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Abstract: A dynamic method to determine the main parameter of the tube theory through monomer
mean-square displacement is discussed in this paper. The tube step length can be measured from
the intersection of the slope- 1

2 line and the slope- 1
4 line in log-log plot, and the tube diameter can

be obtained by recording the time at which g1 data start to leave the slope- 1
2 regime. According to

recent simulation data, the ratio of the tube step length to the tube diameter was found to be about
2 for different entangled polymer systems. Since measuring the tube diameter does not require g1

data to reach the slope- 1
4 regime, this could be the best way to find the entanglement length from

microscopic consideration.
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1. Introduction

Modern theories of polymer dynamics and rheology describe the universal aspects of
the viscoelastic behavior based on the idea that molecular entanglements confine individual
filaments to a one-dimensional, diffusive dynamics (reptation) in tube-like regions in space [1].
Entanglements are transient topological constraints arising from the restriction that the backbones
of fluctuating chain molecules cannot cut through each other [2,3]. Since linear polymers are
strongly interpenetrating, these constraints dominate the long-time dynamics of high molecular
weight polymers, and entanglements strongly slow down the relaxation. A characteristic feature is
subdiffusion regime t1/4 in monomer mean-square displacement (MSD), which is even slower than
the free three-dimensional Rouse motion t1/2 [2,3].

Mesh size is one of most important quantities in tube theory. A quick method to predict mesh
size is required and it should be easy to realize in computer simulations. Based on the concept of
primitive path, the topological approach proposed by Everaers et al. is the so-called primitive path
analysis (PPA), which can directly provide the statistical information of the primitive path mesh [4,5].
To obtain the precise results from PPA, one need to extrapolate the PPA results to infinite long chain [6],
and this extrapolated result given by PPA has been verified by stress relaxation data [7]. An alternative
method by using the monomer MSD was firstly proposed by Likhtman and McLeish [8]. This method
is based on the scaling argument of the behaviors of MSD in different time regimes. Therefore, it is
also subject to sufficient long chain system. Seeking a quick and easy method to determine the mesh
size in medium-length entangled system is the aim of this paper.

The remainder of the paper is structured as follows. In Section 2, the difference between tube step
length (TSL) and tube diameter (TD) is clarified. Section 3 is devoted to the calculation of the monomer
MSD of entangled chain. Descriptions of determining the mesh size through MSD are presented in
Section 4, and the ratio between these two quantities is given in Section 5. Finally, a brief summary is
given in the last section.
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2. Tube Step Length and Tube Diameter

In an entangled polymer melt, each polymer chain consists of N Kuhn beads and is confined in a
tube formed by all other surrounding chains [2,9]. The center line of the tube is called primitive path
(PP) which can be thought as a random Kuhn walk containing Z steps with the TSL a. The mean-square
end-to-end distance of the tube should be equal to the mean-square end-to-end distance of the chain,
Za2 = 〈R2

ee〉. The entanglement length is defined as the number of monomers in a tube segment,
Ne = N/Z = Na2/〈R2

ee〉. τR and τd denote the Rouse time and the disentanglement time respectively.
The entanglement time τe is defined as the Rouse time of the chain segment between entanglements,
τe = τR/Z2.

The concept of TSL a is sometimes confused with TD dT . TD specifies the range that a monomer
can move perpendicularly to the tube. TSL and TD are two different concepts, although both share
the same magnitude (see Figure 1). The linear rheological properties of an entangled melt are mainly
determined by the TSL [2,8], while the mobility of nonsticky nanoparticles is governed by the ratio of
the nanoparticle diameter dP to the TD [10–15].
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Figure 1. Schematic illustration of the tube. The black thick solid line and the thin dashing line
represent the confined polymer chain and the primitive path, respectively.

3. Monomer Displacement in Entangled Linear Melts

The mean-square displacement (MSD) of a monomer in a melt is given by

g1(t) ≡
1

ncN

nc

∑
i=1

N

∑
j=1

〈
[~ri,j(t)−~ri,j(0)]2

〉
, (1)

where nc and~r denote the number of polymer chains and the position of the monomer, respectively. At
a time smaller than the entanglement time τe, g1(t) can be calculated by the three-dimensional Rouse
model [16],

g1(t) =
2

π3/2 〈R
2
ee〉
(

t
τR

)1/2
. (2)

At later time τe < t < τR, the motion of the Kuhn segment perpendicular to the tube is suppressed
by the constraints, and the motion longitudinal to the primitive path can be calculated by the
one-dimensional Rouse model with both chain ends stretched by an entropic force [2]. The curvilinear
MSD is

g1‖(t) ≡ 〈(sn(t)− sn(0))2〉 = 2
3π3/2 〈R

2
ee〉
(

t
τR

)1/2
. (3)
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g1‖(t) is just one third of g1(t) because only the one-dimensional longitudinal motion is allowed
inside the tube in three-dimensional space. Thus, the motion perpendicular to the tube before the
polymer chain meets the tube can be calculated by

g1⊥(t) = g1(t)− g1‖(t) =
2
3

g1(t) =
4

3π3/2 〈R
2
ee〉
(

t
τR

)1/2
. (4)

Since sn(t) − sn(0) is longitudinal, the MSD in three-dimensional space is 〈a|sn(t) − sn(0)|〉.
Therefore, at time τe < t < τR,

g1(t) =

√
2
π

a
√
〈(sn(t)− sn(0))2〉 = 2√

3π5/4
a
√
〈R2

ee〉
(

t
τR

)1/4
. (5)

The prefactor
√

2/π in the last equation appears since the distribution of segment displacement
alone the tube is Gaussian.

4. Determination of Mesh Size

In the log-log plot, the g1 data can be fitted by straight lines in different time regimes (t < τe and
τe < t < τR) (see Figure 2). One can obtain an intersecting point close to the entanglement time τe (the
point marked by a red asterisk in Figure 2).

t∗e =
π

9
a4

〈R2
ee〉2

τR =
π

9
τe, (6)

g∗1e =
2

3π
a2. (7)

Therefore, TSL a, entanglement time τe and entanglement length Ne can be obtain using this
intersecting point,

a =

√
3π

2
g∗1e =

√
3

π1/4

√
〈R2

ee〉
(

t∗e
τR

) 1
4

(8)

Ne =
3πNg∗1e
2〈R2

ee〉
. (9)

This dynamic method to determine TSL was firstly proposed by Likhtman and McLeish with a
slightly different prefactor [8]. The entanglement length Ne derived here is π/2 ≈ 1.57 times larger
than the original prediction of reference [17].

Figure 2 shows the the most refined simulation data [18] of the Kremer–Grest model (KGM) [19]
with the bond bending interactions parameter kθ = 1.5 [18]. t∗e and g∗1e are estimated as 1.2× 103τ

and 19σ2 using this method, where τ and σ are Lennard–Jones time unit and length unit, respectively.
Using Equation (9), the entanglement length Ne is estimated as 33, which is consistent with the PPA
result (28).

There is a drawback, however: the slope- 1
4 regime of the g1 data is not easy to reach unless the

simulated chains are extremely long. It is more common that the slop of g1 data lies between 0.25 and
0.5 in the time regime of τe < t < τR. Stephanou et al. proposed an another method to estimate the
TD by using g1 data which do not need to reach the slope- 1

4 regime [20–22]. Instead of finding the
intersecting point between the slope- 1

2 regime and the slope- 1
4 regime, they recorded the time t = t†

e at
which the g1 data start to leave the initial slope- 1

2 regime (see the point marked by a red pentagram
in Figure 2). They supposed that, at time t†

e , the monomer starts to feel the tube constraints, and the
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monomer displacement perpendicularly to the PP g1⊥(t†
e ) is comparable to the squared tube radius

(dT/2)2. Thus,

dT
2

=

√
π

2

√
g1⊥(t†

e ) =

√
π

2

√
2
3

g†
1e. (10)

The prefactor
√

π/2 above rises from the two-dimensional Gaussian distribution [23].
The TD becomes

dT =

√
2π

3
g†

1e =
2√

3π1/4

√
〈R2

ee〉
(

t†
e

τR

) 1
4

. (11)

Note that the literature give a different result dT = 2
√

g†
1e, which is about 1.38 times larger than

Equation (11) [20–22].
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Figure 2. Monomer mean square displacement g1(t) of the Kremer–Grest model with kθ = 1.5 from
Reference [18]. The black solid lines are the best fits to the slope- 1

2 regime and the slope- 1
4 regime.

The red asterisk is the intersection of two straight lines, and the red pentagram denotes the time at
which the slope of g1(t) changes from 1/2.

5. The Ratio of TSL to TD

Based on the methods introduced in the last section, both TSL and TD can be estimated from
monomer MSD data. Using Equation (8) and (11), the ratio of TSL to TD can be measured by

a
dT

=
3
2

(
g∗1e
g†

1e

) 1
2

=
3
2

(
t∗1e
t†
1e

) 1
4

. (12)

The parameters for linear polymer melts measured via MSD are given in Table 1. The measured
results show the ratio a/dT ∼= 2.0 for different polymers.
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Table 1. Entanglement parameters for linear polymer melts measured via MSD. For time units, see the
original references.

Ref. Model or Material t†
e t∗e Ne a/dT

[24] KGM kθ = 0 950τ 2950τ 85 2.0
[18] KGM kθ = 1.5 410τ 1200τ 33 2.0
[25] KGM kθ = 2 500τ 1610τ 28 2.0
[26] KGM kθ = 2 800τ 2290τ 35 2.0
[24] KGM kθ = 2 640τ 1900τ 34 2.0
[27] Polybutadiene T = 393 K 21, 000τs 72, 400τs 2.0
[28] Continuous Model 10, 000τ 31, 500τ 43 2.0
[29] Coarse–Grained Model 5.5× 10−6τ 1.85× 10−5τ 2.0

The theoretical explanation for the ratio of 2 was given by Öttinger [30]. He adopted the
Porod–Kratky wormlike chain model [31] for modeling entangled polymer chains. He showed
that, for very long chains, the Kuhn length of the primitive chain turns out to be twice the TD (see
Equation (47) in [30]).

It is well known that the PPA measurements (using Kröger’s Z algorithm [5] or CReTA
algorithm [32]) show that the Kuhn length of the PP a is about twice as great as the mesh size
of the PP network dT [6,32–35]. Everaers drew a particular analogy between the PP network and the
phantom network, and he offered a physical interpretation of the ratio 2 [36]. Everaers’ argument is
as follows: By treating the kinks or topological constraints of the PP network as the crosslinks of the
phantom network model, the shear modulus is

Gph =

(
1− 2

f

)
ρkBT

Ntopo
e

(13)

with the presence of crosslink fluctuations, where ρ, f and Ntopo
e are the monomer density, arm number

of the junction point and the number of monomers between the adjacent kinks, respectively. On the
other hand, the melt plateau modulus is

Ge =
ρkBT

NPPKuhn
e

(14)

within the affine approximation, where NPPKuhn
e is the number of monomers per PP Kuhn length.

Since the kinks of the PP network can be thought as four-arm branch points ( f = 4) and Gph should be
identical to Ge in the rheological experiments, we have

a
dT

=
NPPKuhn

e

Ntopo
e

= 2 (15)

by construction.
It is not easy to understand why the ratio of TSL to TD should be 2 due to the obscurity of the

concept of tube. To get around the obscure picture of tube, Likhtman et al. proposed a simple model of
a single entangled chain in a cubic lattice of line obstacles which is called grid model [37]. The grid
model is intuitive and one could expect a perfect correspondence between this model and tube theory.
One might anticipate that the TSL should be equal to the grid size. However, they found that the TSL
measured by PPA in this model is also twice as large as the grid spacing for large grids.

As mentioned in Section 2, the mobility of non-sticky nanoparticles is governed by the ratio
of nanoparticle diameter dP to TD dT . Small particles (dP < dT) are only affected by the monomer
motion, while large particles (dP > dT) are affected by the mesh formed by entangled polymers [10–14].
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Thus, one can expect that the diffusion coefficient of the nanoparticles DP decreases as the increase of
dP/dT by

DP ∼ exp(−dP/dT). (16)

Recent simulation [15] shows that

DP ∼ exp(−cdP/a), (17)

in which c is a fitting parameter and a is the TSL measured by PPA. The best-fit result is c = 2.2± 0.1.
Therefore, comparing Equation (17) with Equation (16), the observation of this paper that a/dT = 2 is
verified by the nanoparticle motion in entangled polymer melts.

If a/dT = 2 holds for all the situations, it becomes much easier to determine mesh size through
monomer MSD. As discussed in Section 4, it is much easier to estimate TD dT than TSL a, because
measuring a requires the slope- 1

4 regime of MSD while measuring dT does not. Hence, one can measure
TD dT by simulating short chain system (longer than Ne), and obtain TSL immediately by using the
relation a = 2dT . This method to determine tube mesh size through MSD shown in this paper is more
robust than other methods [8]. For example, one can also estimate the entanglement length by using
the plateau modulus, Ge = ρkBT/Ne. However, this method has systematic error that comes from
no-naffine deformation and the fluctuation of entanglement points [8]. Another method to determine
the entanglement length is PPA. However, the results given by PPA are not reliable unless they are
extrapolated to infinite long chain [6].

6. Summary

In this paper, we fully discuss a dynamic method to define the main parameter of the tube theory
through monomer MSD g1. The TSL can be measured from the intersection of the t1/2 fitting line and
the t1/4 fitting line in log-log plot. The TD can be obtained by recording the time at which g1 data start
to leave the t1/2 regime. Using this method, simulation data show that the TSL is twice as large as
the TD.
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