductor as well. As presented in Figure 14b, the largest and the smallest deviations
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were found where no-flow and open boundary conditions were applied for the conductor surface, while
the internal hole boundary conditions led to the intermediate deviation, albeit closer to the case with the
open boundary condition. Based on the deviation data obtained under different boundary conditions and
the methane transport characteristics, the more difficult the methane diffusion condition applied to the
cable degassing analysis, the larger the deviation between the uniform and nonuniform distribution cases.
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Figure 13. Methane degassing data with either a uniform or a nonuniform methane distribution.
(a) Remaining methane changes over time; (b) deviation of the methane between uniform and
nonuniform cases.
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(a) 1 hour (b) 12 hours

(c) 24 hours (d) 48 hours

Figure 14. Methane concentration (mol/m3) over time where the initial methane concentration is uniform.
The degassing temperature is 343.15 K and Cl = 1/90. (a) 1 hours, (b) 12 hours, (c) 24 hours, (d) 48 hours.

(a) 1 hour (b) 12 hours

(c) 24 hours (d) 48 hours

Figure 15. Methane concentration (mol/m3) over time where the initial methane concentration is
nonuniform. The degassing temperature is 343.15 K and Cl = 1/90. (a) 1 hours, (b) 12 hours, (c) 24 hours,
(d) 48 hours.



Polymers 2019, 11, 1439 19 of 22

In conclusion, the nonuniform methane distribution case obviously showed less methane degassing
efficiency during a relatively short time of the degassing, and the internal boundary condition for the
conductor also significantly influenced the degassing efficiency. In the long term (7–8 days), however,
the difference of the remaining methane concentrations due to the two methane distribution types greatly
decreased over time. Based on these observation, we can thus confirm that the nonuniform methane
distribution for a fresh cable was an important modeling parameter for cable degassing evaluation and
analysis. The degassing efficiency calculation with a uniform methane distribution may result in substantial
error on degassing efficiency, especially during the initial stages of degassing. However, the amount of
error due to the uniform methane distribution became smaller with the degassing time.

4. Conclusions

We performed a series of numerical studies to discover the key modeling parameters and boundary
conditions related to degassing of the byproduct (CH4) from the XLPE insulated HV power cables. We
used the two-dimensional diffusion model based on Fick’s law under various degassing conditions,
which we selected based on the methane transport pattern and degassing efficiency. We successfully
demonstrated how different degassing conditions, i.e., (1) the temperature-dependent diffusion coefficient,
(2) the existence of internal holes along the external surface of the cable conductor, and (3) the nonuniform
initial concentration of the methane, can affect methane transport behavior and degassing efficiency. We
precisely applied these degassing conditions to the model with technically reliable assumptions, and below,
we summarize our findings based on these results.

• The temperature-dependent diffusion coefficient did not greatly affect overall methane release from
the cable because the cable temperature increased very rapidly for the first couple of hours of the
degassing process.

• The change of the boundary condition for the cable conductor significantly influenced the degassing
process. Among the various boundary conditions, the internal hole condition played a critical role
in the byproduct degassing, even if the hole sizes were extremely small. Compared to the no-flow
boundary condition, the internal hole case showed a much higher degassing efficiency, which required
less time to release the proper amount of methane from the cable. We hypothesize that the holes
provided a free space to store the methane and also a flow pathway for the methane transferred into
the conductor.

• Nonuniform distribution of the initial methane concentration was also a key feature that must be accounted
for in the degassing analysis. Generally, the nonuniform distribution case had less degassing efficiency
than the uniform distribution case, while the effect on the degassing may vary greatly, depending on the
degassing time and the internal boundary conditions for the cable conductor.

This research demonstrated how the computational model was used to analyze the complex byproduct
transport process within the polymer insulation of cables. The presented degassing data under various
conditions may contribute the cable design and the degassing chamber condition for enhancing the
degassing efficiency.
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Abbreviations

The following abbreviations and notations are used in this manuscript:

AP and CA Acetophenone and cumyl alcohol
BC Boundary condition
c Concentration of fluid under consideration
ct=0 Concentration of fluid under consideration in fresh cable
Cl Unitless coefficient defining the length ratio between the open and no-flow boundaries
Cp Specific heat capacity
D Diffusion coefficient
DCP Dicumyl peroxide
DSC Differential scanning calorimetry
Dxlpe Diffusion coefficient of methane in XLPE insulation
D0 Dimensionless prefactor defined in the Arrhenius Equation
Ea Activation energy
FTIR Fourier transform infrared spectroscopy
GC Gas chromatography
HPLC High-pressure liquid chromatography
HV and EHV High-voltage and extra-high-voltage
ISC and OSC Inner and outer semiconductors
J Diffusion flux
k Thermal conductivity
lopen and lno-flow Lengths of the open and no-flow boundaries
PE Polyethylene
q Heat flux
R Universal gas constant
t Time
T Temperature
TGA Thermo-gravimetric analysis
XLPE Crosslinked polyethylene
ρ Density
Ω Surface area of the polymer layers
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