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Abstract: A simplified radiation-induced emulsion graft polymerization (SREG) method is proposed.
This method involves a convenient and easy degassing process of a monomer solution using a
commercially available sealed glass jar. A loaded weight on the lid of the jar was used to control the
jar’s internal pressure as the degassing of the monomer solution took place using a vacuum pump.
The degassing method was highly reproducible, resulting from no bumping of the monomer solution.
The initial grafting velocity was proportional to the absorbed doses of pre-irradiation between 5 and
20 kGy. This result indicates that dissolved oxygen was sufficiently eliminated from the monomer
solution at such a level where the remaining oxygen had little effect on the grafting reaction at a dose
of 5 kGy. The method was then applied to the fabrication of a heavy metal adsorbent that possessed a
sufficient adsorption capacity of Co(II) ions. The SREG method is applicable to the fabrication of a
wide variety of functional graft polymers because high-dose-rate gamma-ray radiation and expensive
experimental equipment are not necessary.

Keywords: SREG; emulsion graft polymerization; dissolved oxygen; metal adsorbent; glycidyl
methacrylate

1. Introduction

Radiation-induced graft polymerization is used for several industrial-scale biomedical and
environmental materials because radiation grafting changes only the surface of the polymer without
any impact on trunk polymers [1–8]. In general, there are two types of irradiation methods in
graft polymerization: the simultaneous and the pre-irradiation methods [8–11]. In the simultaneous
irradiation method, the polymer substrate is irradiated in the presence of a monomer. This method is
simple and easy for polymer surface modification. However, one drawback is that it generates a large
quantity of ungrafted homopolymers that are inseparable from the grafted polymer. In contrast, the
pre-irradiation method relies on the polymer substrate being activated by irradiation in the absence of
the monomer, and the activated polymer subsequently reacts with the monomer. Although this method
is more complicated and very susceptible to dissolved oxygen in the monomer solution, compared
with the simultaneous irradiation method, very little ungrafted homopolymer is formed, and it is
possible to suppress the undesirable consumption of the monomer (monomer loss). The pre-irradiation
method, therefore, is considered to be the more practically useful method.

We and colleagues previously reported an emulsion graft polymerization procedure using the
pre-irradiation method, in which the monomer was emulsified by the surfactant in an aqueous system
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instead of in an organic solvent [12–18]. The process was remarkable in that it required a lower
radiation dose, a decreased monomer concentration, and a shorter reaction period than the normal graft
polymerization process, which uses organic solvents. Although the densely grafted product cannot
be fabricated by the normal method at low-dose pre-irradiation, the emulsion graft polymerization
method can achieve a sufficient degree of grafting, even when a low total dose irradiation (10 kGy)
is used. The surfactant likely promotes the attack of the monomer molecule to the surface of the
polymer substrate.

At low doses of pre-irradiation, oxygen dissolved in the monomer solution has a relatively
significant effect on the graft polymerization reaction. The radicals generated in the crystalline phase
in trunk polymers by irradiation are relatively stable in the atmosphere. However, when the irradiated
polymer substrate is immersed in the monomer solution, the radicals rapidly react with dissolved
oxygen instead of the monomer molecule. On a laboratory scale, using a gas/vacuum manifold is an
effective way of reducing the amount of oxygen dissolved in solution, although the technique requires
a skilled researcher. On an industrial scale for the mass production of graft polymers, the conventional
graft polymerization method using a gas/vacuum manifold is not practical.

In practical use, the rolled nonwoven fabric is irradiated by gamma-rays at doses above 20 kGy, in
which gamma-rays can penetrate deeply into the internal regions, and then graft polymerization is
carried out under bubbling with nitrogen gas to eliminate the dissolved oxygen [19]. However, the
nitrogen bubbles that adhere to the nonwoven fabrics decrease the surface area of the activated fabric
that is attacked by the monomer molecules and inhibit uniform graft polymerization. This results
in a decrease in both the degree of grafting and reproducibility. Moreover, elimination of oxygen
cannot be accomplished completely by nitrogen bubbling. Without using a gas/vacuum manifold, it is
difficult to reduce dissolved oxygen from the monomer solution below the concentration at which the
graft polymerization is not inhibited. Graft polymerization under atmospheric pressure via bubbling
nitrogen gas through the monomer solution does not work when the pre-irradiation dose is under
10 kGy.

It is also possible to eliminate dissolved oxygen in the monomer solution by using a vacuum pump.
However, on releasing the vacuum, oxygen redissolves into the monomer solution. Furthermore,
bumping of the monomer solution often occurs because it is difficult to control the speed of the pump.
The emulsion graft polymerization method, especially, has the disadvantage of foaming because the
monomer solution contains a surfactant. A careful vacuum degassing method is required to prevent
the monomer solution from overflowing the reaction vessel. The development of a more convenient
and industry-friendly graft polymerization method that proceeds with only low-dose pre-irradiation is
expected to resolve these problems and enhance the value of the technology.

In this paper, we report a simplified radiation-induced emulsion graft polymerization (SREG)
method that involves an easy procedure to sufficiently remove dissolved oxygen from the monomer
solution, as well as its application to the fabrication of a heavy metal adsorbent.

2. Materials and Methods

2.1. Materials

Polyethylene-coated polypropylene (PE/PP) nonwoven fabric, which was kindly supplied by
Kurashiki Textile Manufacturing Co., Ltd. (Osaka, Japan), was used as a trunk polymer for SREG.
The average diameter of the PE/PP fabric was 13 µm. Glycidyl methacrylate (GMA) was purchased
from Tokyo Kasei Chemical Industry Co., Ltd. (Tokyo, Japan). Polyoxyethylene sorbitan monolaurate
(Tween 20) and cobalt(II) chloride were purchased from Kanto Chemical Co., Inc. (Tokyo, Japan). All
the other reagents and solvents were purchased from Wako Pure Chemical (Osaka, Japan). All the
chemicals were used as received without further purification.
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2.2. SREG Method

PE/PP fabrics (size: 3 × 6 cm; average weight: 110 mg) were packed into a gas barrier bag. After
the gas barrier bag was sealed under vacuum, the PE/PP fabrics were irradiated using a gamma-ray
source at −79 ◦C (dry-ice). The total doses were controlled within a range of 5–20 kGy (10 kGy/h). The
irradiated PE/PP fabrics were then stored in a −80 ◦C freezer until use. The monomer emulsion of
5 wt% GMA was prepared by adding GMA to a 0.5 wt% Tween 20 aqueous solution that was then
stirred at room temperature for 5 min. After bubbling with nitrogen to displace dissolved oxygen
in the GMA emulsion, 120 mL of the de-aerated GMA emulsion was poured into a sealed glass jar
(WE-975, Weck, Germany) that contained the irradiated PE/PP fabric. The lid was closed, and a weight
of 400 g was placed on the sealed jar’s lid. Degassing of the monomer solution (GMA emulsion) was
carried out in a vacuum desiccator using an oil rotary vacuum pump (GLD-136C, ULVAC, Kanagawa,
Japan) for 15 min. The pressure in the vacuum desiccator was monitored using a Pirani vacuum gauge
(GP-1G/WP-01, ULVAC, Kanagawa, Japan) with a range of 0.4–2700 Pa. The grafting reaction was
carried out by keeping the sealed glass jar in a 40 ◦C water bath. The reaction times were varied
between 1 and 3 h. Residual monomers and homopolymers were removed by washing the resulting
GMA-grafted PE/PP (PE/PP-g-GMA) fabrics with water and methanol. The amount of GMA grafted
onto the PE/PP fabrics was expressed as the degree of grafting (Dg (%)), and Dg was calculated using
the following equation:

Degree of grafting : Dg (%) =
(W1 −W0)

W0
× 100 (1)

where W0 and W1 are the dry weights of the PE/PP fabrics before and after grafting, respectively.
To confirm the GMA graft chain, thermogravimetric analysis (TGA) was performed using a

TG-DTA6200 instrument (Seiko Instruments Inc., Chiba, Japan) at a heating rate of 10 ◦C/min under
nitrogen flow (50 mL/min).

2.3. Introduction of Iminodiacetic Groups onto PE/PP-g-GMA Fabrics

To introduce the groups onto PE/PP-g-GMA, the PE/PP-g-GMA fabrics were treated with 0.5 M
disodium iminodiacetate (IDA) in a 1:1 v/v ethanol/water solution at 70 ◦C for 24 h [20]. The resulting
IDA-GMA-grafted PE/PP (PE/PP-g-GMA-IDA) fabric was washed with water and methanol to remove
unreacted disodium iminodiacetate. The IDA group density of the fibrous metal adsorbent and the
extent of the epoxy group conversion into IDA were defined as follows [21]:

IDA group density (mmol− IDA group/g− adsorbent) =
(W2 −W1)

177×W2
× 1000 (2)

Conversion (%) =
(W2 −W1) × 142
(W1 −W0) × 177

× 100 (3)

where W2 is the weight of the PE/PP-g-GMA-IDA fabric.
To confirm the identity of the reaction products, the PE/PP, PE/PP-g-GMA, and PE/PP-g-GMA-IDA

fabrics were characterized using Fourier transform infrared attenuated total reflectance (FTIR-ATR)
spectroscopy (spectrophotometer, Perkin-Elmer Frontier, Perkin-Elmer, Yokohama, Japan) in the range
4000–500 cm−1.

2.4. Heavy Metal Adsorption Test

Cobalt (Co) ions were used as a model for harmful heavy metal ions. The cobalt adsorption
ability of the PE/PP-g-GMA-IDA fabric was evaluated through a batch adsorption test. In the batch
test, a 1-cm diameter of PE/PP-g-GMA-IDA fabric (20 mg) was prepared by punching, and the fabric
was dipped in 10 mL of 50 ppm cobalt solution (CoCl2, pH = 5.8) for 6 h at 25 ◦C. Solutions (50 µL)
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were sampled at 5, 15, 30, 45, 60, 90, 120, 180, 240, and 360 min. The sampling solutions were diluted
30-fold with 0.1 M HNO3 solution. The concentration of Co ion in the filtered sampling solutions was
measured using inductively coupled plasma optical emission spectrometry (ICP-OES; Optima 8300,
Perkin-Elmer Japan, Yokohama, Japan).

3. Results and Discussion

3.1. Application of the SREG Method to GMA Emulsion Graft Polymerization

To solve the problem concerning the dissolved oxygen during emulsion graft polymerization as
mentioned in “Introduction,” we introduced a new method, SREG, as shown in Scheme 1. GMA was
chosen as a grafting agent, as it could be easily converted to structures having various functions [21–27].
The process is as follows: (a) The preirradiated PE/PP fabric was set in the commercially available
sealed glass jar, made up of the glass lid, the rubber packing, and the jar itself. At ambient atmosphere,
the de-aerated monomer emulsion was poured into the glass jar with nitrogen bubbling and then
sealed. (b) After the lid was closed, a weight (400 g) was placed on top of the sealed gas jar, and
degassing of the monomer solution was carried out in a vacuum desiccator. Dissolved oxygen in the
monomer solution was then eliminated through the small space between the lid and the jar. (c) On
releasing the desiccator’s vacuum, the loaded weight caused a pressure difference between the internal
and external pressures. This pressure difference automatically maintained the vacuum state in the
sealed gas jar and prevented atmospheric oxygen from re-entering the monomer solution. The loaded
weight was removed from the lid. (d) The sealed glass jar was then held at a constant temperature in a
water bath, and the graft reaction proceeded without oxygen.
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Scheme 1. Schematic image of a simplified radiation-induced emulsion graft polymerization (SREG).
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The main role of the weight was to control the pressure in the sealed glass jar. If the atmospheric
pressure in the jar suddenly decreased below the vapor pressure of the solution, bumping will occur.
The weight allowed the pressure inside the jar to remain near the vapor pressure of the solvent, thus
preventing bumping while allowing dissolved oxygen to be eliminated. Furthermore, evaporation of
the solvent was negligible during vacuum degassing because evaporation of the solvent caused a drop
in temperature, which in turn caused the vapor pressure to decrease. The vapor pressure of water was
1706, 2333, and 3173 Pa, at 15, 20, and 25 ◦C, respectively, and the pressure in the vacuum desiccator
dropped to 200 Pa using the vacuum pump (Figure 1).
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Figure 1. Relationship between pressure in the vacuum desiccator and vacuum degassing time. The
sealed glass jar contained monomer solution (#) or did not contain monomer solution (�). Error bars
indicate standard deviation.

Considering these facts, the 400 g weight (the total weight, including the lid, was 445 g, area
28.3 cm2), corresponding to 1540 Pa, was chosen. When the pressure in the desiccator reached 2700 Pa,
degassing in the monomer solution visibly started. Vigorous degassing was observed at 2000 Pa, and
the pressure in the sealed glass jar was estimated to be around 3540 Pa, which is the sum of the pressure
of the loaded weight (1540 Pa) and the pressure in the desiccator (2000 Pa). This value is reasonable
considering that degassing effectively occurs at just above the vapor pressure of water. After the
initial vigorous degassing, the speed slowed down, and discernible degassing was no longer observed;
however, the process was allowed to continue for a further 15 min to ensure that as much dissolved
oxygen as possible was removed. The degassing process was highly reproducible, and bumping of the
monomer solution containing the surfactant (Tween 20) did not occur, even though the pressure of
the vacuum pump was not regulated. Figure 2 shows the period of vacuum degassing necessary for
the graft reaction (Reaction time: 3 h). Before degassing (1.5 min), the graft reaction hardly occurred.
Degassing using a vacuum for 15 min was enough for the subsequent graft reaction.

The radiation-induced graft polymerization of a GMA monomer onto PE/PP fabrics using the
SREG method was confirmed using not only gravimetric analysis but also thermogravimetric analysis
(TGA) (Figure 3). As expected from the previous study [28], PE/PP-g-GMA fabric showed a fairly
low decomposition initiation temperature (190 ◦C) compared with PE/PP fabric. This result indicates
the introduction of GMA graft chains. The degree of grafting (Dg = 102%) calculated using the TGA
shows quite good agreement with that using the gravimetric analysis (Dg = 106%). Accordingly,
the SREG method could proceed like the conventional graft polymerization method by using a
gas/vacuum manifold.
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Figure 3. TGA curves for the PE/PP and PE/PP-g-GMA fabric under nitrogen.

Graft polymerizations of GMA monomers to PE/PP fabrics, irradiated at a dose range of 5–20 kGy,
were carried out using the SREG method while varying the time of the graft reaction (Figure 4). Even
at a dose as low as 5 kGy, the graft reaction proceeded and the degree of grafting obtained had
very high reproducibility. Because the total amount of generated radicals was proportional to the
adsorbed dose at the same irradiation condition, the initial velocity of grafting should be proportional
to the dose of preirradiation. However, under 20 kGy, this was often not true using the conventional
graft polymerization method via degassing using a gas/vacuum manifold. It is known that very low
dissolved oxygen (<0.5 mg/L) inhibits the graft reaction under 20 kGy [29]. This indicates that the
elimination of dissolved oxygen was not sufficient or oxygen had redissolved into the system. Using
the SREG method, the initial velocity of the degree of grafting was 4.2, 2.0, and 1.1%/min at 20, 10, and
5 kGy, respectively. This result indicates that oxygen was sufficiently eliminated from the monomer
solution such that the remaining oxygen had little effect on the graft reaction, even at 5 kGy. It is
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surprising that this easy method produced the initial velocity of grafting that was ideally proportional
to the dose of radiation.
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To accelerate development of graft material, a high-throughput screening method was required. It
is difficult to obtain a large number of accurate and reproducible data points using the conventional graft
polymerization method with a gas/vacuum manifold because of the complicated process. However,
using the SREG method, it is easy to deal with a number of samples at the same time and at a small
scale. Thus, this method is well suited to be a high-throughput screening for the graft reaction, which
needs to include a simple and easy degassing process for the monomer solution. The SREG method
can also be applied to other graft polymerizations by changing the loading weight to correspond to the
vapor pressure of the reaction solvent.

3.2. Fabrication of Heavy Metal Adsorbent Using the SREG Method

Contamination of water by heavy metals is a serious threat to human health and the health of the
environment, and heavy metal adsorbents having a high enough quantity of a chelate structure on
the surface are, therefore, in great demand. In heavy metal adsorbents, the capacity of the adsorbent
increases with an increase in the degree of grafting; however, the adsorbents become less flexible.
Especially, over a 200% grafting degree, the adsorbents become brittle [30]. In other words, the
adsorbent capacity is inversely correlated with the mechanical strength of the adsorbent. Therefore,
the grafting degree of a heavy metal adsorbent has to be controlled to be over 50% and under 200%
of the grating degree. The SREG method satisfies the grafting degree due to the easier irradiation at
low absorbed doses that is expected to be applicable to the fabrication of heavy metal adsorbents. Its
viability in synthesizing an appropriate heavy metal adsorbent was examined.

After gamma-ray irradiation of the PE/PP fabric at a dose of 5 kGy, GMA was grafted onto the
PE/PP fabric to produce PE/PP-g-GMA fabric using the SREG method (Dg = 72%). After the graft
polymerization, the epoxy group of the GMA graft side-chain of the PE/PP fabric was converted to an
IDA group to form PE/PP-g-GMA-IDA fabric. The IDA functional group is known to remove various
kinds of heavy metals including Co(II) from wastewaters, and have been widely used as a commercial
adsorbent [30–39]. To confirm the chemical changes produced by these successive reactions, the
FTIR-ATR spectra of these fabrics were measured (Figure 5). After the GMA graft polymerization,
an additional stretch at 1720 cm−1 was observed and assigned to the C=O stretching vibration of
the ester in GMA [25]. The conversion reaction of epoxides to IDA gave characteristic bands in the
1570–1650 cm−1 region, which were attributed to the carboxylate salts of IDA [40]. These spectra
indicated that the IDA group was successfully introduced onto the surface of the PE/PP fabric. The IDA
group density and conversion were 1.6 mmol/g and 74%, respectively. In previous studies, the IDA
group density of the adsorbent was mainly between 0.7 and 3.2 mmol/g, depending on the grafting
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degree and conversion [30,41–43]. The SREG method at low absorbed doses was expected to be useful
to fabricate heavy metal adsorbent.
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Figure 5. FTIR-ATR spectra of the PE/PP, PE/PP-g-GMA, and PE/PP-g-GMA-IDA fabrics.

The adsorption ability of the PE/PP-g-GMA-IDA fabric was evaluated using the batch adsorption
test. The Co(II) ion was chosen as a model of a harmful heavy metal ion. Once Co(II) was adsorbed
by the PE/PP-g-GMA-IDA fabric, the remaining concentration of Co(II) ion was determined using
ICP-OES (Figure 6). The initial concentration of the Co(II) ion was 50 ppm, and the color of the
solution was light pink. Over time, the color of the light pink solution became gradually lighter,
and the Co(II) concentration reached the limit of detection within 6 h. This result indicates that the
PE/PP-g-GMA-IDA fabric had enough adsorption ability to essentially remove Co(II) from a highly
concentrated Co(II) solution.
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Figure 6. Co concentration (50 ppm) decay in water during the adsorption of Co(II) on PE/PP-g-
GMA-IDA fabric.

Using the SREG method, (i) a facility capable of generating high-dose-rate gamma-ray radiation
or (ii) expensive experimental equipment are not necessary to fabricate metal adsorbent materials.
Recently, several studies about the grafting of functional molecules on natural fibers have been
reported, especially in developing countries [44–49]. The natural fibers need low radiation doses
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because degradation of the cellulose, the main component of natural fibers, can remain limited in this
range of radiation dose. The SREG method at a low dose is expected to be useful in the developing
countries, which do not have high-dose-rate gamma-ray radiation or expensive experimental equipment.
Moreover, scaling up the process is easy, and the method is expected to be successfully applied to the
mass production of graft polymers.

4. Conclusions

The SREG method was developed using a commercially available sealed glass jar instead of
expensive experimental equipment. Enough oxygen was removed from the monomer solution without
bumping such that even at a low dose (5 kGy), the grafting reaction proceeded as expected. Compared
with conventional graft polymerization methods that require a gas/vacuum manifold, the SREG
method is very simple and provides highly reproducible data that can be used for high-throughput
screening of the grafting reaction. The method was used to fabricate a heavy metal adsorbent, the
PE/PP-g-GMA-IDA fabric, which demonstrated its ability to adsorb highly concentrated Co(II) ions
down to the limit of detection using ICP-OES. Several samples can be produced using this method,
and the reaction scale can be adjusted as necessary owing to the simple mechanism and procedure.
Thus, the method will be valuable not only for the fabrication of functional materials produced using
graft polymerization on an industrial scale, but also in high-throughput screening research of the
graft reaction.
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