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Abstract: Bio-based polyurethane materials with abundant open-cells have wide applications because
of their biodegradability for addressing the issue of environmental conservation. In this work,
open-cell rigid polyurethane foams (RPUFs) were prepared with bio-based polyols (BBPs) derived
from the liquefaction of peanut shells under different post-processing conditions. The influences
of the neutralization procedure and filtering operation for BBPs on the foaming behaviors, density,
dimensional stability, water absorption, swelling ratio, compressive strength, and microstructure of
RPUFs were investigated intensively. The results revealed that a small amount of sulfuric acid in the
polyols exhibited a great impact on physical and chemical properties of RPUFs while the filtering
operation for those polyols had a slight effect on the above properties. The RPUFs prepared from
neutralized BBPs possessed higher water absorption, preferable dimensional stability and compression
strength than that fabricated from the non-neutralized BBPs. Moreover, the prepared RPUFs exhibited
preferable water absorption of 636–777%, dimensional stability of <0.5%, compressive strength of
>200 KPa, lower swelling rate of ca. 1%, as well as uniform cell structure with superior open-cell rate,
implying potential applications in floral foam.
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1. Introduction

Rigid polyurethane foams (RPUFs) are extensively used in numerous engineering applications,
such as building and tank thermal insulation, structural support material, and composite wood
due to their light weight, considerable specific strength, and superior heat insulation, etc. [1–3].
The major components for synthesizing RPUFs are isocyanate and polyols obtained basically from
the petroleum industry. Due to the fast consumption of fossil oil reservoirs and environmental
conservation, it is necessary to explore renewable feedstocks to substitute petroleum-based polyols
for RPUFs production [4–6]. Biomass resources could make great contributions to the polyurethane
industry development, because they are widely available, renewable and CO2-neutral feedstocks for
the subsequent applications, especially in the preparation of RPUFs [7–11].

Generally, vegetable oils [4,8,12–22] and plant fibers [23–29] contain abundant hydroxyl groups
or double bonds, which require chemical modification or liquefaction to generate bio-based polyols
(BBPs) with proper hydroxyl numbers [10,11]. BBPs with hydroxyl numbers in the range of 200–550 mg
KOH·g−1 would be suitable alternatives to replace the petroleum-based polyols for RPUFs synthesis [30].
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As previously reported, foams prepared from BBPs could be used in thermal insulating materials
with properties comparable to those of commercial products [8,11]. Agricultural residues such as
crop straws and hulls, containing abundant polysaccharide and lignin with ample phenolic hydroxyl
groups, are valuable biomass resources, which could be effectively converted into BBPs, as reported
previously [31,32].

RPUFs are usually closed-cell foams due to the usage of low boiling point substance as foaming
agents, resulting in the tightly reticular air barrier, low moisture vapor permeability and resistance to
water. Therefore, closed-cell RPUFs have excellent thermal insulating properties and can be used for
building thermal insulation materials [14,15,33]. However, in several new application areas, such as
floral foam and noise reduction materials, RPUFs with high open-cells are required with properties
of high water absorption [34] or sound absorption [35]. In the present studies, RPUFs with open-cell
structure have rarely been reported. Typically, open-cell RPUFs can be synthesized by utilizing
cell-opening agents, such as 1-butanol or the lithium salt of 12-hydroxystearic acid (Li-12HSA) [36].

This study was to synthesize the open-cell and bio-based RPUFs by using the liquefied products
of peanut shell (defined as bio-based polyols, BBPs) as one of the dominant raw materials, where
the BBPs were treated with four post-processing conditions. The effects of different post-processing
conditions on the physical and mechanical properties, as well as the cell morphology of open-cell
RPUFs have been intensively assessed.

2. Experimental

2.1. Materials

The liquefaction process of peanut shells for the preparation of BBPs could be found in previous
report [31]. The properties of four BBPs are listed in Table 1, where A, B, C, and D stand, respectively, for
the liquefied products of peanut shells filtered through a Buchner funnel with the filter paper (pore size:
30–50µm) to remove residue (1.3 wt% relative to the original peanut shell) that cannot be liquefied by the
solvents and neutralized with sodium hydroxide, the sample unfiltered and neutralized with sodium
hydroxide, the sample filtered and non-neutralized, and the sample unfiltered and non-neutralized.
Polymeric methylene-4,4′-diphenyl diisocyanate (PM-200) was obtained from Wanhua Chemical Group
Co., Ltd. Triethylene diamine (A-33), stannous octoate (T-9) and silicone-based surfactant (L-580) were
produced by Air Products & Chemicals, Inc. (Allentown, PA, USA).

Table 1. Properties of bio-based polyols.

Sample OH Number,
mgKOH·g−1

Acid Number,
mgKOH·g−1

Viscosity(25◦C),
mPa·s Color

A 451.9 1.0 47 black
B 473.3 1.0 143 black
C 451.9 8.9 47 black
D 473.3 8.9 143 black

2.2. Preparation of Open-Cell RPUFs

The open-cell RPUFs were synthesized through a one-step method. The content of all the additives
was a relative mass ratio to the BBPs. Firstly, the BBPs (100 wt %), blowing agent (distilled water, 2
wt%), L-580 (2–3 wt %) and complex catalysts (A-33 of 0.75–1.00 wt % and T-9 of 0.3–0.4 wt %) were
fully blended in a 500 mL plastic beaker with stirring (800 rpm) for one minute. Then the pre-weighted
PM-200 (where NCO index was 1.00–1.05 and the isocyanate content was calculated in our previous
study [37]) was poured into the beaker rapidly under continuous stirring of another 90–120 s. Finally,
the homogeneous mixture rose freely and then was cured at room temperature for 24 h before taking it
out of the plastic beaker. The samples were kept at ambient temperature for at least three days before



Polymers 2019, 11, 1392 3 of 10

their properties were measured. The RPUFs from BBPs A, B, C and D were defined respectively as
RPUF-A, RPUF-B, RPUF-C and RPUF-D.

2.3. Characterization and Property Testing of RPUFs

The gel time and free rise time of RPUFs were tested according to the standard “cup-test” in ASTM
D7487-13E1 using a digital timer. Each test was conducted repeatedly at least five times for minimizing
experimental error. The inner temperature of RPUF was measured by inserting the thermometer into
the mixture during the foaming process to record the maximum value of the temperature. The density
of RPUF was measured according to GBT 6343-2009. Prior to the test, the samples with the size of 50
mm × 50 mm × 50 mm were kept at the temperature of 25 ◦C and relative humidity of 50% for at least
16 h. Dimensional stability of RPUFs was measured in accordance with GBT 8811-2008 over the foams
with the size of 100 mm × 100 mm × 25 mm as the temperature was −25 ◦C and 85 ◦C, respectively.
The compressive strength test of RPUFs (50 mm × 50 mm× 50 mm) was carried out according to GB
T 8813–2008 using an electronic universal testing machine (H10KS, Hounsfield, England) under the
loading speed of 5 mm·min−1. The water absorption and swelling ratio in the water of RPUFs (150
mm × 150 mm × 50 mm) were tested based on method A and method B in GBT 8810–2005 under the
temperature of 25 ◦C and relative humidity of 50%. The porosity and cell microstructure of RPUFs
were observed using a cold-field emission scanning electron microscope (S-4800, Hitachi) with the
cross-section sampling to the foam growth direction after coating with gold.

3. Results and Discussion

3.1. Foaming Behaviors

The reactions of isocyanate with water and polyols are intense exothermic processes. The carbon
dioxide generated from the blowing reaction between the isocyanate and water would act as foaming
gas to expand bubbles. Meanwhile, the backbone of the urethane group is formed from the gelling
reaction between isocyanate and polyols with different molecular weight as shown in Figure 1.
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Figure 1. Gelling reaction between the isocyanate and polyols.

The gel time and the free rise time were recorded during the foaming process and listed in Table 2.
It can be found that the gel time and free rise time of RPUF-A and -B could be dramatically reduced
in comparison with that of the RPUF-C and -D due to the use of the BBPs neutralized with sodium
hydroxide, indicating the great influence of neutralization procedure of BBPs on the synthesis of the
RPUFs. For instance, using the filtered BBPs, the gel time and free rise time significantly increased
from 24 and 39 s for RPUF-A to 449 and 578 s for RPUF-C, respectively. Moreover, the filtration
process of BBPs had a slight effect on both the gel time and free rise time of foams, illustrating that
the preparation of BBPs without filtration process could save the time as well as the cost of the final
RPUFs. The foaming variation with the elevated free rise time for RPUF-B (Figure 2) and RPUF-D
(Figure 3) further clearly verified that the free rise time of foam prepared from neutralized polyols was
substantially shortened. The alkaline amine catalyst A-33 could fully exhibit its catalytic performance
for promoting the reaction of isocyanate and water to generate carbon dioxide during the foaming
process due to the removal of sulfuric acid through the neutralization procedure.
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Table 2. The gel time and free rise time of the foaming process in different reaction conditions.

Samples Gel Time, s Free Rise Time, s

RPUF-A 24 39
RPUF-B 28 41
RPUF-C 449 578
RPUF-D 480 593
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Figure 3. Foaming process of RPUF-D prepared from unfiltered BBPs without neutralization by
sodium hydroxide.

Figure 4 shows the inner temperature variation trend of RPUF-B and RPUF-D during the foaming
process. It could be seen that the inner temperature of the two samples increased with respect to the
test time. The inner temperature of RPUF-B reached the maximum value of 136 ◦C after 386 s, which
is relatively higher and faster than that (103 ◦C after 625 s) of RPUF-D. The presence of sulfuric acid
in the BBPs without neutralization would react with alkaline amine catalyst A-33 to slow down the
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reaction between the isocyanate and water during the preparation of RPUF-D, resulting in the mild
exothermic process, thus the relatively low inner temperature. This is consistent with the observation
of Figures 2 and 3. Therefore, the neutralization procedure could be necessary to prepare the BBPs for
the subsequent RPUFs synthesis. It was also found that the initial temperature of foaming mixture had
an obvious effect on the inner temperature during the foaming process (Figure 5), illuminating that
the high initial temperature of foaming mixture can accelerate the reaction rate to shorten the overall
reaction time.Polymers 2019, 11, x FOR PEER REVIEW 5 of 10 
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3.2. Apparent Density

The apparent density of RPUFs is presented in Figure 6. It can be found that the apparent
density of all RPUFs was in the range of 75–90 Kg·m−3, suggesting the formation of the dense structure.
Furthermore, the apparent density of RPUF-A and B was higher than that of RPUF-C and D, respectively.
The relatively high inner temperature of the RPUF-A and B would facilitate the formation of the
framework of the urethane group in the stage of the gel reaction between the BBPs and isocyanate,
resulting in the high apparent density of the prepared RPUFs. Thus, the remaining sulfuric acid in the
BBPs exhibited a certain impact on the properties of the final RPUFs and should be removed by the
neutralization with sodium hydroxide.Polymers 2019, 11, x FOR PEER REVIEW 6 of 10 
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3.3. Dimensional Stability and Water Absorption

The dimensional stability of RPUFs under different temperature is listed in Table 3. As expected,
the dimensional changes of RPUFs under low temperature and thermal treatment were unregulated
and negligible (−0.07% to 0.50%), indicating that the prepared RPUFs is favorable for the practical
engineering application in the wide range of temperature.

Table 3. Dimensional stability of RPUFs at different temperature.

Samples
−25 ◦C 85 ◦C

Length, % Width, % Height, % Length, % Width, % Height, %

RPUF-A −0.13 −0.07 −0.03 0.02 0.08 0.07
RPUF-B −0.12 −0.05 −0.16 0.13 0.26 0.18
RPUF-C −0.35 −0.07 −0.15 0.07 0.50 0.15
RPUF-D −0.34 −0.10 −0.27 0.06 0.27 0.20

Water absorption is usually associated with the open-cell ratio and density. As shown in previous
work on the RPUF from rapeseed oil polyol with a high content of closed cells, the water absorption
foams are less than 10% [16]. However, as listed in Table 4, the four prepared RPUFs in this study
possessed substantially higher water absorption (636%–777%) as well as the extremely low swelling
ratios (around 1%), implying the high open-cell ratio and density of prepared RPUFs. The RPUFs with
the properties of high water absorption, low swelling ratio, and suitable density are favorable for the
application of floral foam [38].
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Table 4. Water absorption and swelling ratio of RPUF in different compositions.

Samples Water Absorption, % Swelling Ratio, %

RPUF-A 687 1.06
RPUF-B 777 1.05
RPUF-C 636 1.09
RPUF-D 678 1.03

3.4. Mechanical Properties

The mechanical properties of prepared RPUFs were evaluated by compressive strength test and
the results are illustrated in Figure 7 and Table 5. The compressive strength of foams prepared from
the neutralized BBPs (RPUF-A and B) was substantially higher than that of RPUF-C and D, indicating
that the neutralization process of the BBPs would significantly influence the compressive strength of
the subsequent RPUFs. Moreover, the unfiltered BBPs containing few residues can strengthen the
mechanical strength of the RPUFs, resulting in the higher compressive strength of the foams derived
from the unfiltered BBPs in comparison with foams from filtered BBPs. Typically, the compressive
strength of RPUF-B was obviously higher than that of RPUF-A. The mechanical test results are also in
accordance with the density results (Figure 6); that is, the foam with high density also exhibited the
superior mechanical strength. Except for density, the compressive strength of RPUFs is also relative
to the cell size and shape of the final foams. The RPUFs with regular cell shape and uniform cell
size usually possessed high compressive strength [34,39]. This can be proved by the morphology
investigation in the following discussion. Furthermore, the compressive strength of prepared RPUFs
in this work is superior in comparison with the foams from others’ work [16,26].
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Table 5. Mechanical properties of RPUFs.

Samples Maximum
Pressure, N

Compression
Strength, KPa

Stress-Strain

10%, KPa 20%, KPa 25%, KPa

RPUF-A 63.4 248.5 221.9 278.6 307.5
RPUF-B 89.5 350.7 326.4 337.7 349.6
RPUF-C 51.0 200.1 171.4 189.0 197.9
RPUF-D 59.2 231.7 204.4 215.1 218.3
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3.5. Cell Morphology

SEM images (Figure 8) of prepared RPUFs reveal that the foam cells have a regular shape and
uniform size, indicating the isotropic growth of the bubble during the foaming process. This result also
verified the conclusion from the analysis of the compressive strength test. Furthermore, the cells are
approximately hexagonal and completely opened. In the foaming process, the slow-gelling reaction
rate allowed the bubbles to easily escape from the matrix before it forms the firm struts. Finally, an
equilibrium was reached between the gelation and blowing reaction, leading to the formation of RPUFs
with uniform cell size. The superior performance of the prepared RPUFs enable them to be potentially
used as floral foam.Polymers 2019, 11, x FOR PEER REVIEW 8 of 10 
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prepared with bio-based polyols (BBPs) derived from the liquefaction of peanut shells under different
post-processing conditions. Compared to the filtration post-processing of BBPs, the neutralization of
BBPs with sodium hydroxide would significantly influence the properties of the final foams due to
the elimination of the small amount of sulfuric acid, which could slow down the reaction between
the isocyanate and water during the preparation of RPUFs. The RPUFs prepared from neutralized
BBPs exhibited the suitable density, superior compressive strength, especially high water absorption of
636%–777% and low swelling ratio of ca. 1% as well as uniform cell structure with high open-cell rate.
These properties of the obtained RPUFs are favorable for application as a floral foam.
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