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Abstract: From a dicyano-phenylenevinylene (PV) and an azobenzene (AB) skeleton, two new
symmetrical salen dyes were obtained. Terminal bulky substituents able to reduce intermolecular
interactions and flexible tails to guarantee solubility were added to the fluorogenic cores.
Photochemical performances were investigated on the small molecules in solution, as neat crystals
and as dopants in polymeric matrixes. High fluorescence quantum yield in the orange-red region was
observed for the brightest emissive films (88% yield). The spectra of absorption and fluorescence were
predicted by Density Functional Theory (DFT) calculations. The predicted energy levels of the frontier
orbitals are in good agreement with voltammetry and molecular spectroscopy measures. Employing
the two dyes as dopants of a nematic polymer led to remarkable orange or yellow luminescence, which
dramatically decreases in on-off switch mode after liquid crystal (LC) order was lost. The fluorogenic
cores were also embedded in organic polymers and self-assembly zinc coordination networks to
transfer the emission properties to a macro-system. The final polymers emit from red to yellow both
in solution and in the solid state and their photoluminescence (PL) performance are, in some cases,
enhanced when compared to the fluorogenic cores.

Keywords: luminescent polymer; salen dyes; polymer network

1. Introduction

The development of solid state fluorescent materials, based on an organic scaffold or metal
containing, is an area of research in enormous development due to the numerous applications for
the study of biological [1–3] and photonic systems [4–10]. Extended π-system with donor-acceptor
framework featuring a large dipole moment in the excited state are often reported as organic emitters
in the solid state and as candidates for optoelectronic applications [11,12]. In particular, efficient
deep red near IR photoluminescent (DR/NIR PL) emitters are chemically and thermally stable and
are easily processable; thus, they are optimal candidates for fluorescence bioimaging and assay
applications [13]. Among them, Schiff bases with N,N′-bis(salicylidene)ethylenediamine (salen)
groups and their metal complexes have a wide variety of applications in the fields of biology [14],
catalysis [15,16], materials [17], inorganic [2] and analytical chemistry [4].
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To date, the challenge to obtain solid-state photoluminescent materials translates in the easy and
cost-effective assembly of macro-architectures starting from small PL active molecules [18–21]. This
means not only dye-doped matrixes but also covalently bonded emissive materials.

In two of our previous works [22,23], we reported of two simply liquid crystalline dyes based on
a di-cyano phenylenevinylene and an azobenzene skeleton. In both cases, the neat chromophores in
the solid state were weakly luminescent, undergoing an ACQ (aggregation-caused quenching) effect,
limiting the applications in devices to the diluted doped systems.

The present paper aims to improve the PL performances of the phenylenevinylene (PV) and
azobenzene (AB) emissive cores, relieving the ACQ effect, through modifications of the terminal
groups of the dyes. Molecular interaction plays a key role in the properties of materials. One of
the most common strategies to increase emission intensity in concentrated solution or solid state is
to restrict the molecular motions (bond rotation and vibration), to prevent the nonradiative decay
channels [24–31]. In some previous works, we investigated the effect of a bulky substituent on emissive
dyes [32–38]. This structural modification reducing detrimental intermolecular interactions lead to a
relevant improvement of the photophysical performances in the solid state [39]. It is well known that
the addition of bulky substituent can improve PL quantum yield (PLQY) by increasing the distance
between the emitting species in the solid state [40], preventing the formation of stacking interactions,
and slowing down the rate of radiationless decay. More recently, another intriguing approach to
enhance the PLQY of the solid compound relies on the excited-state intramolecular proton transfer
(ESIPT) process [41]. The fast proton transfer in ESIPT molecules causes nonradiative deactivation,
thus, most of the ESIPT-based dyes exhibit strong emission in solution but weak emission in the
solid state. Introducing steric crowding and/or strong hydrogen bonding in the ESIPT dye restrict
intramolecular rotation and provide good PL performance also in the solid state.

As part of our continuous research in the field of PL materials, here, we present the Schiff
base products of a substituted 2-hydroxy-benzaldehyde with diamino PV and AB based derivatives.
The new fluorophores, C1b and C2b (in Scheme 1), have symmetrical bulky salen groups, potentially
undergoing the ESIPT process, and flexible terminal chains. The dyes were characterized for their
PL response both in solution and in the solid state. As neat solids, their PLQYs were measured
and compared with the values recorded on the doped samples obtained by dispersing the dyes in
conductive, non-conductive and liquid crystal (LC) polymers.

Transferring and retaining/enhancing the solid-state PL performance of the microenvironment
to the macro-system was the purpose for which we acquired and systematically compared the
experimental data. In this perspective, PV and AB cores were covalently embedded in organic homo-
and copolymers (see Scheme 2) reproducing the same emissive low molecular weight fluorophores
C1b and C2b in the polymeric main-chain. These materials were prepared through polycondensation
of the diamino-functionalized fluorogenic cores, and eventually a non-emissive co-monomer, and are
from red to yellow emitters in solution and as solid films. From the organic polymers, zinc-driven
self-assembly reaction leads to metallated networks. Zinc (II) ion linking two N,O mononegative
sites of the terminal salen groups acts a cross-linker agent, producing new materials with interesting
rheological properties. In this case, in situ synthesis was experimented as a novel facile route for
constructing cross-linked network luminescent films as required in PL devices. The photoluminescence
experiments demonstrate that the in situ deposed films are from red to yellow luminescent layers with
medium PLQYs, physically and chemically stable after six months.

2. Materials and Methods

2.1. Materials

The compounds A12G, AN12 4-(octyloxy)benzoate-4-(6-hydroxy)benzaldehyde [42] and
C1-NH2 [22] and C2-NH2 [23] were obtained as described in previous works. QYPDLC-102 nematic
LC polymer was purchased from Canaanchem. Polymeric Matrixes: PS (molecular weight: 18,700 Da,
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Qingdao, China) and poly(9-vinylcarbazole) (PVK) (molecular weight: 1100 Da) were commercially
available supplied by Sigma Aldrich (St. Louis, MO, USA).

2.2. Characterization

A Zeiss Axioscop polarizing microscope, implemented with an FP90 Mettler heating stage, was
used for optical observations. A Perkin Elmer Pyris 1 (DSC scanning calorimeter, PerkinElmer, Inc.,
Waltham, MA, USA) at a scanning rate of 10 ◦C/min, under nitrogen flow, was used to measure
enthalpies and phase transition temperatures. The point at 5 wt % weight loss is assumed to represent
the decomposition temperature (Td). Decomposition temperatures (Td) were defined with a Perkin
Elmer TGA 4000 (thermogravimetric analysis, PerkinElmer, Inc., Waltham, MA, USA), under nitrogen
flow. A Bruker Avance II 400 MHz spectrometer was used to register 1H NMR spectra. A Jasco F-530
spectrometer (scan rate 200 nm min−1, JASCO Inc., Mary’s Court, Easton, MD 21601, USA) was used
to register UV-Visible spectra; fluorescence spectra were registered with a spectrofluorometer Jasco
FP-750 (JASCO Inc., Mary’s Court, Easton, MD 21601, USA) (excitation wavelengths set at the samples’
absorption maxima, scan rate 125 nm min−1). An Ubbelohde viscometer was used to determine the
inherent viscosity (ηinh), at 40 ◦C in N-methyl pyrrolidinone (NMP), of the organic polymers P1b,
P2b, co-P1b and co-P2b. Vapor pressure osmometry at 7000 ◦C in Dimethyl sulfoxide (DMSO) was
employed to measure molecular weights by a Knauer apparatus.

2.3. Thin Films for Optical Measurements and PLQY Setup

All thin film samples used for PLQY measurements were prepared by an SCS P6700 spin-coater
apparatus. By the spin-coating technique operating in two steps (600 rpm for 60 s and 2000 rpm
for 60 s), they were deposed on quartz slides C1b and C2b as neat samples dissolved in NMP and
dissolved at 10% by weight in PS or PVK. The samples were annealed for 10 min at 100 ◦C. Thin
films were obtained by spin-coating of a 10mg/mL solution of the organic polymers in NMP operating
in two steps (600 rpm for 60 s and 2000 rpm for 60 s); the samples were annealed 150 ◦C for 5 min.
The in-situ reaction of zinc-driven self-assembly of the polymers afforded the networks by spin-coating
the reaction mixture (see Section 2.8) onto quartz slides operating at 2000 rpm for 60 s and annealing of
the films at 150 ◦C for 10 min. The films were washed with isopropyl alcohol twice and dried at 60 ◦C
for 20 min in vacuum. Doped LC samples were obtained by dissolving C1b or C2b (1% by weight) and
commercially available nematic LC polymer, using Tetrahydrofuran (THF) as a solvent, and removing
the solvent at 100 ◦C. The mixture was deposed between quartz slides for the measurements.

A setup similar to the one proposed by de Mello et al. [43] was used to run PL efficiency
measurements. The system is composed of an exciting laser (at 405 nm or 475 nm) and
a spectrophotometer (BLACK Comet Stellarnet Inc, Tampa, FL, USA); it collects the direct
photoluminescence and the scattering effect of the integrating sphere photoluminescence (part of
the system, Stellarnet Inc., Tampa, FL, USA). Five different points on the sample were considered to
measure the emission.

2.4. Cyclic Voltammetry

All electrochemical measurements were performed with 663VA stand interfaced to Autolab
PGSTAT302N potentiostat-galvanostat (Metrohm) controlled by NOVA software. The cell consisted
of three electrodes. A platinum bar was used as the auxiliary electrode and a platinum wire as the
quasi-reference electrode calibrated against the redox potential of ferrocenium/ferrocene redox couple,
Fc+/Fc [44]. The working electrodes were platinum disk electrodes (2 mm, purchase from Metrohm
AG, 9100 Herisau, Switzerland), coated by a polymer film. The working electrodes were prepared by
pipetting 10 µL of polymer solution NMP, prepared at 80 ◦C by solving 5.00 mg of polymer in 500 µL
of NMP. After the drying period (15 h at 80 ◦C), the working electrode was immersed in an electrolyte
solution, 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile. The electrolyte solution was
purged with argon for 15 min before the measurements to remove the oxygen.
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2.5. Theoretical Calculations

Quantum-mechanical calculations were carried out at theory level DFT/B3LYP; Jaguar package,
Schrödinger Release 2017-4 [45] was used. B3LYP functional and LACVP** basis set were used to
optimize molecular geometry. The NBO approach was applied to perform charges assignment.
Single-point calculations were performed on optimized geometries to re-evaluate the energies;
Dunning's correlation-consistent triple-ζ basis set cc-pVTZ (-f), which includes a double set of
polarization functions, was used. Proper convergence to local minima was confirmed by calculating
vibrational frequency, based on analytical second derivatives at the B3LYP/6-31G**(LACVP**) level of
theory. Zero-point energy (ZPE) and entropy corrections at 25 ◦C were also derived using vibrational
frequency calculations, using non-scaled frequencies. Vertical excitation energies, computed at neutral
compound geometry with TD-DFT and Tamm-Dancoff [46] approximation, were used to obtain
absorption values. Poisson Boltzmann Solver (PBF) [47] was used to model the solvent ethanol.
Computed redox data was used to calculate “scaled” HOMO and LUMO energies, via the expressions:

Absolute_Electrode = NHE_Energy + Electrode_Potential

Orbital_Energy = Absolute_Electrode + Redox_Potential

where NHE_Energy is the energy of the NHE (Normal hydrogen electrode) electrode in water (−4.28 V),
Electrode_Potential is the potential of the chosen electrode relative to NHE.

2.6. Synthesis of C1b and C2b

A similar procedure was adopted for the synthesis of both dyes, by reacting the diamino derivative
(respectively, C1-NH2 and C2-NH2 in Scheme 1) with 4-(octyloxy)benzoate-4-(6-hydroxy) benzaldehyde
in 5% stoichiometric excess. As an example, the synthesis of C1b is reported. 500 mg of the diamino
derivative (0.96 mmol) and 711 mg (1.92 mmol) of 4-(octyloxy)benzoate-4-(6-hydroxy)benzaldehyde
were dissolved in THF dry (10.0 mL). After 30 min at reflux under stirring, the mixture was cooled to
room temperature leading to the formation of a red crystalline solid. The compound was recovered by
filtration and recrystallized by THF. Yield: 80%; mp: 221 ◦C (⊗H = 30.90 J/g); Td = 311 ◦C. 1H NMR
(400 MHz, DMSO-d6, 25 ◦C, ppm): 0.88 (m, 12H), 1.30 (m, 24H), 1.44 (m, 4H), 1.76 (m, 5H), 3.95 (m,
5H), 4.00 (t, 4H), 6.79 (s, 2H), 7.00 (t, 4H), 7.11 (m, 4H), 7.20 (m, 4H), 7.50 (d, 4H), 7.70 (d, 2H), 8.13 (dd,
6H), 9.07 (s, 2H), 13.60 (s, 2H). Elemental analysis calculated (%) for C77H84N4O10: C, 75.46; H, 6.91; N,
4.57; found: C, 75.78; H, 6.66; N, 4.20.

C2b: Yield: 78%; mp: 181 ◦C (⊗H = 71.90 J/g); Td = 301 ◦C. 1H NMR (400 MHz, DMSO-d6, 25 ◦C,
ppm): 0.87 (m, 6H), 1.28 (m, 16H), 1.43 (m, 4H), 1.74 (m, 4H), 3.90 (m, 6H), 4.10 (t, 4H), 6.58 (s, 2H), 6.91
(t, 4H), 7.11 (m, 4H), 7.28 (m, 4H), 7.48 (m, 4H), 7.54 (dd, 2H), 8.07 (t, 4H), 9.07 (s, 2H), 13.60 (s, 2H).
Elemental analysis calculated (%) for C64H68N6O10: C, 71.09; H, 6.34; N, 7.77; found: C, 71.01; H, 6.16;
N, 7.20.
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Scheme 1. Synthetic route to the target compounds C1b and C2b.

2.7. Synthesis of Organic Polymers

Scheme 2 shows the basic polymerization procedure for all the polymers; the following is a detailed
description for polymer P1b. A total of 0.464 g (0.68 mmol) of dialdehyde A12G was dissolved in 5 mL
of boiling o-dichlorobenzene, and 0.354 g (0.68 mmol) of diamine C1-NH2 added under a nitrogen
atmosphere. The solution was kept at boiling temperature for 20 min to carry out polymerization
and was then poured into n-hexane. The precipitated polymer was washed twice in n-hexane and
oven-dried at 100 ◦C. The same procedure was used for preparing the copolymers, utilizing 10%
by weight of C1b-NH2 or C2b-NH2, diamine AN12, and the stoichiometric amount of dialdehyde
A12G. The description is reported for polymer co-P1b. To 0.302 g (0.58 mmol) of diamine C1-NH2 and
0.842 g (2.19 mmol) of AN12 dissolved in 10 mL of o-dichlorobenzene, 1.891 g (2.77 mmol) of A12G
was added under a nitrogen atmosphere. The polymerization was carried out for 20 min at boiling
temperature and the solution is then poured into n-hexane. The precipitated polymer was washed
twice in n-hexane and oven-dried at 100 ◦C. Yields are virtually quantitative in all cases. 1H NMR
(400 MHz, TCE-d2, 25 ◦C) spectra of the copolymers are reported in Figure S1 of Supplementary
Materials. Co-P1b: Tm = 126 ◦C; Td = 310 ◦C. Co-P2b: Tm = 164 ◦C; Td = 324 ◦C.

P1b: Tm = 186 ◦C; Td = 345 ◦C (calculated as the 5% weight loss temperature in N2). 1H NMR
(400 MHz, TCE-d2, 25 ◦C, ppm): 0.88 (m, 6H), 1.30 (m, 20H), 1.44 (m, 4H), 1.76 (m, 5H), 3.83 (m, 5H),
4.00 (m, 4H), 6.67 (s, 2H), 6.82 (m, 4H), 7.18 (m, 8H), 7.50 (d, 4H), 8.03 (m, 8H), 9.84 (s, 2H), 11.60 (s,
2H). P2b: Tm = 232 ◦C; Td = 333 ◦C (calculated as the 5% weight loss temperature in N2). 1H NMR
(400 MHz, TCE-d2, 25 ◦C, ppm): 1.28 (m, 14H), 1.44 (m, 2H), 1.79 (m, 4H), 3.93 (m, 6H), 4.02 (t, 4H),
6.60 (m, 4H), 6.85 (d, 4H), 6.97 (s, 2H), 7.13 (s, 2H), 7.29 (d, 2H), 7.62 (d, 2H), 8.09 (m, 6H), 8.50 (s, 2H),
9.84 (s, 2H), 11.21 (s, 2H).
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the networks.

2.8. Synthesis of the Networks

Cross-linking of the polymers was performed in solution following the same basic procedure for
all the polymers. A detailed description is reported for Net-P1b. To a solution of 0.120 g (0.103 mmol)
of P1b dissolved in 10 mL of hot (150 ◦C), NMP 0.019 g (0.103 mmol) of zinc (II) acetate dissolved
in 1 ml of NMP. After 5 min under vigorous stirring, the solution was poured into methanol and
the precipitated network washed twice in methanol and oven-dried at 150 ◦C. Yields are virtually
quantitative. Zn % as ZnO was evaluated by TGA analysis of the samples heated up to 900 ◦C. Net-P1b:
calculated 6.59%; found 6.22%. Net-P2b: Zn%: calculated 7.47%; found 7.40%. Net-co-P1b: calculated
7.31% found 7.20%. Net-co-P2b: calculated 7.42% found 7.31%. Decomposition temperature for all
networks is above 350 ◦C.

3. Results and Discussion

3.1. Synthesis and PL Properties of C1b and C2b

To assemble efficient and stable emissive layers, efforts must devote to the design and preparation
of the active luminescent units. We explored the potential of PV [22,32] and AB [23,48] fluorogenic
cores embedded in the low molecular weight molecules C1b and C2b, reported in Scheme 1. Both dyes
are the symmetrical Schiff base products of a substituted 2-hydroxy-benzaldehyde with the diamino
derivatives C1-NH2 and C2-NH2 (Scheme 1). The benzoyloxy groups and the alkoxy substituents on
the central ring were added to restrict rotation/isomerization and guarantee fluorescence. Terminal
flexible chains were introduced to increase solubility and to promote the LC phase.
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The identification and evaluation of the purity degree were assessed by 1H-NMR and elemental
analysis. By optical observation and DSC methods, the expected liquid-crystalline phase behavior
was revealed in both cases, with a large stability range. Compound C1b melts to a marble nematic
texture at 221 ◦C and C2b at 181 ◦C under polarized light (Figure S2 of Supplementary Materials).
Decomposition occurs before isotropization, above 300 ◦C for both monomers. In both cases, the dyes
result emissive in the nematic phase.

Photophysical measurements were performed in the solution and in the solid state. As shown in
Table 1, emission maxima of C1b are always red-shifted respect to C2b, and the same general behavior
has been found in the polymeric materials (see Section 3.2).

In the solution, C1b and C2b are weak yellow emitters (Figure 1), with a poor solvatochromic effect
observed, depending on the polarity of the solvent (red-shift for absorption maxima and blue-shift for
emission maxima). Stoke’s Shifts from 81 nm to 164 nm have been calculated respect to absorption
maxima in the different solvents. PL quantum yields of the dyes are, respectively, 5% and 3%. They
were measured in a chloroform solution by relative methods using as standard quinine sulfate [49].
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Figure 1. Crystalline samples of C1b (A on the left) and C2b (A on the right) in visible light and under
365 nm UV lamp light (B). The same samples dissolved in a dilute chloroform solution in natural (C)
and under 365 nm UV lamp light (D).

The photophysical characterization of the crystalline samples was performed on spin-coated
thin films of the neat solids. With respect to analogous PV and AB based dyes without bulky
groups [23], the benzoyloxy moiety introduces steric and therefore, electronic changes. As discussed
below, the whole aromatic skeleton of the molecules constitutes a conjugated backbone where HOMO
is delocalized. The new push-pull system leads to an improvement in PL emission intensity and
a blue-shift of the emission maxima respect to the non-bulky dyes [22,23]. Respectively, red and
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orange-yellow bright luminescence (see Figure 1) was recorded on crystalline samples of neat C1b
and C2b with 25% and 22% PLQYs, PL performance resulting about six times higher respect to the
non-bulky dyes. The remarkable Stokes Shifts recorded on the neat samples (138 nm and 208 nm,
respectively, from excitation to emission maximum wavelength) are a desirable hallmark of a PL device,
able to eliminate spectral overlap between absorption and emission phenomena and to improve the
intensity and color purity of the emission.

In our preliminary works, we found that luminescence can be enhanced in the doped systems
where the ACQ effect decreases dramatically [22,23]. We employed the organic dyes C1b and C2b as
dilute dopants (10% by weight) in polymeric matrices, in particular in non-conductive polystyrene (PS)
and in hole-transporting conductive polymer poly-N-vinylcarbazole (PVK), typically employed to
produce emissive layers in LEDs and OLEDs [50–52]. The doped layers are from orange yellow to
yellow-green emitters with Stoke’s Shift from 70 to 93 nm (calculated from excitation to maximum
emission wavelength). The best result was due to the best balance from dilution degree and interaction
with host matrix. As expected, luminescence in C1b-doped polymers was enhanced in both the
polymeric matrices, reaching the noteworthy value of 88% in PVK. Analogous behavior was detected
for the non-bulky PV derivative. On the contrary, emission results preserved (in PVK) or slightly
decreased (in PS) in 10% dispersion of C2b dye, due to different interaction between the AB dye and
the host polymer [22,23].

To date, an increasing interest for composites based on liquid crystals (LC) polymers was
evidenced [53–55]. The new soft matter-based devices technologies require soluble, stable, and highly
efficient dyes for the LC phase. Emissive dopants in polymeric LC mixture provide luminescent
liquid crystals (LLCs) highly desirable for light-emitting devices [56,57]. In the nematic phase, C1b
and C2b are luminescent liquid crystals (LLCs), showing intrinsic light emission and supramolecular
organization [58,59]. In the field of optoelectronic applications, the cutting-edge technology is
represented by the incorporation of luminophores into liquid crystal matrix to prepare Photoluminescent
Liquid Crystal Displays (PLLCDs) or for optical temperature sensing systems [60,61]. Dye solubility in
the LC host matrix is one of the main limits. For this reason, the aim of LC display technology and
temperature-responsive PL modulator/switch probes is a soluble fluorophore, that does not show ACQ
effects at the required concentrations [62,63]. In our experiments, the two dyes were dissolved at 25 ◦C
in a commercially available nematic polymer (QYPDLC-102, Ti = 113 ◦C) at 1% by weight even if their
solubility enables to increase concentration up to 10 times. The isotropization temperatures of the
doped LC polymer are substantially preserved. The homogeneous room temperature LC materials are
respectively orange-yellow and yellow in natural light. In the nematic phase, they show, respectively,
yellow and bright yellow-green fluorescence.

Table 1. Optical data of C1b and C2b in solution and as neat and dispersed samples.

Sample λabs.sol
(nm) a

λem.sol
(nm) b PLQY% c Solvent λabs.film

(nm) d
λem.film
(nm) e PLQY% f Matrix f

C1b

369 533

5.00 ± 0.02

Chloroform (403)474 j 613 j 25 ± 1 j neat j

373 529 THF 470 jj 566 jj 30 ± 1 jj PS jj

396 523 NMP 460 jjj 566 ijjj 88 ± 5 jjj PVK jjj

- - - 460 jv 571 jv 50 ± 5 jv PDLC jv

C2b

420 534

3.00 ± 0.02

Chloroform 446 j 613 j 22 ± 1 j neat j

422 512 THF 429 jj 566 jj 10 ± 2 jj PS jj

430 511 NMP 429 jjj 566 ijjj 21 ± 2 jjj PVK jjj

- - - 414 jv 571 jv 41 ± 5 jv PDLC jv

a Wavelength of UV-Visible absorbance maxima in solution; b Wavelength of emission maxima in solution; c

Photoluminescence quantum yield (PLQY) in chloroform solution measured by relative methods using as standard
quinine sulfate; d Wavelength of UV-Visible absorbance maxima on thin film; e wavelength of emission maxima
on thin film; f PL quantum yield on thin film; j neat sample; jj sample dispersed in PS 10% by weight; jjj sample
dispersed in PVK at 10% by weight; jv sample dispersed in QYPDLC-102 nematic polymer at 1% by weight. Less
intense maxima in brackets.
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Quantitative measurement was obtained by recording the fluorescence spectra on the same doped
LC sample irradiated at a maximum of absorbance before and after isotropization. PLQYs recorded on
the nematic films reach the good values of respectively 50% and 41% (see Table 1) with Stoke’s shifted
emission of 111nm and 98 nm. PL emission maxima drastically decrease (to 10% and 1%, respectively)
in on-off PL switch mode after the nematic order was lost, as can be seen with the naked eye (Figure 2).
Reversibility of the process was checked by twenty cycles of on-off PL switch route.
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Figure 2. Fluorescence spectra recorded on 1% doped LC sample of C1b (A) and C2b (B) before (red
curve) and after isotropization (blue curve). Inset: the same sample deposed between quartz slides
under 365 nm UV light before (left) and after (right) isotropization.

3.2. Synthesis and PL Properties of Organic Polymers

The fast-growing field of organic light emitting diodes OLEDs has led to the synthesis of numerous
new luminescent materials [11,12,64], in which fluorophores are covalently bonded in a polymer
chain, in the attempt to transfer the PL properties of low molecular weight fluorogenic cores into
a macroscopic system. We engineered and synthesized both organic homo- and copolymers based
on the PV and AB emissive moieties to obtain emissive materials whose processability, stability, and
reproducibility could not be guaranteed by doped materials. The synthetic route for the organic homo-
and co-polymers P1b, P2b, co-P1b, and co-P2b have been summarized in Scheme 2. The four polymers
are segmented main-chain organic polymers obtained by condensation of the diamino derivatives and a
di-carboxaldehyde with a flexible spacer, A12G. The same fluorogenic cores with the bulky groups and
ESIPT undergoing sites are repeated in all the polymers. In the copolymers, the fluorophore moieties
C1-NH2 or C2-NH2 were diluted, respectively, at 24% and 28% in moles employing a di-aniline with
a flexible spacer, AN12, to make the whole system more soluble. As expected, all the polymers are
orange-yellow powder and display bright luminescence from red to yellow (see Figure 3).
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Figure 3. From left to right: P1b (a), P2b (b), co-P1b (c) and co-P2b (d) powder samples in natural
light (A) and under 365 nm UV lamp (B). The correspondent cross-linked samples obtained by in situ
deposition on quartz slides (C) under a 365 nm UV lamp.

The homopolymers show some crystallinity and an LC behavior evident respectively from 200 e
230 ◦C. After melting the optical observation shows a poorly mobile nematic texture. Decomposition
takes place before isotropization, above 330 ◦C. The inherent viscosity of P1b and P2b (ηinh) was
measured at 40 ◦C in NMP achieving respectively 2.90 and 2.80 dL/g values, as expected for medium
molecular weight. The copolymers are materials representative of the LLCs class. Their LC phase
is preserved and greatly enhanced respect to the homopolymers. Polymers co-P1b and co-P2b are
semi-crystalline and in optical microscopy they show, after melting, a more mobile nematic Schlieren
phase stable for about 150 ◦C, with isotropizations barely observable, respectively, at 307 ◦C and
320 ◦C, overlapped to decomposition and not detectable in DSC analysis (as an example, see Figure S3
of Supplementary Materials). The inherent viscosity measured at 40 ◦C in NMP provides 2.00 and
1.50 dL/g, respectively, again in the range of medium molecular weight. Homo- and copolymers are
soluble in dimethyl sulfoxide. Vapor pressure osmometry at 7000 ◦C of DMSO solutions was utilized
to measure molecular weights. For all polymers, M, was found from 19,000 to 20,000 Da.

As for the PL properties (summarized in Table 2, for polymers and networks) in all cases, PV based
materials show red-shifted emission respect to AB based polymers and networks. The homopolymers
are weak yellow emitters in solution, with broad absorption bands in NMP, o-dichlorobenzene (o-DCB)
or DMSO and DMF, solvents typically employed for the deposition of emissive thin films in devices.
Due to their conformational flexibility, the two copolymers are notably more soluble with respect to the
homopolymers. They can be also dissolved in THF, dioxane, or chloroform and display, respectively,
orange and yellow emission more intense respect to P1b and P2b. Their PLQYs measured in NMP
solutions are 4.5% and 3%, respectively.

The spin-coated films obtained from NMP or o-DCB solution of homo- and copolymers observed
by optical microscopy appear homogeneous up to 2 µm. PLQYs measured on thin films of P1b and
P2b are, respectively, higher (34%) and quite similar (20%) to those of the monomers C1b and C2b (see
Table 2). Despite the best processability, the copolymers are more diluted systems; not unexpectedly,
thin films of the copolymers are less emissive and PLQYs ranges from 10% (co-P1b) to 14% (co-P2b).
All the organic polymeric materials may be regarded as medium intensity red to yellow emitters.
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3.3. Synthesis and PL Properties of the Zinc-Bridged Networks

Recently, in-situ polymerization/crosslinking approach was used as a new technique to fabricate
the emitting layers for LEDs, OLEDs, and other PL devices with high performance [10,13,14,65].
The in-situ synthesis and deposition of an active network film onto the electrodes in one-step is highly
attractive due to its easiness and low-cost and lead to homogeneous and very strong glassy films.

Four supramolecular cross-linked networks were fabricated from the fluorescent polymers and
zinc (II) acetate salt as cross-linker. This chemistry provides the advantage of not requiring initiators or
elevated temperature so that being fully compatible with the fabrication of PL devices. By employing
all the salen chelating sites (evidenced in red in Scheme 2), the organic polymers have been used as
precursors to the preparation of luminescent 100% crosslinked network films based on the same PV
and AB cores. Through carefully controlling the in-situ reaction conditions, the self-assembly of the
polymers and zinc ion as linker has afforded the emissive glassy films of the networks depicted in
Scheme 2.

In Figure 3, the red to yellow emissive cross-linked films were photographed in natural light and
under a UV-vis lamp at 365 nm. We also isolated network samples by precipitation in ethanol of the
reaction mixture of the organic polymers with zinc acetate for further characterization. The samples
are amorphous, as supported by X-ray powder data, and showed no DSC signal up to decomposition,
above 350 ◦C. TGA analysis provided zinc content in the materials in good agreement with the
calculated values.

The role of zinc (II) ions in the construction of PL structures previously attracted our
attention [66–68]. The use of a closed-shell d10 metal ion is usually a cause for increasing rigidity of
the molecular structure with a decreased probability of non-radiative decay of the excited states. This
phenomenon was expected to enhance the fluorescence of the ligands. On the other hand, regarding the
networks, it was demonstrated that for a high concentration of cross-linker, the fluorescence intensity of
polymer decreases [69]. Not unexpectedly, compared to the polymers, our thick crosslinked networks
have weaker fluorescence due to the aggregation of polymer chains, which causes a strictly interacting
of the PL active moieties. In conclusion, the homopolymers, containing more emissive groups respect
to the copolymers, have higher PLQYs. The networks benefit from the formation of a rigid system after
zinc binding, but suffer from the excessive aggregation of the chains. This is the possible explanation
why all networks samples do not exceed 10% PLQYs.

Nevertheless, the better features of the crosslinked systems are their physical and chemical stability,
high cohesion, and adherence to the substrate. The cross-linked films are insoluble in common organic
solvents and not prone to swelling. Dimensional stability and PL response did not change after six
months at 50 ◦C. Properly modulating of cross-linking degree could be the right balance between
structural stability and PL response for actual employ in devices.

Table 2. Optical data of homo- and co-polymers and the derived networks.

Compound λabs.sol (nm) a λem.sol (nm) b PLQY% c λabs.film (nm) d λem.film (nm) e PLQY% f

P1b 321 (365,433) 532 2.00 ± 0.02 466 606 34 ± 2
P2b 326–420 498 1.30 ± 0.02 448 560 20 ± 2

co-P1b 346 (453) 518–616 4.50 ± 0.02 444 596 10 ± 1
co-P2b 348 (429) 511 3.00 ± 0.02 435 551 14 ± 2

Net-P1b - - - 460 555 8.0 ± 1
Net-P2b - - - 435 490 7.0 ± 1

Net-co-P1b - - - 395 597 9.0 ± 1
Net-co-P2b - - - 397 552 10 ± 1

a Wavelength of UV-Visible absorbance maxima in NMP solution, less intense maxima in branch or range;
b wavelength of emission maxima in NMP solution; c wavelength of UV-Visible absorbance maxima on thin film,
less intense maxima in branch; d wavelength of emission maxima on thin film; e wavelength of emission maxima on
thin film; f PL quantum yield on thin film.
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3.4. DFT Analysis

C1b and C2b monomers excitation energies were calculated with the TDDFT approach at the DFT
level. The adiabatic local density approximation was used; it allows to compute reliable predictions
for excitation energies and oscillator strengths. The simulated solvent was ethanol. The monomers
show comparable frontier orbitals (Figure 4, Table 3). HOMO delocalization is placed over the entire
conjugated backbones; for C1b, cyano groups give a small contribution. LUMO is primarily delocalized
over the monomers’ central sections, over C1b cyano groups (that are electron-withdrawing), and
over C2b diazo groups. HOMO→LUMO is the main transition for the two monomers. The most
meaningful optoelectronic properties of the monomers are shown in Table 3. Figure 4 shows the effect
of the cyano group (C1b) on the electronic distribution. HOMO-LUMO gap of C1b is smaller compared
to C2b; there is also a red-shift in the absorption spectrum. The computed fluorescence values are
lower than the experimental values, possibly as a result of an inadequately large basis set. Thanks
to DFT calculations, it is possible to study the first oxidation potential of the compound, allowing to
clarify its electron-donating properties. In a redox reaction, the electron withdrawal is done from the
compound’s HOMO.
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Table 3. Electro-optical properties calculated on C1b and C2b.

Properties C1b C2b

Oxidation Potential (eV) 1.27 1.26
Reduction Potential (eV) −0.92 −1.00

Hole Reorganization Energy (eV) 0.28 0.40
Electron Reorganization Energy (eV) 0.22 0.29

Triplet Energy (eV) 1.49 1.00
λmax (nm) 516 509
Emax (nm) 565 550

Scaled HOMO (eV) −5.55 −5.54
Scaled LUMO (eV) −3.36 −3.28

HOMO-LUMO (eV) 2.18 2.26
Triplet Stabilization Energy (eV) 0.35 1.04
Hole Extraction Potential (eV) 5.92 5.82

Triplet Reorganization Energy (eV) 0.62 2.05
Electron Extraction Potential (eV) −2.08 −2.05
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3.5. Electrochemical Bandgaps of Organic Polymers

The conducting and electronic properties of the polymers are directly related to their bandgap
energy (gap between HOMO and LUMO). Therefore, conjugated polymers showing intrinsic
conductivity or low bandgap are highly required in PL devices. In this work, the energy levels
were calculated as electrochemical bandgap, ∆EEC, [70], and optical gap, ∆Eopt, [71] by using cyclic
voltammetry, CV, and molecular spectroscopy, respectively [72]. The values are reported in Table 4.

Table 4. Energy bandgaps calculated using voltammetric (∆EEC) and optical (∆Eopt) data, compared
to the relative difference with the theoretical C1b and C2b HOMO-LUMO values (∆Eopt − ∆Etheor),
reported in Table 3.

Polymers ∆EEC (eV) ∆Eopt (eV) ∆Eopt − ∆Etheor (eV)

P1b 1.9 2.9 0.7
P2b 1.8 3.0 0.7

coP1b 1.2 2.7 0.5
coP2b 1.4 2.9 0.6

The bandgaps obtained by cyclic voltammetry are in general lower than the optical bandgaps
with a systematic deviation of ca − 1.4 eV. This discrepancy is entirely due to the solvation and the
charge effects because in CV measurements the molecules are in contact with a conductive metal
electrode and dissolved in an electrolytic solution [73]. Then, the C1b and C2b embedment in organic
polymers involve a small increase of the energy gap of ca + 0.7 eV, the materials presenting a desirable
low bandgap [74].

4. Conclusions

We obtained two new symmetrical salen fluorophores containing PV or AB moieties and bulky
terminal substituents. PL performances of the small molecules were investigated in solution, as neat
crystals and as dopants in polymeric matrixes. Red to yellow fluorescence was observed, and 88%
PLQY value measured in the solid state for the brightest emissive 10% doped PVK film. As dopants of a
nematic polymer, a remarkable on-off PL switch ability was detected. The presence of the cyano group
has proved effective in modulating the optoelectronic properties and leaves ample scope for designing
new materials with the desired properties. The PV and AB fluorogenic cores have been covalently
incorporated into organic polymers and zinc crosslinked nets. This allowed the production of high
PLQY polymeric materials. The obtained materials are red to yellow fluorophores in solution and the
solid state, with medium PL performances, and low bandgap measured by CV. The networks, obtained
by in-situ crosslinking approach, display weak fluorescence compared to the polymers although exhibit
large physical and chemical stability.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/9/1379/s1,
Figure S1. 1H NMR spectra of copolymers co-P1b and co-P2b; Figure S2. Polarized optical microscopy observation
of the LC texture of C1b and C2b; Figure S3. DSC thermograms of the copolymers.
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