
polymers

Review

A Review on Porous Polymeric Membrane
Preparation. Part II: Production Techniques with
Polyethylene, Polydimethylsiloxane, Polypropylene,
Polyimide, and Polytetrafluoroethylene

XueMei Tan 1,2,* and Denis Rodrigue 2,*
1 College of Environment and Resources, Chongqing Technology and Business University, No.19, Xuefu Ave,

Nan’an District, Chongqing 400067, China
2 Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec,

QC G1V 0A6, Canada
* Correspondances: xuemei.tan.1@ulaval.ca (X.M.T.); Denis.Rodrigue@gch.ulaval.ca (D.R.);

Tel./Fax: +86-23-6276-9785 (X.M.T.); Tel.: +1-(418)-656-2903 (D.R.); Fax: +1-(418)-656-5993 (D.R.)

Received: 1 July 2019; Accepted: 31 July 2019; Published: 5 August 2019
����������
�������

Abstract: The development of porous polymeric membranes is an important area of application
in separation technology. This article summarizes the development of porous polymers from the
perspectives of materials and methods for membrane production. Polymers such as polyethylene,
polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene are reviewed due
to their outstanding thermal stability, chemical resistance, mechanical strength, and low cost. Six
different methods for membrane fabrication are critically reviewed, including thermally induced
phase separation, melt-spinning and cold-stretching, phase separation micromolding, imprinting/soft
molding, manual punching, and three-dimensional printing. Each method is described in details
related to the strategy used to produce the porous polymeric membranes with a specific morphology
and separation performances. The key factors associated with each method are presented, including
solvent/non-solvent system type and composition, polymer solution composition and concentration,
processing parameters, and ambient conditions. Current challenges are also described, leading to
future development and innovation to improve these membranes in terms of materials, fabrication
equipment, and possible modifications.

Keywords: porous polymeric membranes; polyethylene; polydimethylsiloxane; polypropylene;
polyimide; polytetrafluoroethylene; processing; morphology; separation performance

1. Introduction

In the field of membrane technology, a successful membrane is a barrier to selectively transport
substances of interest. Since the core concept of an excellent membrane performance lies in its final
morphology, the selection of materials and fabrication techniques have a significant effect on membrane
morphology. Thus, the optimization of membrane performances must go through precise control of
the interactions between morphology, materials, and fabrication technology [1–3].

With respect to materials, porous polymeric membranes have been widely applied for industrial
processes due to a combination of specific properties such as permeability, selectivity, fouling
resistance, chemical and thermal stability, low cost, and easy manufacturing. To date, the most
popular membranes for separation processes include polyethylene (PE), polysulfone (PSU), poly
(vinylidene fluoride) (PVDF), polydimethylsiloxane (PDMS), polypropylene (PP), polyimide (PI), and
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polytetrafluoroethylene (PTFE) membranes. For specific materials, the membrane morphology can be
tailored by the precise control of the fabrication methods and processing conditions.

For their production, porous polymeric membranes can be made by several methods. Usual
approaches include phase inversion, melt-spinning and cold-stretching (MSCS), electro-spinning, track
etching, and sintering, while novel technologies include phase separation micromolding (PSµM),
imprinting/soft molding, manual punching, and three-dimensional (3D) printing. Each method
has its own advantages, limitations, and different pore formation mechanisms to produce porous
polymeric membranes. Table 1 provides a comprehensive overview of the techniques used for
membrane fabrication.

Table 1. Various preparation methods for porous polymeric membranes.

Method Pore Formation
Mechanism Advantages Disadvantages Refs.

TIPS

The sites occupied by
the diluent become

micropores after their
removal.

1. Suitable for various polymers,
especially for semi-crystalline
polymers that cannot be easily

dissolved by solvents.
2. Membranes are inherently

reproducible and less prone to
defects than other phase

inversion methods.

1. Low mutual affinity
between the solvent and the
non-solvent, resulting in the

surface pore hardly being
tuned.

2. Expensive and the organic
solvents used are usually not

environmentally friendly.

[4–9]

NIPS
Resulting from

liquid–liquid phase
demixing.

NIPS can effectively control the
pore size and other surface

characteristics of the membranes
with the help of additives.

Difficult to precisely control
the phase inversion process. [10–15]

VIPS

Resulting from the
transfer at the interface,

non-solvent (gas)
inflow and solvent

outflow.

VIPS enables modifying and
tailoring both flat-sheet and

hollow-fiber polymer membrane
morphologies.

The development of
commercial polymer

membranes still remains
limited.

[10,16–19]

MSCS

Resulting from
mechanical forces

acting on the
membranes in a

subsequent
cold-stretching step.

1. Simple and economical
process, suitable for large scale

fabrication.
2. No solvent, diluents, or

additives in process.
3. Extremely high mechanical

strength.

Highly oriented membrane
structure results in low tear
resistance in the transverse

direction.

[20–22]

Electro-spinning
Resulting from the
evaporation of the

diluent.

Directly produce
superhydrophobic polymer

membranes and highly porous
structures of smooth non-woven

nanofibers, it is simple,
inexpensive, and high

productivity.

Limited production capacity
and low reproducibility. [10,23–26]

Track etching

Irradiation produces
tracks in the foils and

pore formation via
chemical etching.

The membrane pore size, shape,
and density can be precisely
determined in a controllable

manner.

Limited for some particular
uses and large-scale

applications. It is also highly
cost extensive.

[10,27–29]

Sintering

Resulting from the
sintering

transformation driven
by high temperatures.

Widely used in the commercial
production of inorganic

membranes and some polymer
membranes.

Sintering is costly,
processing has materials

limitation, material
synthesis, and phase

stability.

[10,30,31]

PSµM
Resulting from the

polymer phase
separation.

The method can fabricate a
structure in the sub-micrometer
range and can prepare a surface

with two-tier hierarchical
structures featuring a

super-hydrophobic property.

Limited
processing/production

capacity.
[32–34]
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Table 1. Cont.

Method Pore Formation
Mechanism Advantages Disadvantages Refs.

Imprinting/soft
molding

Resulting from the
molding with an

appropriate pressure.

The method can produce
uniform porous membranes
with a desired through-hole

pattern.

The method is not suitable
for fabricating polymeric

nano-membranes over large
areas.

[35,36]

Manual
punching

Resulting from the
combination of

backside diffused-light
photolithography and

needle punching.

The method can fabricate
polymeric nano-membranes
with uniform relief features.

The method is merely
suitable for low yield

patterning through-hole
membranes over small

footprints.

[37]

3D printing
technique

Resulting from
printing an

acrylate-based
sacrificial negative

mold and using it as a
template.

Possible to create almost any
geometrically complex shape or
feature in a range of materials

across different scales.

1. The technique is currently
in its infancy, thus limited

resolution and printing
materials are available,

2. The technique has high
cost.

[38,39]

TIPS = thermally induced phase separation, NIPS = non-solvent induced phase separation, VIPS = vapor-induced
phase separation, MSCS = melt-spinning combined with cold-stretching, PSµM = phase separation micromolding.

Over the past half century, significant knowledge has been generated regarding membrane
technology. However, to the best of our knowledge, the majority of the literature focused on a specific
preparation method or a given material. As a result, understanding the relationships between the
membrane morphology and the fabrication parameters is very difficult. Thus, the main objective
of this review paper is to summarize the existing and the potential principles to select appropriate
methods and membrane fabrication systems to produce membranes with a desired morphology,
performance, and stability, as well as to select the best method(s) to obtain these properties in an
efficient way for future research. In the first part of this work, PSU and PVDF membranes produced by
non-solvent induced phase separation (NIPS), vapor-induced phase separation (VIPS), electrospinning,
track etching, and sintering [10]. In this second part, other methods for porous membrane fabrication
are presented, and a focus on two other polymers is made: PE and PDMS. Nevertheless, polymers
such as PP, PI, and PTFE are also introduced.

The main contribution of this article is to emphasize the methods and the processing conditions to
achieve desired morphology, performance, and stability. The paper is organized as follows. Section 2
describes the membrane characterizations, including morphological and separation performances.
Section 3 presents PE membranes, while Section 4 describes PDMS membranes. Section 5 presents
an overview on PP, PI, and PTFE membranes. Each polymer is described in detail with respect to
its key manufacturing parameters, providing the relationships between processing (methods and
conditions) and morphology control. Finally, Section 6 presents some concluding remarks and insights
for future studies.

2. Morphological and Performance Characterization of Membranes

2.1. Morphological Characterization

In general, the most important morphological parameters for a membrane are porosity, pore
size, pore size distribution, tortuosity, surface roughness, molecular weight cutoff, and thickness. For
example, the pore size plays a critical role in the membrane classification [40–42]: microfiltration
(50–500 nm) [42,43], ultra-filtration (2–50 nm) [42,43], nano-filtration (≤2 nm) [42,43], reverse osmosis
(0.3–0.6 nm) [42,44], and forward osmosis (0.3–0.6 nm) [42,44]. Furthermore, the membrane
performances directly depend on its morphology (pore size and distribution), thus morphology
control is the key factor in membrane fabrication.



Polymers 2019, 11, 1310 4 of 35

2.2. Performance Characterization

Generally, the membrane performances can be evaluated by their productivity (rate) and separation
ability (selectivity). Parameters such as flux (J), permeability (P), and permeance (P’) play essential
roles in the evaluation of the membrane productivity, while efficiency (separation performance) is
determined by the selectivity (α) and the separation (β) factors [45,46]. However, when polarization
effects are present, the observed retention coefficient (Robs) and the true retention coefficient (R) must
be measured [47,48]. More details on membrane performance and characterization can be found in the
first part of this work [10].

3. PE Membranes

Microporous PE membranes have stable chemical properties, good mechanical strength,
appropriate permeability, rejection properties, and low cost. As one of the most commonly used
microporous membranes, PE is widely used in sterile filtration for food processing, pre-filters for
the production of drinking water, advanced sewage treatment, and separators for rechargeable
batteries [49–54].

3.1. Properties of PE Membranes

In general, PE is composed of a –C2H4–repeating unit (Figure 1). The polymer is an odorless
and non-toxic semi-crystalline polymer with good acid and alkali corrosion resistance, low water
absorption, and excellent electrical insulation. However, PE has a relatively low melting point (around
120 ◦C) and low temperature resistance [continuous service temperature (CST)] of 60–80 ◦C for low
density (LDPE) and 80–100 ◦C for high density (HDPE). Based on these properties, the two main
methods to prepare PE microporous membranes are thermally induced phase separation (TIPS) and
MSCS [20].
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Figure 1. The structure of polyethylene (PE) (CAS number 9002-88-4).

3.2. TIPS

As the main method to produce microporous PE membranes, TIPS is distinguished from other
methods because the membrane microstructure can be more easily controlled [52,55–62]. For example,
compared to NIPS, the homogeneous solution from which the membrane is formed is converted into a
two-phase mixture via thermal energy removal, which is faster than by non-solvent exchange from the
solvent, as described later [5].

3.2.1. TIPS Processing

The general procedure for TIPS is as follows. Firstly, to form a homogeneous mixture, a certain
amount of a high-melting point polymer and a low molecular weight diluent (liquid or solid) mixture
is placed between a pair of stainless steel plates. A Teflon film with a square opening in the center
is inserted between them to adjust the membrane thickness, as shown in Figure 2. The sample is
melted by heating at elevated temperature with pressure. It should be pointed out that during this
step, the initial temperature (T1) must be lower than the boiling point of the diluent and is typically
25–100 ◦C higher than the melting temperature (Tm) or the glass transition temperature (TG) of the
neat polymer. Secondly, a homogeneous mixture is formed into the desired shape, which is usually
a flat sheet, tube, or hollow fiber. Thirdly, a phase separation is induced by cooling at a controlled
rate (thermal quenching). Then, the diluent is typically removed by solvent extraction. Finally, a
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micro-porous structure is produced by removing the extractant (typically by evaporation) [4]. The key
point of the technology is to induce a phase separation in the membrane fabrication by removing the
thermal energy of a homogeneous dope solution. Hence, the TIPS process is a balance between phase
inversion path, polymer-solvent thermodynamics (interaction), cooling kinetics, extractant selection,
and drying condition.Polymers 2019, 11, x FOR PEER REVIEW 5 of 35 
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3.2.2. Effect of TIPS Conditions on the Membrane Morphology

The TIPS process for membrane formation can be represented in terms of a temperature–
composition phase diagram. As shown in Figure 3 [63,64], the membranes produced via TIPS
often follow two different paths: a solid–liquid (S–L) or liquid–liquid (L–L) separation with subsequent
crystallization [65]. Several investigations showed that the phase separation mechanism significantly
alters the resulting membrane structure [4,5,65,66]. At the same time, the membrane performance
strongly depends on the membrane pore size and porosity. As a consequence, a good control of the
microporous structure is of the utmost importance in membrane fabrication [52].
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Usually, when the polymer concentration is above the monotectic point (typically >30%), the dope
solution goes through the crystallization temperature boundary then directly enters the solid–liquid
(S–L) separation region. Conversely, the phase separation proceeds via liquid–liquid separation with
subsequent crystallization at relatively lower polymer fractions. Note that if the initial polymer
content in the casting solution is lower than the critical point, a continuous solvent-rich phase and a
discontinuous polymer-rich phase could be formed. As a result, the final products are powders instead
of a solid membrane. If a suitable polymer concentration is selected, the separation path plays a critical
role on the membrane morphology [63].

Solid–liquid phase separations (S–L or L–S) are usually initiated by the formation of crystal nuclei
via primary heterogeneous nucleation following stable nuclei growth through secondary nucleation.
During the crystallization process, the amorphous polymer and the diluent are rejected by the growing
crystals [5,67,68]. The microporous structures are then produced by removing the diluent between the
lamellae or the spherulites. As discussed above, the driving force is the different polymer chemical
potential in the crystalline and the solution phases [65], but crystallization thermodynamics and
kinetics also play important roles for this phase separation to occur.

Liquid–liquid phase separation (L–L) is induced by the thermodynamic instability of the
polymer–diluent system. The homogeneous polymer–diluent mixture is produced at a relatively high
temperature and then undergoes an upper critical solution temperature (UCST)-type phase behavior
by cooling the system entering an unstable region. The microstructure can be developed at the early
stage of phase separation, and then the two-phase system enters the coarsening process. The kinetics
continue to evolve in response to a tendency to reduce the surface energy associated with the interfacial
area. This results in a reduction of the number of diluent droplets combined with an increase in droplet
size [66,69–74]. The growth of diluent droplets finally stops when the polymer solution is solidified
by further cooling under the crystallization temperature [66]. This means that, for semi-crystalline
polymers, liquid–liquid phase separation is related to polymer crystallization, either simultaneously
or subsequently [65]. Two important factors have mainly been considered to determine the relation
between the final diluent droplets sizes and the membrane porosity: the phase separation temperature
and the coarsening mechanism.

As mentioned above, different separation mechanisms are associated with the porous structure
formation. When a specific route is selected, the final membrane pore size and pore structure strongly
depend on the cooling conditions; rapid cooling provides several nuclei and leaves shorter time for
crystal growth, while slow cooling provides longer times for crystal growth, resulting in membranes
prepared via the L–L separation, which usually exhibit a porous, cellular-like and/or bicontinuous
structure. Conversely, membranes formed via S–L separation show fuzzy spherulitic (sphere-like)
structures. The parameters affecting the final membrane morphology are summarized in Table 2.

Table 2. Effect of TIPS conditions on the membrane morphology.

Separation Route Cooling Conditions Description of Membrane Morphology Refs.

S–L
rapid cooling Yield small spherulites with small pore

sizes and high mechanical strength. [63,75–78]

slow cooling Yield larger fuzzy spherulitic structures.

L–L with subsequent
crystallization

long time period in the
L–L region Yield larger pores with a cellular structure. [79]

short time period in the
L–L region

Yield smaller pores with a porous
cellular-like and/or bicontinuous structures. [75,79]
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3.2.3. Effect of the Polymer–Diluent Thermodynamics on the Membrane Morphology

For a semi-crystalline polymer–diluent system, miscibility is the main factor to determine whether
a solid–liquid or liquid–liquid phase separation occurs. Miscibility can be quantified by the interaction
parameter (χ) [4]. As shown in Figure 4a, the interactions between the blends are favorable when
χ is negative and minimum. When cooled, the semi-crystalline polymer–diluent system has no
liquid–liquid phase separation and only undergoes a solid–liquid phase separation throughout most
of the composition range [65]. Figure 4b shows an unstable region below the melting point depression
curve, where the interactions are less favorable (χ increasing). The blend becomes unstable, and both
crystallization and liquid–liquid phase separation can take place [4,5,65,80]. According to Figure 4c,
when the interactions are weak (highχ), a liquid–liquid phase separation may precede the crystallization
of semi-crystalline polymers [65,81,82]. In this case, the possibility of phase separation is determined
by the initial polymer concentration and the relative crystallization kinetics. Figure 4d presents a
case where χ is always positive, and the amorphous phase can only occur via liquid–liquid phase
separation [65,83–85]. This means that the phase separation process can be successfully controlled
by systematically varying χ for the semi-crystalline polymer–diluent mixture. According to the
Flory–Huggins lattice theory, the following relation is available [8]:

χ =
1
2

+ Ψ θ/(T − 1) (1)

where Ψ is the entropy parameter, and θ is the theta temperature of the polymer solution. By changing
the interaction parameter χ (variation of Ψ and θ separately), it is clearly observed in Figure 5 that the
reduction of the L–L phase separation temperature curve is more significant than that of the melting
point [8]. This may provide a situation where the L–L phase separation can occur below the L–S
boundary. It is important to note that the position of the polymer–diluent mixture phase boundary is
the most important factor controlling the droplet size of TIPS membranes [59].
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In general, by changing the polymer–diluent composition, various interaction parameter χ can be
obtained. Three methods are generally used:

• by varying the diluent types,
• by varying the components molecular weights,
• by varying the polymer concentrations.

However, for PE membranes, limitations exist for the different diluents that can be used, since only
a few diluents’ molecular weight and melting points are close to PE. This results in only a few diluents
being available to prepare PE membranes. The most common ones are phthalates, esters, mineral oils,
normal paraffins, or isoparaffins [52,55,58]. Nevertheless, introducing a third component in the solution
can change the position of the binodal line, resulting in a wide range of membrane morphology. Hence,
several researchers used solvent mixtures to obtain tailor-made membrane structure and performance.
However, most of these diluents are toxic (especially phthalates and esters), further limiting the range
of possible options. An interesting trend for TIPS is that potential green and sustainable solvents are
gaining interest to meet the increasingly stringent government regulations [86,87].

Components molecular weight is also a narrow range to choose from. For example, PE can be
classified into four main classes: linear low density polyethylene (LLDPE), low density polyethylene
(LDPE), high density polyethylene (HDPE), and ultra-high molecular weight polyethylene (UHMWPE).
Thus, for each molecular weight range, matching diluents are required.

Table 3 summarizes the recent works related to the effect of polymer–diluent composition on the
PE membrane morphology. It can be seen that, although the range of choice is narrower by varying
the diluent types or varying the components molecular weight, the morphology of PE membranes
is effectively controlled because the membrane fabrication process is determined by the interaction
parameter χ.



Polymers 2019, 11, 1310 9 of 35

Table 3. Recent investigations on the effect of polymer–diluent composition on PE membrane morphology.

PE Diluent Extractant Membrane Morphology Controlled Parameters Ref.

HDPE DOP/isoparaffin Pore size
PE/DOP: 0.17 µm

Diluent mixing ratio. [88]PE/isoparaffin: 0.07 µm
PE/(DOP/isoparaffin): 0.07–0.5 µm

HDPE paraffin/PTMG acetone
Pore size 0.2–12 µm Paraffin/PTMG mixing ratio and molecular

weight of PTMG. [59]
Porosity 34–57%

PE mineral oil Trichloroethylene Porosity 5.9–53%
Pore dimensions increased by decreasing

the surface tension and boiling point of the
extractant.

[89]

PE LP ethanol
Pore sizes 3–5 µm Pore size and porosity increased with higher

quenching temperature and longer
annealing time.

[57]Porosity 50–60%
Thickness 100 µm

HDPE 1. DIDP
2. LP

ethanol/DIDP,
hexane/LP

Structure Asymmetric; hollow fiber Pore size controlled by diluent type,
increasing with higher molecular weight,
shorter air gap distance and higher bath

temperature.

[6]
Thickness 160 µm

Pore size
HDPE25/DIDP: 0.35–0.40 µm

HDPE13/DIDP: 0.23 µm
HDPE25/LP: -

1. Pyrene
2. HMB

methanol for pyrene,
acetone for HMB

Structure
LLDPE/pyrene: locally aligned layers Microporous structure can be controlled by

the type of the crystallizable diluents as well
as the composition of the mixtures.

[90]LLDPE/HMB: plate-like

Pore size LLDPE/HMB > LLDPE/pyrene

LDPE Palm oil hexane
Pore size 0.8–2.3 µm Increasing the polymer content decreases

the pore size and water vapor permeability. [7]
Thickness ≤400 µm

HDPE
1. TEPTEH

2. paraffin oil ethanol

Thickness 300 µm

Diluent composition and its mixing ratio [52]Pore size
PE/TEPTEH: 2.5 µm

PE/PO: 0.3 µm
PE//(TEPTEH/PO): 0.3–2.5 µm

Porosity
PE/TEPTEH: 42.5%

PE/PO: 32%
PE//(TEPTEH/PO): 32–42.5%
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Table 3. Cont.

PE Diluent Extractant Membrane Morphology Controlled Parameters Ref.

HDPE 1. SBO
2. DOP

acetone Pore size
PE/DOP: 0.2 µm Pore size increases with increasing phase

separation temperature and by controlling
the diluent mixture.

[55]PE/SBO: 0.6 µm
PE/SBO/DOP: 1.2 µm

HDPE EVA xylene Structure
PE: EVA (60:40): interpenetrating network Blend composition, final process

temperature, and cooling rate. [91]PE: EVA (50:50): co-continuous
PE: EVA (30:70): domain/matrix

HDPE PP/clay platelets/SEPS

Structure asymmetric and co-continuous
Two melt blending methods and

diluent-mixture.
[92]

Pore size
PP/HDPE: 6.46 µm

PP/HDPE/SEPS: 3.82 µm
PP/HDPE/SEPS/clay: 2.02–2.96 µm

LLDPE OPE/p-xylene Structure
PE: smooth surface Viscosity (increasing OPE led to viscosity

reduction of the blends).
[93]

PE/OPE: fibrous

HDPE PE-b-PEG/DPE ethanol

Thickness 100 µm

Mixing ratio of PE-b-PEG. [9]
Pore size

HDPE/DPE: 1.32 µm
HDPE/DPE/PE-b-PEG (5 wt.%): 2.25 µm

HDPE/DPE/PE-b-PEG (10 wt.%): 2.67 µm
HDPE/DPE/PE-b-PEG (20 wt.%): 3.80 µm

HDPE = high density polyethylene, LDPE = low density polyethylene, LLDPE = linear low density polyethylene, DOP = dioctyl phthalate, PTMG = polytetramethyleneglycol,
DIDP = diisodecyl phthalate, LP = liquid paraffin, HMB = hexamethylbenzene, TEPTEH = triethylolpropanetris (2-ethylhexanoate), SBO = soybean oil, EVA = ethylene vinyl acetate,
PP = polypropylene, SEPS = polystyrene-block-poly(ethylene-ran-propylene)-block-polystyrene, OPE = oxidized polyethylene, PE-b-PEG = polyethylene-block-poly(ethylene glycol),
DPE = di-phenylether.
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The third method is by controlling the polymer concentration, because the blend composition
determines the phase boundaries of the system. The mixture undergoes a liquid–liquid phase separation
with subsequent crystallization of the polymer at low initial polymer concentrations and solid–liquid
phase separation at high initial polymer concentrations [4,65,80]. As shown in Figure 6, liquid–liquid
TIPS occurs prior to crystallization for the range of 10 to 40 wt. %, while at 50 wt. %, the crystallization
occurs prior to the liquid–liquid separation, and spherulites are formed. It can clearly be seen that
different separation processes play a critical role in the membrane morphology. In the 10–40 wt. %
range, spherical pores are well connected, and these structures are suitable for membrane separation
applications. On the other hand, isolated spherical pores are produced at 50 wt. % [66].
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Figure 6. The effect of polymer concentration on the final membrane morphology. (Left) Dynamic
phase diagrams of the polymer–diluent systems. (�) PE-DPE, (N) Iotek7030-DPE and (�) Iotek4200-DPE.
(Right) Micrographs of the resulting PE membranes cross-sections with a cooling rate of 10 ◦C/min,
adapted from [66].

3.2.4. Effect of Phase Separation Kinetics on the Membrane Morphology

An upper critical solution temperature (UCST) is defined as a system undergoing phase separation
as the temperature is lowered. As the temperature is increased, systems undergoing phase separation
are said to have a lower critical solution temperature (LCST) [65]. A focus on TIPS for UCST systems is
made next.

Solid–Liquid Phase Separation

In L–S separation, since the membrane micropores are produced by removing the diluent
expelled from the growing crystal, polymer crystallization kinetics—and in some cases, that of solvent
crystallization—play a major role. It can be shown that the pore size in L–S separation follows
specific trends:

(I) Decreases with increasing quench temperature and cooling rate

Since lower nucleation rate and longer growth period are associated with slower cooling, this
allows more time for PE crystal growth without qualitatively altering the structure. Consequently,
the membrane pores morphology after extraction is directly affected. Comparison of the SEM results
(Figure 7) from the S–L phase separation of a 19 wt. % HDPE in mineral oil solution quenched in water
via controlled cooling from 175 to 30 ◦C shows that the membrane morphology was clearly affected
by the cooling rate. In the quenched sample, the homogeneous mixture is virtually frozen, i.e., the
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spherulites position is fixed, leading to the pores formed by extracting droplets densely distributed with
smaller pore sizes. For slowly cooled samples, the diluent is expelled from the growing spherulites,
then the diluent diffuses to the surface, leading to a local concentration gradient and some lamellae
gradually crystallizing from the polymer–diluent mixture [5].

Polymers 2019, 11, x FOR PEER REVIEW 11 of 35 

 

Solid–Liquid Phase Separation 

In L–S separation, since the membrane micropores are produced by removing the diluent 
expelled from the growing crystal, polymer crystallization kinetics—and in some cases, that of 
solvent crystallization—play a major role. It can be shown that the pore size in L–S separation 
follows specific trends: 

(I) Decreases with increasing quench temperature and cooling rate 

Since lower nucleation rate and longer growth period are associated with slower cooling, this 
allows more time for PE crystal growth without qualitatively altering the structure. Consequently, 
the membrane pores morphology after extraction is directly affected. Comparison of the SEM 
results (Figure 7) from the S–L phase separation of a 19 wt. % HDPE in mineral oil solution 
quenched in water via controlled cooling from 175 to 30 °C shows that the membrane morphology 
was clearly affected by the cooling rate. In the quenched sample, the homogeneous mixture is 
virtually frozen, i.e., the spherulites position is fixed, leading to the pores formed by extracting 
droplets densely distributed with smaller pore sizes. For slowly cooled samples, the diluent is 
expelled from the growing spherulites, then the diluent diffuses to the surface, leading to a local 
concentration gradient and some lamellae gradually crystallizing from the polymer–diluent 
mixture [5]. 

 
Figure 7. Scanning electron micrograph of the membrane structure resulting from the S–L phase 
separation of a 19 wt. % HDPE solution in mineral oil. The diluent was extracted with 
trichloroethylene (TCE) and quenched from 175 to 30 °C in water (left) or cooled from 175 to 30 °C 
at 10 °C/min (right), adapted from [5]. 

(II) Decreases with increasing polymer concentration 

In the highly polymer-rich case, since the initial composition is beyond the eutectic 
composition, the L–S phase separation is triggered by the polymer crystallization. As shown in 
Figure 8, pore sizes decrease with increasing polymer concentration. There are two main reasons for 
this phenomenon. Firstly, a change in the phase separation temperature is consistent with polymer 
concentration change, as reported in Figure 4. The temperature difference between the phase 
separation temperature and the crystallization temperature increases with increasing polymer 
concentration. This results in greater driving force and longer time for crystal growth. Thus, 
spherulite size increases as the polymer concentration increases, as less space is available for the 
exuded dilute droplets. Secondly, the viscosity of the polymer-rich matrix phase increases with the 
polymer concentration. Thus, it is more difficult for the diluent droplets to flow and aggregate. 
After the extraction of the diluent droplets, the membrane has a corresponding pore size 
distribution. 

Figure 7. Scanning electron micrograph of the membrane structure resulting from the S–L phase
separation of a 19 wt. % HDPE solution in mineral oil. The diluent was extracted with trichloroethylene
(TCE) and quenched from 175 to 30 ◦C in water (left) or cooled from 175 to 30 ◦C at 10 ◦C/min (right),
adapted from [5].

(II) Decreases with increasing polymer concentration

In the highly polymer-rich case, since the initial composition is beyond the eutectic composition,
the L–S phase separation is triggered by the polymer crystallization. As shown in Figure 8, pore sizes
decrease with increasing polymer concentration. There are two main reasons for this phenomenon.
Firstly, a change in the phase separation temperature is consistent with polymer concentration change,
as reported in Figure 4. The temperature difference between the phase separation temperature and the
crystallization temperature increases with increasing polymer concentration. This results in greater
driving force and longer time for crystal growth. Thus, spherulite size increases as the polymer
concentration increases, as less space is available for the exuded dilute droplets. Secondly, the viscosity
of the polymer-rich matrix phase increases with the polymer concentration. Thus, it is more difficult for
the diluent droplets to flow and aggregate. After the extraction of the diluent droplets, the membrane
has a corresponding pore size distribution.Polymers 2019, 11, x FOR PEER REVIEW 12 of 35 
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Figure 9 shows that, for some diluents, when their crystallization temperature is higher than
the polymer, diluent crystallization occurs before the polymer. This phenomenon continues until the
eutectic solidification begins. This induces a fixed structure—an integrally skinned porous membrane
produced by extracting the diluent crystals from the solidified samples [90].
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mixtures after extraction. Φ2 represents the volume fraction of LLDPE: (left) LLDPE/pyrene and (right)
LLDPE/hexamethylbenzene (HMB), reprinted (adapted) with permission from [90]. Copyright (2009)
American Chemical Society.

(III) Decreases with the presence of nucleating agents

Due to the extremely high nucleation density, the polymer crystals size is much smaller with the
presence of a nucleating agent (heterogeneous nucleation). This substantially affects the membrane
porosity in terms of higher pore numbers and smaller pore sizes [5,94].

Liquid–Liquid Phase Separation

As shown in Figure 10, the phase diagram of LDPE palm-oil determines the L–L phase separation
prior to polymer crystallization. SEM can provide some information about the type of porous structure
and how the polymer volume fraction affects the pore size, which has a high influence on the membrane
performance, such as water vapor flux [7].

As shown in Figure 11, the PE/(TEPTEH (triethylolpropane tris(2-ethylhexanoate))/PO) mixture
exhibits a UCST type phase separation; the average pore size and the membrane porosity increase with
increasing TEPTEH concentration in the diluent mixture, leading to increased air permeability [52].
Moreover, the pore size increases more when the system is slowly cooled—as opposed to fast
cooling—confirming the influence of cooling kinetics.
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Figure 10. The effect of L–L phase separation kinetics on the LDPE-palm oil membrane morphology.
(Top left) phase diagram, (top right) SEM images of the LDPE membrane cross-section, (bottom left)
average pore diameter of the membrane as a function of the coagulation bath temperature, and (bottom
right) water vapor flux through the membrane as a function of the coagulation bath temperature,
adapted from [7].
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Figure 11. Changes in the membrane morphology and the performance when fabricated from
PE//(TEPTEH/PO) = 30/70 blends as a function of triethylolpropane-tris(2-ethylhexanoate) (TEPTEH)
content in the diluent mixture: (left) average pore diameters and (right) porosity and air permeability,
adapted from [52].
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In L–L separation, microporous structures are produced by removing the diluent droplets with
an extractant. Thus, the membrane morphology is determined by the final diluent droplets’ size. A
summary of the droplet growth process is described in Section 3.2.2. It can be concluded that the
droplet growth rate in liquid–liquid TIPS is dependent on the polymer–diluent interfacial tension,
which is influenced by several parameters as follows [4,6,52,55,56,58,59,66,69–74,83,88,95]:

• increasing with increasing volume fraction of the droplet phase,
• decreasing with increasing viscosity of the polymer-rich matrix phase,
• decreasing with decreasing the temperature difference between the phase separation temperature

and the crystallization temperature,
• decreasing with increasing cooling rate.

3.2.5. Effect of Extractant Selection and Drying Conditions on the Membrane Morphology

As shown in Table 4, 10 extractants were used to remove the diluent in the TIPS process to produce
microporous PE membranes [89]. The membrane dimensions decreased with increasing surface tension
and boiling point, leading to decreasing porosity, pore size, and permeability. Obviously, by varying
the diluent and the extractant in the TIPS process, it is possible to control the membrane morphology
and performance [89].

Table 4. Membrane dimensions using 10 extractants to remove the diluent and produce microporous
PE membranes [89].

Component

Solubility
Parameter
(MPa1/2)

Boiling
Point (K)

Surface
Tension at 298

K (mN/m)

Dimension in
the Extrusion
Direction (cm)

Dimension in the
Perpendicular
Direction (cm)

Thickness
(µm)

Porosity
(%)

Total Dispersive

PE 16.2 16.2 - - - - - -
Trichloroethylene 18.7 11.7 360 28.70 4.44 3.60 210 24.0
p-Xylene 18.1 16.5 411 28.01 4.02 3.00 195 5.9
Toluene 18.3 16.4 383 27.93 4.32 3.20 200 17.0
Tetrahydrofuran 18.5 13.3 339 26.40 4.86 3.40 217.5 40.0
Cyclohexane 16.8 16.4 354 24.65 4.80 3.40 217.5 39.0
2-Butanone 19.3 14.1 353 23.97 5.04 3.52 222.5 40.0
Ethyl acetate 18.2 13.4 350 23.39 5.16 3.52 225 48.0
Heptane 15.3 15.3 371 19.65 4.98 3.52 225 45.0
Hexane 14.9 14.9 342 17.89 5.34 3.68 232.5 50.0
Pentane 14.4 14.4 308 15.49 5.46 3.76 240 53.0

3.3. MSCS

In 1974, a polyolefin microporous flat membrane via melt-spinning coupled with cold stretching
process was firstly reported by the Celanese Corporation. To commercialize the membranes and
increase the water flux [20], changes to the membranes configuration was proposed by the Mitsubishi
Rayon Corporation in 1977 [96]. The MSCS technique to fabricate hollow fiber membranes was
developed, and these microporous membranes gained popularity by being used in several applications
such as blood oxygenators, desalination equipments, biosensors, ultra-pure water purifiers, and
membrane distillators [20,22,96–98].

In the MSCS process, a neat hard-elastic polymer melt is firstly spun. The precursor material must
have specific properties such as high initial elastic modulus and elastic recovery [99]. In a subsequent
cold-stretching step, the material is characterized by a “row nucleated crystalline lamellar” structure
composed of stacked crystalline lamellae aligned parallel to the drawing direction and formed by
elongational stress and then recrystallized [100]. Finally, micropores are produced by the mechanical
force acting on the material and are completed during the cold-stretching step. The mechanism of
micropore formation via MSCS has been reported [101,102]. It was shown that, upon stretching, the
crystalline lamellae separates due to the rows of crystalline lamellae, which are in turn arranged normal
to the drawing direction, and several voids are formed and interconnected. As a result, the micropores
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are formed in the membranes. This means that the effect of external forces is the main origin for the
porous structure formation [20,22].

Compared with TIPS, the MSCS process is more difficult to control the pore size. It also requires
that the precursor materials for preparing the microporous membrane are crystalline polymers such
as PP [20,103–105], PS [106] and PE [97,98,101,107–109]. Furthermore, since PP has more side groups
on its molecular chains, PE is a better choice in view of chemical stability and membranes properties.
However, the use of diluents and extractants in the TIPS process results in waste solvent problems.
Thus, the MSCS process is more environmentally friendly, since MSCS only uses a neat polymer. This
also means that there is no phase separation, and its control is relatively easy [20,22].

3.3.1. Effect of Temperature

In the MSCS process, the annealing temperature is an important factor affecting the micropores
formation process and the pore structure of PE hollow fiber membranes [99]. It is known that the
crystalline structure is reorganized when PE membranes are annealed. The aligned PE crystallinity
is effectively characterized by birefringence (BR) measurements. When recrystallization occurs,
more “perfect” crystalline structures are produced, and the BR increases [99,110]. Some researchers
quantitatively examined the BR variation with respect to the annealing temperature [20,99]. It was
shown that increasing the annealing temperature increased the BR, indicating that the micropores
became more oriented. It was also found that the lamellar thickness further increased at higher
annealing temperature.

As shown in Figure 12, the unique microporous structures showing a slit-like shape in a pocket
fashion are highly affected by the annealing temperatures. Lee et al. [99] suggested that the effect of
annealing temperature on the pore structure is mainly by changing the concentration and the strength
between the stressed tie molecules in the amorphous region and the crystallites lamellae. By increasing
the annealing temperature, the segments of loose tie chains can be drawn into the crystallites, leading
to thicker lamellae and higher overall degree of crystallinity. Elyashevich et al. [111] suggested that
higher annealing temperature results in narrower length distribution of tie chains, meaning that
more stretched tie chains are produced in the inter-lamellar regions. Chen et al. [110] also confirmed
that the lamellae thickness increased with increasing annealing temperature up to the peak melting
temperature, but higher temperature led to the formation of long-period lamellar spacing.Polymers 2019, 11, x FOR PEER REVIEW 16 of 35 
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It is assumed that the application of an annealing temperature during the stretching process can
control the final structure. Xi et al. [22] suggested that it is necessary to control the stretching process
with a proper temperature in MSCS, such as the application of a two-step stretching process. In the first
stretching step, the interaction between the lamellae is mainly broken under the stretching of annealed
hollow fibers, and then microvoids are created on the fiber wall. Subsequently, the second stretching
step results in the formation of larger micropores. In order to smoothly develop the microvoids into
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larger micropores, a suitable temperature below the PE melting point is the main factor to prevent
microvoids collapse during the second stretching process.

As a next step, the morphology (porosity) and the permeability (Gurley value, N2 permeation)
of PE hollow fibers are used to determine the performance variation by increasing the stretching
temperature, as shown in Figure 13, where the Gurley value is an indicator of air permeability. Low
Gurley values are associated with high air permeability. In Figure 13, the Gurley values are normalized
by film thickness [112]. It is known that flexible molecular chains in the amorphous region of crystalline
polymers have less resistance; therefore, molecular chains have higher mobility and orientation
possibility under the applied external force and temperature. At a relatively high temperature, more
molecular chains would be drawn out from the amorphous region and rearranged into fibrils along
the stretching direction. Thus, higher porosity is developed by bridging the separated lamellae. This
significant improvement can offer higher air permeability by optimizing the annealing temperature.
This is suitable for applications such as distillation and seawater desalination [22].
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In addition to the annealing temperature, the spinning temperature also affects the crystallinity
and the degree of orientation of the hollow fibers. For a polymer melt, the viscosity increases with
decreasing temperature, which is necessary to increase the stress in the spinning process, leading to a
higher level of orientation in the fibers. Therefore, hollow fibers spun at higher temperature have lower
birefringence, higher bubble point pressure, smaller pore size, and more uniform pore distribution [20].

3.3.2. Effect of the Stretching Ratio

The degree of melt extension can be described by the stretching ratio (R = V2/V1) defined as the
ratio between the extrusion speed (V1) and the take-up speed (V2). This parameter mainly governs the
morphology in terms of pore size, distribution, orientation, geometry, etc.

The stretching ratio has been reported to affect the stress along the fiber direction [99,102]. For
example, increasing the stretching ratio from 1.35 to 2.28 led to more elongated fibrils, and the space
between the separated lamellar crystals became larger [22]. Also, increasing the stretching ratio from
2.3 to 3.3 led to more uniform pore size distributions, and the amount of pores (diameter < 1 µm)
rapidly increased to become the main part of the pore size distribution. Several theories were proposed
to explain these results [113,114]. Firstly, from a position originally perpendicular to the fiber direction,
the lamellae rotated to a position parallel to the fiber direction. Secondly, molecular chains in the
lamellae were oriented, and then the microvoids linked by fibrils were formed. Thus, higher stretching
ratio means that more fibrils bridging the separated crystalline lamellae are developed. Therefore,
microvoids or micropores continuously grow in size. However, there is a critical stretching ratio for
which the fibrils in the microvoids break, resulting in the formation of cracks and leading to poor
structures [22].
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By increasing the stretching ratio within a reasonable range, higher porosity and permeability of
PE microporous hollow fiber membranes can be produced. Experimental results confirmed that the
relationship between the stretching ratio, the porosity, and the N2 permeation of PE membranes is
directly correlated to the stress range. When the ratio increased from 100 to 170%, the N2 permeation
increased by 31%, while the porosity increased by 13% [102].

3.3.3. Effect of the Stretching Rate

To get a better understanding of the stretching rate effect on the PE hollow fiber membrane
structure and properties, the mechanism of resistance to stress cracking is used. During the stretching
process, the formation of fibrils recovered in the PE hollow fiber wall and break-up in the hollow
fiber wall occur at the same time. With an increased stretching rate, more fibrils are formed and
destroyed. As a result, the amount of smaller size pore (average pore size < 1 µm) increases. As shown
in Table 5, under a relatively high stretching rate, the average pore sizes slightly decreases, and the
pore size distribution gets more uniform, and the N2 permeation and the porosity further increase with
a more uniform porous structure, leading to better performance of the PE hollow fiber membranes
with increased stretching rate [22].

Table 5. Properties of microporous hollow fibers produced using different stretching rates [22].

Stretching Rate
(mm/min)

Porosity
(%)

Average Pore Size
(µm)

N2 Permeation
(cm3(STP)/cm2

·s·cmHg)

200 70 0.62 4.96 × 10−2

280 75 0.58 7.05 × 10−2

320 80 0.55 7.09 × 10−2

360 81 0.57 8.10 × 10−2

400 82 0.50 10.00 × 10−2

3.3.4. Effect of Cooling Ways

Luo et al. [21] prepared hollow fiber membranes by MSCS and selected air, water, and
di-isononyl-cyclohexane-1,2-dicarb-oxylate (DINCH) as the cooling media to investigate the effect of
various cooling methods and cooling rates on the membrane morphology. The results showed that
when water and DINCH were used as the heat transfer medium, a layer of amorphous phase and fewer
uniform pores—which only had a small part of the slit-shaped pores—were obtained on the surface,
because the fast cooling rate froze the surface molecules and decreased the crystallinity and orientation.
However, when air was used as the cooling medium, higher crystallinity and better orientation of the
annealed hollow fibers were obtained, mainly due to the slow cooling rate. As a result, hollow fiber
membranes prepared by slow cooling had better pore interconnectivity and performances [21].

As demonstrated above, although several parameters must be controlled in MSCS, the key factors
significantly influencing the membrane morphology can be classified into temperature, stretching ratio,
stretching rate, and cooling conditions. The stretching ratio and the stretching rate mainly govern the
crystalline lamellae alignment, while the stretching temperature and the cooling conditions significantly
influence the number of stretched tie chains and fibrils bridging the narrow cracks [22,99,102,103,110].
It is possible to control these four key parameters inside an optimum range during the stretching
process to improve the porous structure and the overall performances of hollow fiber membranes. For
higher membrane porosity and more uniform pore distribution, the following strategies can be used:

• increasing the annealing temperature within the peak melting temperature range,
• increasing the stretching ratio within a reasonable range,
• increasing the stretching rate below a critical value (membrane break-up),
• decreasing the cooling rate.
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4. PDMS Membranes

Based on the outstanding advantages of PDMS, such as non-toxicity, high hydrophobicity, chemical
resistance, gas permeability, optical transparency, environmental friendliness that does not bio-accumulate,
flexibility, low costs, and good molding capability [34,115], through-hole PDMS membranes found wide
applications in the biomedical and chemical fields, such as sterile filtration, cell sorting, biomolecular
separation, termed organs-on-a-chip systems, microfluidic devices, thin film extraction, lab-on-a-chip
devices, micro total analysis systems, and permeation passive samplers [34,115–118].

A number of methods have been reported to fabricate PDMS through-hole membranes [33,34,119,120].
A focus on micromolding, imprinting/soft molding, manual punching, and the novel three-dimensional
(3D) printing technique is presented here.

4.1. Properties of PDMS Membranes

PDMS is made of a flexible (Si–O) backbone and a repeating (Si(CH3)2O) unit (see Figure 14). For
PDMS, the molecular weight varies from 1 × 104 to 6 × 104 gmol−1 due to the amount of (Si(CH3)2O)
repeating units. Consequently, several material properties, such as viscoelasticity, are affected [121].
Furthermore, these viscoelastic properties can be modified by cross-linking (vinyl cross-linking) [122]
or by filler addition (silicon dioxide) to the polymer network to meet the requirements of the current
applications [123]. Table 6 lists some typical PDMS properties, especially because it is hydrophobic
and translucent [115,124]. Today, PDMS is widely used in nanomembranes because of its remarkable
advantages, such as chemical resistance, mechanical properties, gas permeability, optical transparency
and biocompatibility, as well as its high molding capacity, leading to the production of nanomembranes
and micro/nanofluidic systems [34,37,120,125].

Table 6. Typical properties of polydimethylsiloxane (PDMS).

Properties PDMS

Density (kgm−3) 965
Melting point (◦C) N/A
Glass transition temperature (◦C) −127
Elastic modulus (kPa) 250
Dielectric constant 2.72–2.75
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4.2. PSµM

4.2.1. PSµM Processing

A novel micromolding process based on polymer phase separation has received increasing
attention in recent years, and Figure 15 presents a schematic representation of this method. The main
process of spin-coating on molds consists of four steps as follows [32–34]:

1. Firstly, fabrication of dedicated patterning systems occurs. In most case, an additional coating of
anti-sticking layers on the molds prior to the injection of the pre-polymer is needed to release the
nano-membrane from the mold.

2. Subsequently, there is prepation of a PDMS solution with a specific composition, and then the
solution is spin-coated over the fabricated molds.
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3. To open the through-holes, the cured PDMS membranes are further processed via etching or
thermal compression.

4. Finally, remove the photoresist posts to expose the through-holes.
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Although various methods such as conventional photolithography processes (soft-lithography),
electron-beam lithography [127], laser interference lithography [128], or focused ion-beam milling [129,130]
can be used to pattern the nano-columns in step 1, the difficulty in the fabrication of patterned
columns (SU-8) at sub-µm diameter ranges limits the use of PDMS membranes for nanometer-sized
through-holes. Furthermore, patterning such molds is labor intensive and requires dedicated patterning
systems, which are expensive [34].

For step 2, the solution composition and concentration play critical roles in the PDMS membrane
morphology. Thangawng et al. [131] reported on the effect of different PDMS ratios in hexane on
the membrane thickness. The spin rate and the duration were kept constant at 6000 RPM and 150 s,
respectively, but they used three different substrates: silicon, a Si coated photoresist, and a Teflon
(AF) coated Si. The results in Figure 16 show that the membrane thickness was independent of the
substrate types. However, the thickness decreased with an increasing amount of hexane in the solution.
Lötters et al. [132] obtained similar results by showing that the membrane thickness could only be
reduced down to 3 µm if the PDMS was not diluted with a curing agent. Thus, in most samples,
a PDMS pre-polymer:curing agent ratio of 10:1 was used to achieve highy flexible and ultra-thin
PDMS membranes.
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For step 3, the first task is to select a method to open the through-holes and cure the membrane.
This can be done via dry etching, plasma etching, chemical etching, thermal compression, and blowing.
The processing parameters (time, pressure, and power) must be controlled to obtain the tailor-made
PDMS membranes.

For step 4, the through-hole PDMS membrane can be obtained by demolding the cured PDMS
layer from the mold using chemical reagent and completely dissolving the sacrificial photoresist (PR)
structures [34]. Another method for a perforated membrane is to directly peel off the membrane from
the molds [33,133].

4.2.2. Effect of Processing Parameters on Membrane Morphology

Etching Time

Tibbe et al. [34] used the soft-lithography method to fabricate sacrificial PR arrays with different
hole interspacings of 3, 5, and 10 µm as molds. Secondly, a 1:10 PDMS:hexane solution was spin-coated
over the fabricated PR column arrays at 6000 RPM for 3 min and subsequently left to cure. As a
result, a PDMS layer thinner than the column height was produced. Thirdly, reactive plasma etching
of the PDMS membrane was conducted in a reactive ion etching system by precisly controlling the
etching time and the etching rate by tuning the amount of gas mixture and power. Finally, the PDMS
through-hole membrane was released in acetone using a 3D-printed ring as a support. By doing so,
they sucessfully prepared free-standing PDMS membranes at various sub-µm thicknesses down to
600 ± 20 nm with nanometer-sized through-hole (810 ± 20 nm diameter) and over areas as large as
3 cm in diameter. The whole fabrication process is described in Figure 17. During the membrane
fabrication, the researchers mainly investigated the etching time as the main parameter, which has
a significant effect on the membrane morphology. Figure 18 presents the evolution of the PDMS
through-hole membranes etched for various times. The average thicknesses of the PDMS through-hole
membranes at 0, 15, 30, 45, and 60 s were 1345, 1170, 940, 749, and 600 nm, respectively. By increasing
the etching time, the membrane thickness was thinned down to sub-µm dimensions. In addition, when
spin-coating a PDMS solution over a patterned nano-column array, some unexpected breaking of the
PDMS thin film is typical [134,135]. It can be concluded that the ductility of the PDMS thin films is
important and related to the intrinsic flexibility of the PDMS selected.
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Polymers 2019, 11, 1310 22 of 35

Polymers 2019, 11, x FOR PEER REVIEW 21 of 35 

 

During the membrane fabrication, the researchers mainly investigated the etching time as the main 
parameter, which has a significant effect on the membrane morphology. Figure 18 presents the 
evolution of the PDMS through-hole membranes etched for various times. The average thicknesses 
of the PDMS through-hole membranes at 0, 15, 30, 45, and 60 s were 1345, 1170, 940, 749, and 600 
nm, respectively. By increasing the etching time, the membrane thickness was thinned down to 
sub-µm dimensions. In addition, when spin-coating a PDMS solution over a patterned 
nano-column array, some unexpected breaking of the PDMS thin film is typical [134,135]. It can be 
concluded that the ductility of the PDMS thin films is important and related to the intrinsic 
flexibility of the PDMS selected. 

 

Figure 17. Fabrication process of a free-standing and sub-µm thick PDMS through-hole membrane. 
Photoresist (PR) layer (OiR 907-17i, Fujifilm, Japan) of 1.71 ± 0.04 µm in thickness is used as the 
sacrificial layer. Si wafer (525 µm thick, Okmetic, Finland) is used as a support base, adapted from 
[34]. 

 

Figure 18. Cross-section HR-SEM images of the PDMS-coated PR column arrays with different 
pitches of: (a) 3 µm, (b) 5 µm, and (c) 10 µm with various etching times, adapted from [34]. 

  

Figure 18. Cross-section HR-SEM images of the PDMS-coated PR column arrays with different pitches
of: (a) 3 µm, (b) 5 µm, and (c) 10 µm with various etching times, adapted from [34].

Effect of the Power, Oxygen Partial Pressure, and Etching Time

Jo et al. [32] reported a robust and simple method for thin PDMS membrane. Firstly, the
mold master was formed on a silicon wafer using an epoxy-based photoresist (SU 8) and standard
photolithography procedures. Secondly, a curing agent and PDMS prepolymer (Sylgard 184 Silicone
Elastomer Kit, Dow Corning) were thoroughly mixed in a 1:10 weight ratio, and the PDMS prepolymer
mixture was poured onto the master mold. Then, a transparency film was placed over the poured
prepolymer mixture. Next, a multilayer stack of aluminum plates, the mold master, the PDMS
prepolymer mixture, a transparency film, a rigid Pyrex wafer, and a rubber sheet were used to form
a compression mold. All the layers were clamped tightly during the cure. Then, the individual
components were bonded together with a reactive ion etching (RIE) system. Finally, the thin PDMS
membranes were peeled off from the master mold after curing. To determine the optimum conditions,
the experiments studied the effect of three processing parameters: power, oxygen partial pressure, and
etching time. The results showed that low power and short etching time were better than high RF
power and long etching time. The optimum pressure range was 75–120 mTorr [32].

Effect of Gas Stream Pressure

Kang et al. [135] reported a simple method using spin-coating of the PDMS pre-polymer on the
Si wafer followed by gas blowing followed by a recovery process to obtain well-defined, flat PDMS
membranes. This method can make well-defined holes in a PDMS membrane prepared at both high
and low RPM. Furthermore, it can be repeatedly and selectively used, even with the PR mold fabricated
by the single-step lithography as well as two-step lithography. The air-blowing process through the
nozzle was maintained for several seconds on the SU-8 patterns to remove the PDMS prepolymer from
the pattern. The results showed that 8–15 kPa was the optimum pressure range. For air pressures
above 15 kPa, damages on the PDMS surface for 40 µm thickness membranes were observed, while
pressures below 8 kPa were too low to blow off the residual prepolymer from the PR post.

As presented above, the key parameters controlling the structure include etching time, power,
and pressure. By increasing the etching time, the membrane thickness decreased. Low power and the
pressure within an optimum range were better than high power with very high or very low pressure.
For a clearer understanding, Figure 19 presents a schematic representation of the different factors that
control the PDMS membrane morphology via PSµM.
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4.3. Imprinting/Soft Molding

A technique of transferring imprinting pattern is called soft molding [35,36]. Figure 20 presents
the process of through-hole pattern on a flat PDMS membrane via imprinting/soft molding. Firstly, the
PDMS solution was spin-coated to a specific thickness on a substrate with an adhesion reduction layer.
Then, a selected mold was carefully placed on the PDMS membrane with an appropriate pressure to
displace and penetrate through the uncured PDMS membrane to form the desired patterns. Susquently,
the membrane with the mold was fully cured while maintaining the load, hence a desired perforated
membrane was sucessfully produced [131]. It is worth mentioning that the volume shrinkage of
the photopolymerizable polymer used for imprinting during the photopolymerization was different,
resulting in the mold being easily released after imprinting, hence a polymeric membrane with the
desired through-holes was obtained [119,136].
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Figure 20. Schematic representation of the PDMS through-hole membrane fabrication steps via
imprinting/soft molding, adapted from [131].

The imprinting process consists of pressing a positive pillar mold into a pre-polymer layer coated on a
flat surface. Based on the formation process of through-hole PDMS membranes, some researchers reported
that the main parameters include the imprinting pressure and the drying method [119,131,136,137].
However, this method is not suitable to produce uniform PDMS nanomembranes over large areas due
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to increased pre-polymer viscosity, which leads to the difficulty of achieving the required pressure
to produce the complete through-holes. Moreover, excessive pressure leads to higher production
costs [34].

4.4. Manual Punching

Heo et al. [37] used the method of manual punching to produce through-hole PDMS membranes.
They prepared the casting prepolymer (Sylgard 184, Dow-Corning) at a 1:10 curing agent-to-base
ratio. The prepolymer was then poured on the positive side of SU-8 (MicroChem) using the backside
diffused-light photolithography method to produce the required features. Subsequently, the membrane
was cured at 60 ◦C for 60 min, and the holes were punched in by a sharpened 14-gauge blunt needle.

A manual punching process is merely suitable for low yield patterning PDMS through-hole
nanomembranes over small footprints. One reason is the process of punching a needle through a
continuous PDMS membrane is time consuming. Another reason is the rather difficult membrane
handling at the nanoscale for the punching process [34].

4.5. D Printing Technique

Femmer et al. [38] developed a new sacrificial lithography technique to produce three-dimensional
membrane geometries using rapid prototyping (Figure 21). The approach is to print an acrylate-based
sacrificial negative mold and use it as a template for the membrane fabrication. Based on “triply
periodic minimal surfaces” (TPMS) structures, the molds were designed as Schwarz-D, Schoen-G,
and Schoen-P. The molds were then immersed in a PDMS prepolymer formulation (Sylgard 184,
silicone/crosslinker 7:1), degassed in vacuum, and subsequently cured at 65 ◦C for 30 min. Later,
the molds were treated with 1 M NaOH at 70 ◦C. Finally, 1 mm thick micro-structured TPMS-PDMS
membranes were obtained, which were thick enough to withstand pressure differences of 2 bar. It was
shown that these membranes had 30–60% higher CO2 diffusion coefficients than common hollow-fiber
membranes with similar dimensions.
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Figure 21. Step-by-step fabrication of a tricontinuous PDMS membrane based on Schwarz-P geometry,
adapted from [38].

An alternative approach was proposed by printing a PDMS membrane using a direct light
processing (DLP) printer to print silicone structures. For optimum compatibilization, the silicone and
the photoinitiator were mixed in tetrahydrofuran and then removed in vacuum. The results showed
that the printed PDMS membranes had similar selectivity performance as standard PDMS membranes.
Conversely, 15% lower permeability than common membranes was related to their larger thickness
(840 µm) [39].

Gernally, because of the high cost and the limited hardware available for printing, limited studies
have been published on obtaining nanometer resolution in 3D builds to produce perforated PDMS
membranes. However, the 3D printing technique could allow an unprecedented control over membrane
morphology by allowing both the micro- and the macro-structure of the membrane to be designed
and produced in one step, even allowing membrane module fabrication to be controlled in a single
machine/process from membrane material to membrane module. Thus, the use of 3D printing in
membrane fabrication is a promising method for the near future [138].
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5. PP, PI, and PTFE Membranes

5.1. Properties and Applications of PP, PI, and PTFE

Besides PE, PDMS, PSU, and PVDF membranes, numerous studies reported the developments
and the applications of other commonly used microporous polymeric membranes such as PP, PI, and
PTFE. Table 7 lists the composition and the properties of these polymers.

Table 7. The composition and properties of polypropylene (PP), polyimide (PI), and
polytetrafluoroethylene (PTFE).

Polymer Composition Properties Refs.

PP –CH2CH(CH3)–repeating units Melting point (◦C): 151–166
Thermal decomposition temperature (◦C): >240 [139,140]

PI
Characterized by the presence of
the imide group in the polymer

backbone
Glass transition temperature (◦C): 280–400 [141]

PTFE –CF2CF2–repeating units
Melting point (◦C): 327

Thermal conductivity (W/(m·K)): 0.25
Density (kg/m3): 2200

[142]

Microporous polymeric membranes based on PP, PI, and PTFE have been widely used in
several fields due to their outstanding properties and low cost. The main areas include both
hydrophilic and hydrophobic applications. For hydrophilic applications, water treatment and
reuse [143], biochemical and biomedical applications [144,145], battery separators [146,147], and
chemical valve applications [148–151] were developed. However, fouling is the main challenge
for hydrophilic microporous polymeric membranes with high performance applications [152], but
hydrophilic modification can improve the fouling-resistant properties of polymeric membrane [153]. For
hydrophilic applications, membrane distillation and emulsification [154–158] as well as membrane gas
absorption [159–161] and membrane crystallization [162,163] are available, but other applications such
as solvent extraction [164], water-oil separation [165] and vegetable oil membrane filtration [166,167]
are investigated. However, it is necessary to prepare super-hydrophobic polymeric membranes with
appropriate pore size to deal with the wetting issues and obtain long term performance [153].

5.2. Preparation Methods

To fabricate membranes using PP, PI, and PTFE, the most common methods are TIPS, stretching,
electrospinning, NIPS, and a new method that was recently developed, i.e., auxiliary-assisted pore
forming. Typical properties of these methods are compared in Table 8. It is important to note that the
final polymer membrane morphology and performance are optimized by the combined effects of all
the processing parameters.

Table 8. Properties of PP, PI, and PTFE polymer membranes.

Materials Methods Pore Size (µm) Flux (L/m2
·h) Ref.

PP
TIPS 0.02–0.89 937–7875 [168–170]

Stretching 0.1–3 240–5400 [171–173]
Electrospinning 0.55–0.95 600–5400 [174–176]

PI NIPS 0.06–0.2 0.2–6.4 [177,178]

PTFE
Stretching 0.1–10 1440–142,632 [179,180]
Spinning 0.01–1 4.2–14.59 [181,182]

Auxiliary-assistant pore forming 0.01–1 N/A [183,184]
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6. Conclusions and Recommendations

The development of porous polymeric membrane is an important research application in separation
technology. This article reviewed the development of porous polymeric membranes from the
perspectives of membrane materials and fabrication methods. Polymers such as PE, PDMS, PP, PI,
and PTFE were reviewed due to their outstanding thermal stability, chemical resistance, mechanical
strength, and low cost. Different fabrication methods such as TIPS, MSCS, PSµM, imprinting/soft
molding, manual punching, and three-dimensional printing were also presented and discussed in terms
of the strategy to produce porous polymeric membranes with a controlled membrane morphology
and performance via key factors associated with each processing method. This included the system,
the solution, the processing, and the ambient parameters/conditions. Nevertheless, some challenges
still remain, which are subject for future innovation. For example, better materials (properties and
stabilities), better fabrication processes (simpler and cost efficient), and applications (new areas) are of
interest. Investigations should also aim at improving our understanding of the fouling and the wetting
mechanisms, as well as the transport phenomena related to the membrane preparation and use to
further accelerate the progress in membrane technology, especially for long term properties.
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Abbreviations

3D 3-dimensional
BR birefringence
CST continuous service temperature
DIDP diisodecyl phthalate
DINCH di-isononyl-cyclohexane-1,2-dicarb-oxylate
DLP direct light processing
DOP dioctyl phthalate
DPE di-phenylether
EVA ethylene vinyl acetate
HDPE high density polyethylene
HMB hexamethylbenzene
J flux
LCST lower critical solution temperature
LDPE low density polyethylene
L–L liquid–liquid separation
LLDPE linear low density polyethylene
LP liquid paraffin
MSCS melt-spinning combined with cold-stretching
NIPS non-solvent induced phase inversion
OPE oxidized polyethylene
P permeability
P’ permeance
PDMS polydimethylsiloxane
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PE polyethylene
PE-b-PEG polyethylene-block-poly(ethylene glycol)
PI polyimide
PP polypropylene
PR photoresist
PS polystyrene
PSU polysulfone
PSµM phase separation micromolding
PTFE polytetrafluoroethylene
PTMG polytetramethyleneglycol
PVDF poly (vinylidene fluoride)
R true retention coefficient
RIE reactive ion etching
Robs observed retention coefficient
SBO soybean oil
SEPS polystyrene-block-poly(ethylene-ran-propylene)-block-polystyrene
S–L or L-S solid–liquid separation
T1 initial temperature
TCE trichloroethylene
TEPTEH triethylolpropanetris (2-ethylhexanoate)
TG glass transition temperature
TIPS thermally induced phase separation
Tm melting temperature
TPMS triply periodic minimal surfaces
UCST upper critical solution temperature
UHMWPE ultra-high molecular weight polyethylene
V1 extrusion speed
V2 take-up speed
VIPS vapor-induced phase separation
α selectivity factor
β separation factor
χ interaction parameter
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