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Abstract: In order to improve the oil displacement effect of alkali/surfactant/polymer (ASP) solution
in low-permeability oil layers, Daqing Oilfield has proposed a separate injection technology. The
objective of separate injection technology is to reduce the viscosity of ASP solution through a different
medium injection tool and increase the injection amount of ASP solution in low permeability oil
layer, thus improving the oil displacement effect. In order to study the effect of the different medium
injection tool on ASP solution, SEM is used to observe the changes in molecular micromorphology
before and after the ASP solution flows through the tool. Then, the influence of the tool on viscosity
and the first normal stress difference of the solution are studied through static shear experiments.
Finally, the storage and loss modulus of the solution are measured through dynamic mechanical
experiments and the relaxation time and zero shear viscosity of the solution are verified and compared.
The results show that molecular chains are obviously broken and the grid structure is destroyed after
the ASP solution is acted on by the different medium injection tool. The viscosity and elasticity of
ASP solution decrease, and the influence degree of the different medium injection tool on viscosity is
greater than elasticity. The results of the steady shear experiment and dynamic mechanics experiment
are consistent. Therefore, the different medium injection tool can achieve the purpose of use, which is
conducive to the injection of displacement fluid into low-permeability oil layers and enhance the
recovery ratio.

Keywords: ASP solution; different medium injection tool; molecular micromorphology; static shear
experiment; dynamic mechanical experiment

1. Introduction

During the continuous exploitation of crude oil in oil fields, alkali/surfactant/polymer (ASP)
flooding is a method of greatly improving the oil recovery rate. Under the synergistic effect of
alkali, surfactant, and polymer, the use of ASP solution for oil displacement can reduce the oil-water
interfacial tension and fluidity ratio to improve solution viscosity and sweep efficiency and give
full play to the oil displacement effect [1–6]. ASP flooding technology can effectively improve oil
recovery under the condition of extremely high water cut in an oil field [7–9]. However, due to the
heterogeneity of oil layers, high-viscosity ASP solution has a large injection amount in high-permeability
oil layers, but will cause blockage in low-permeability oil layers, thus reducing the injection amount.
If low-viscosity ASP solution is used, the oil displacement efficiency in high-permeability oil layers
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is lower [10,11]. Therefore, in order to solve the problem of easy plugging of injection displacement
fluid in low-permeability reservoirs, Daqing Oilfield proposes a separate injection technology for ASP
solution. The working principle is to use a partial pressure tool to reduce injection pressure and control
injection volume in high-permeability reservoirs. In low-permeability oil layers, a different medium
injection tool is used, and mechanical shearing is used to reduce the viscosity of the ASP solution, so
that the solution can be injected into the oil layer, improving the overall oil displacement efficiency.

Huang et al. [10] conducted core flooding experiments with different polymer molecular weights
to determine the matching relationship between polymer molecular weights and reservoir permeability
in ASP flooding. The results indicate that when the ratio of the pore throat radius (rh) to the polymer
molecular cyclotron radius (rp) is greater than 7, the injection of ASP system with a variety of molecular
weights will not be blocked; on contrary, when the ratio is less than 7, the core will be blocked.
Seright et al. [12] studied the influence of three main EOR polymer properties on injection performance,
and quantitatively studied the rheology and mechanical degradation of polymers. The results indicate
that increased injectant viscosity could substantially reduce injectivity, slow fluid throughput, and
delay oil production from flooded patterns. Luo et al. [13] studied the matching relationship between
polymer molecular size and pore size in Karamay conglomerate reservoir of Xinjiang oilfield. The
molecular size of polymer was studied by nuclear pore membrane filtration method. The results
show that polymer DQ3500 with molecular weight of 3.57 × 107- and 0.7-mm microporous membrane
match well. Zhao et al. [14] studied that the molecular weight of polymer has an important effect
on polymer flooding efficiency. Based on laboratory experiments and numerical simulation, two
matching maps were formed and used to optimize the molecular weight of polymer flooding. The
method has been applied to the secondary oil recovery project in Daqing Oilfield, and the recovery
ratio has been increased by more than 8%. Hu et al. [15] studied the maximum allowable molecular
weight of polymer and the concentration under given permeability through core flow experiments.
The results show that too high viscosity and molecules will block the low permeability layer. Polymer
molecules are spherical and the ratio of average diameter to average pore throat should be greater
than 5 or 10 to avoid blockage. The above research shows that the molecular weight of the polymer
solution has a direct influence on the oil displacement effect of low permeability reservoirs, and the
viscosity of the solution is related to the molecular weight [16]. Therefore, lowering the viscosity
of the polymer solution can improve the oil displacement effect of the displacement agent in low
permeability reservoirs.

For the Daqing oil fields with serious formation heterogeneity, the general injection method will
result in low sweep degree of medium and low permeability oil layers, which will seriously affect
the development effect of the oil fields. Daqing oil fields proposed separate injection technology can
control the injection amount of displacement fluid in high permeability oil layers, increase the injection
amount of medium and low permeability oil layers, and improve the overall displacement effect.
Researchers have carried out the following related studies on separate injection technology. Chen and
Duan [17], through laboratory and field tests, studied polymer single-pipe multilayer separate injection
technology and gave the design principle of separate injection tools. Geng et al. [18] studied the
structure, process characteristics, and adaptability of intermittent injection, annular depressurization
groove, and concentric injection string with slender pipe, and put forward the research idea of eccentric
partial pressure and mass injection technology. Zhou et al. [19] solved the problem of large injection
pressure difference between high- and low-permeability layers by using an eccentric double-layer
packer, injection distributor, and surface pressure regulator. Li et al. [20] proposed a technology
consisting of concentric, eccentric, and stratified separate injection, and put forward reasonable
separate injection timing and principles. The above-mentioned research mainly focused on partial
pressure technology, in which the injection pressure is reduced and the injection quantity is controlled
in high-permeability oil layers. However, there is little research on improving the injection ability of a
displacement agent in low permeability oil layer to improve the oil displacement effect.
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Based on the technique of separate injection and the theory of solution shear degradation [21–25],
the concept of the different medium injection tool is proposed, that is, a tool for active shearing of
solution to solve the injection problem of a displacement agent in a low permeability oil layer [26–29]
Huang et al. [30] established a rheological model of polymer solution in the different medium injection
tool by combining the rheological characteristics of polymer and local perturbation theory, and
determined the maximum injection speed. Chen et al. [31] and Huang et al. [32] analyzed the flow
characteristics of ASP solution in the different medium injection tool by finite element analysis.
The research shows that with increased diameter of the flow channel of the tool, the viscosity loss
and velocity of ASP solution decrease, and more nozzle stages leads to greater pressure drop and
viscosity loss of ASP solution. Zhang et al. [33] analyzed the influence of the structure of the different
medium injection tool on average strain rate and pressure loss through a combination of numerical
simulation and orthogonal experiment to determine the optimal structural parameters of the tool. That
research provides theoretical support and mathematical research methods for the experimental study
of rheological properties of ASP solution in the different medium injection tool, however, there is a lack
of research on laboratory tests and field experiments, and the reliability of theoretical results is poor.

The above-mentioned studies have little research on improving the oil displacement effect of
low-permeability reservoirs. The implementation of separate injection technology by using the different
medium injection tool to improve the contradiction between reservoirs is only at the stage of theoretical
research and numerical simulation and cannot actually simulate the field situation. In addition,
most of the experiments and simulations take polymer solution as the research object and there is
less research on ASP solution. And most of the experimental research methods for polymer and
other displacement agents are mainly aimed at analyzing the characteristic structure of molecular
micromorphology [34–37] and the relevant parameters of shear rheological experiments [38–48]. Such
research methods are relatively single. Therefore, it is of great significance for the reliability and
integrity of experimental results to study the micromorphology and rheological properties of ASP
solution under the action of different medium injection tools from the microscopic and macroscopic
perspectives and to carry out mutual verification of experiments.

In this paper, ASP solution with molecular weights of 16 million, 19 million, and 25 million
and concentrations of 1000 mg/L and 2000 mg/L is taken as the research object. Scanning electron
microscopy (SEM) is used to study the changes in molecular morphology and molecular structure
of ASP solution with different molecular weights and concentrations before and after the action of
the different medium injection tool. The changes in viscosity and the first normal stress difference are
studied through rheological steady shear experiments. Finally, the changes in storage modulus and loss
modulus are studied through dynamic mechanical experiments, the degree of influence of viscosity
and elasticity is analyzed, and the results obtained from the steady shear experiment are verified.

2. Materials and Methods

2.1. Model of the Different Medium Tool

The different medium tool used in the experiment is made of 316 L stainless steel (Daqing Oil
Production Research Institute, Daqing, China). The surface of the tool is smooth, and the surface of the
channel must be polished. Figure 1a shows a 3-dimensional model of the different medium tool.

Figure 1b shows a 2-dimensional structural model of the tool, which is mainly divided into
contraction, cylinder, and diffusion sections. The middle part of the tool is the region where the solution
flows through. The flow of ASP solution in the tool can be seen as a flow process that first contracts
and then diffuses in a pipeline with variable cross-sections. Under the action of the contraction and
diffusion sections, ASP solution is actively sheared to achieve the purpose of different medium injection.
Typical structural parameters of the different medium tool are shown in Table 1.



Polymers 2019, 11, 1299 4 of 22

Polymers 2019, 11, 1299 4 of 22 

 

  
(a) (b) 
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2.4. Experimental Procedure 
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China) is used to measure the dry powder of polymers with different molecular weights and 
experimental water (brine) in proportion. The mixture is put into a glass beaker and dissolved and 
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Figure 1. Structure of the different medium tool: (a) three-dimensional model, (b) two-dimensional
structural model.

Table 1. Structural parameters of the different medium tool.

Contraction
Radius

R1 (mm)

Contraction
Length
l1 (mm)

Cylinder
Length
l2 (mm)

Cylinder
Radius

R2 (mm)

Diffusion
Length
l3 (mm)

Diffusion
Radius

R3 (mm)

5 3 2 2 1 3

2.2. Chemicals

The polymer used to prepare ASP solution in this experiment is partially hydrolyzed
polyacrylamide (HPAM), with relative molecular weights of 16 million, 19 million, and 25 million and
a hydrolysis degree of about 26% (Daqing Oilfield Production Technology Research Institute, Daqing,
China). The surfactant is ORS-41 (alkylbenzene sulfonate) with an effective content of 50% (Daqing
Petroleum Refining and Chemical Company of China, Daqing, China). The alkali is NaOH with a
concentration of 30% (Daqing Oilfield Oil Production Engineering Research Institute, Daqing, China).

2.3. Brine

Under the actual production conditions of an oil field, because the formation water is not pure
water, in order to simulate the oil displacement effect of ASP solution in the formation more realistically,
brine is selected as a diluent to prepare the solution (No.1 Oil Production Plant of Daqing Oilfield,
Daqing, China). The composition of the brine is shown in Table 2. A filter with a filter membrane is
required before use.

Table 2. Composition of injection and formation brine.

Chemical
Composition Na+ K+ Ca2+ Mg2+ SO42− Cl− HCO3−

Concentration (mg/L) 853 18 54 174 270 601 186

2.4. Experimental Procedure

2.4.1. Solution Preparation

A YP-B2003 electronic balance (Shanghai Guangzheng Medical Instrument Co., Ltd, Shanghai,
China) is used to measure the dry powder of polymers with different molecular weights and
experimental water (brine) in proportion. The mixture is put into a glass beaker and dissolved
and stirred with a EURO-ST D S25 electronic stirrer (IKA, Staufen, Germany) at 250 r/min for 2.5 h
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to form a transparent aqueous solution, which is then put into an HW-III thermostat (provided by
Hai’an Huada Petroleum Instrument Co., Ltd, Jiangsu, China) for constant temperature treatment.
The weighed surfactant and alkali are added to the polymer solution, and the mixture is continuously
stirred in an electronic stirrer at a rotating speed of 400 r/min for 30 min. Then, a certain amount
of experimental water (brine) is added to dilute the ASP solution, and ASP solution with molecular
weights of 16 million, 19 million, and 25 million and concentrations of 1000 mg/L and 2000 mg/L
are obtained according to the solution concentration experimental scheme (Daqing Oilfield Co., Ltd,
Daqing, China). The prepared solution is allowed to stand for 6 h before use to ensure full dispersion
of molecules and uniformity.

2.4.2. Experimental Study

As shown in Figure 2, the prepared ASP solution with different molecular weights and
concentrations is put into the stirrable liquid supply tank in batches, the heat preservation system
is used to keep the temperature of the solution at 45 ◦C, after checking the connection tightness of
each facility is good the valve is opened to start the liquid supply pump, the flow rate is controlled at
50 m3/d, the solution flows through the different medium tool (provided by Daqing Oil Production
Research Institute, Daqing, China, the structural parameters are shown in Table 1) and back to the
return liquid tank, and then the ASP solution in the stirrable liquid supply tank and the return liquid
tank is sampled for detection.
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Figure 2. Technological process: (1) stirrable liquid supply tank; (2) return liquid tank; (3) valve; (4) screw
pump; (5) pressure gauge; (6) flow simulation chamber; (7) different medium tool; (8) flow meter.

The micromolecular structure experiment is conducted by transferring the treated ASP solution to
a freezing table and smearing it on the upper surface of a designated solid, then quickly pouring liquid
nitrogen to freeze it at −70 ◦C, the freezing time lasts for about 10 min, and placing the frozen sample
into an A1930500 vacuum freeze dryer (Shanghai Ice River Electronic Technology Co., Ltd, Shanghai,
China) to sublimate the water in the sample and obtain the final dry sample. The prepared dry sample
is placed in a high-voltage electric field with a certain vacuum degree to ionize the air, and then a layer
of conductive metal (gold) film is plated on the surface of the dry sample, and gold spraying is carried
out twice for 30 s each time. The sample is quickly transferred to the observation table in the sample
room of a Quanta 450 FEG scanning electron microscope (FEI, Hillsboro, OR, USA) for observation,
photos of typical areas of the sample are taken, and relevant sample structure analysis is carried out.

The viscoelastic experimental study of ASP solution before and after the action of the different
medium tool is conducted by starting the constant temperature circulation system of an RS-150
rheometer (HAAKE, Staufen, Germany) and heating it to the measured temperature 45 ◦C for 15 min.
The ASP solution is put into the preheated measuring outer cylinder and keep the temperature 45 ◦C
constant for 20 min, so that each point of the sample can reach the testing temperature uniformly.
The constant shear rate CR mode is selected, and the shear rate tested is set to be 5–1500 s−1. The
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rheometer is started to rotate the rotor, and the viscosity and the first normal stress difference are
detected in a stable measurement mode. Then dynamic measurement is adopted, setting the frequency
at 0.01–10 Hz (in linear viscoelasticity), scanning the frequency at 0.1 Pa, and measuring the storage
and loss modulus in the stress scanning range of 0.01–50 Pa. When the indication value is basically
stable, start recording, and then record every 5 min. If the deviation between the three calculated
values of the four continuously recorded values and the first one is not more than 5%, the system is
considered to have reached the dynamic equilibrium value.

ASP solutions of each molecular weight and concentration were measured three times, and the
measured results were averaged.

2.5. Experimental Theory

2.5.1. Viscosity

The ASP solution is a non-Newtonian fluid. At low shear rate, it generally shows the characteristics
of Newtonian fluid. At this time, the viscosity is a constant. With increased shear rate, the viscosity of
the fluid decreases, showing the characteristics of shear thinning. When the shear rate increases to a
certain value, the viscosity tends to reach a second stable value [49]. The complete rheological curve is
shown in Figure 3.
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In the region of high shear rate and low shear rate, the Carreau model is suitable for all shear regions:

η(
.
γ) = η∞ + (ηo − η∞)

[
1 + (λ

.
γ)

2] n−1
2 (1)

where η0 and η∞ respectively represent the viscosity values under the conditions of zero shear viscosity
and high shear rate, and can reflect the characteristic that the viscosity of the solution is constant under
specific conditions; And λ is relaxation time, or called a characteristic time constant; and n is a power
law index, which indicates the degree to which the flow characteristics deviate from Newtonian fluid.
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2.5.2. First Normal Stress Difference

In the process of ASP solution flow, the total stress on the internal volume element of the solution
is expressed by tensors as follows:

τ =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (2)

where τxx, τyy, and τzz are normal stresses, the others are shear stresses, and τxy = τyx, τxz = τzx,
τyz = τzy, and the first normal stress difference N1 is defined as the difference between the stresses
in the flow direction and the velocity gradient direction. Then the first normal stress difference is
expressed as

τxx − τyy = N1(
·
γ) (3)

In the macromolecule system, the chain molecules are approximately a spherical envelope volume
in the static state, and become ellipsoid in the flow field. Restoring force will be generated in these
deformed microstructures. As these structures are anisotropic, the restoring force generated is also
anisotropic, and the main axis of the ellipsoid after deformation tends toward the flow direction.
Therefore, the restoring force in this direction is greater than that in the other two vertical directions,
and these restoring forces generate normal stress components.

The first normal stress difference is the main characteristic of viscoelastic fluid [41], which
can generate axial pressure. The first normal stress difference of viscoelastic polymer solution
comprehensively reflects the force of elasticity of polymer solution on crude oil. In the study, the first
normal stress difference is taken as a parameter to characterize the elasticity of polymer solution.

2.5.3. Storage Modulus and Loss Modulus

In the dynamic mechanics experiment, if a harmonic stress (or strain) is applied to the solution,
the stress (or strain) of the solution also changes with time in a harmonic law. The stress (or strain) is a
function of time, and its modulus is usually expressed by a complex modulus. The strain change of
viscoelastic solution lags behind the stress change by a phase angle. For the latter, the stress change
leads the strain by a phase angle, then the change of strain and stress of ASP solution with time can be
expressed as follows:

γ(t) = γ0 sinωt (4)

τ(t) = τ0 sin(ωt + δ) (5)

According to the definition of modulus, two different moduli can be obtained. G′ is defined as the
ratio of stress and strain in the same phase, and G′′ is the ratio of stress and strain amplitude when the
phase difference is π

2 , namely
G′ = (τ0/γ0) cos δ (6)

G′′ = (τ0/γ0) sin δ (7)

Equation (5) can be changed to

τ(t) = γ0G′ sinωt + γ0G′′ cosωt (8)

The above equation is converted into a complex form, called complex modulus G∗, where

G∗ = G′ + iG′′ (9)

In the formula, G′ is the real modulus or can be called the storage modulus, which represents the
energy stored by ASP solution due to elastic deformation and can be used to characterize the elastic
characteristics of the fluid. G′′ is an imaginary modulus, which can also be called a loss modulus,
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and represents the energy of ASP solution due to heat loss during deformation. The energy used in
this part of the flow is irreversible loss converted into shear heat and can be used to characterize the
viscosity of the fluid.

According to the constitutive equation of Maxwell’s model:

τ+ λ
dτ
dt

= Gλ
dγ
dt

(10)

where λ is relaxation time and G is stress relaxation modulus, and λ =
η
G .

Stress and strain are expressed as circular vibration functions:

γ = γoeiωt (11)

τ = τoei(ωt+δ) (12)

According to the Equation (9), it can be obtained:

G∗ = G
iωλ

1 + iωλ
(13)

Therefore, the storage modulus and loss modulus of Maxwell model are:

G′ = G
ω2λ2

1 +ω2λ2 (14)

G′′ = G
ωλ

1 +ω2λ2 (15)

3. Results and Discussion

3.1. Effect of the Different Medium Tool on Molecular Micromorphology of ASP Solution

Scanning electron microscopy is used to observe the molecular micromorphology of ASP solution
with molecular weights of 16 million, 19 million, and 25 million and concentrations of 1000 mg/L and
2000 mg/L before flowing through the different medium tool, as shown in Figure 4.
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Figure 4. Molecular morphology of alkali/surfactant/polymer (ASP) solution: (a) 16 million (MD), 
1000 mg/L; (b) 16 million (MD), 2000 mg/L; (c) 19 million (MD), 1000 mg/L; (d) 19 million (MD), 2000 
mg/L; (e) 25 million (MD), 1000 mg/L; (f) 25 million (MD), 2000 mg/L. 

As shown in Figure 4, ASP solution prepared by polymers with different concentrations of 
molecular weight under the same molecular weight has similar spatial structure of microscopic 
morphology, generally a multilayer three-dimensional network structure with uniform size. Most of 
the network structures are round or nearly hexagonal meshes, and some areas show a sheet-net 
structure, with thick trunks and twigs connecting the meshes. This is because after HPAM is partially 
hydrolyzed, carboxyl anions exist on the macromolecular chains, and electrostatic repulsion exists 
between adjacent carboxyl groups [10]. Because NaOH is added to the solution, the number of 
negative charges on the molecular chains increases, resulting in enhanced electrostatic repulsion, 
enhanced repulsion between the molecular chains, and increased stretching of the molecular chains; 
each molecular chain adopts a random coil conformation, and different polymer molecular chains 
can penetrate each other and even twine, resulting in the formation of multilayer three-dimensional 
network structures with holes of different sizes in the solution. The coarse trunk and subdivision 
branches can directly reflect the number of groups on the molecule: the more groups there are, the 
thicker the branches [50,51]. The higher the concentration of polymer in ASP solution, the denser the 
spatial network structure and the coarser the molecular framework, as can be seen from the SEM 
images. As the molecular weight of the polymer increases at the same concentration, the molecular 
structure of ASP solution with high molecular weight is coarser and the spatial network structure is 
denser [15,51–53]. The microstructure morphology of ASP solution prepared by polymer with a 
molecular weight of 25 million is similar to that of ASP solution with molecular weights of 16 million 
and 19 million. However, the higher the molecular weight of the polymer, the closer the molecular 
aggregates are in the solution, and scanning electron microscope images show that more multilayer 

Figure 4. Molecular morphology of alkali/surfactant/polymer (ASP) solution: (a) 16 million (MD), 1000
mg/L; (b) 16 million (MD), 2000 mg/L; (c) 19 million (MD), 1000 mg/L; (d) 19 million (MD), 2000 mg/L;
(e) 25 million (MD), 1000 mg/L; (f) 25 million (MD), 2000 mg/L.

As shown in Figure 4, ASP solution prepared by polymers with different concentrations of
molecular weight under the same molecular weight has similar spatial structure of microscopic
morphology, generally a multilayer three-dimensional network structure with uniform size. Most
of the network structures are round or nearly hexagonal meshes, and some areas show a sheet-net
structure, with thick trunks and twigs connecting the meshes. This is because after HPAM is partially
hydrolyzed, carboxyl anions exist on the macromolecular chains, and electrostatic repulsion exists
between adjacent carboxyl groups [10]. Because NaOH is added to the solution, the number of
negative charges on the molecular chains increases, resulting in enhanced electrostatic repulsion,
enhanced repulsion between the molecular chains, and increased stretching of the molecular chains;
each molecular chain adopts a random coil conformation, and different polymer molecular chains
can penetrate each other and even twine, resulting in the formation of multilayer three-dimensional
network structures with holes of different sizes in the solution. The coarse trunk and subdivision
branches can directly reflect the number of groups on the molecule: the more groups there are, the
thicker the branches [50,51]. The higher the concentration of polymer in ASP solution, the denser
the spatial network structure and the coarser the molecular framework, as can be seen from the SEM
images. As the molecular weight of the polymer increases at the same concentration, the molecular
structure of ASP solution with high molecular weight is coarser and the spatial network structure
is denser [15,51–53]. The microstructure morphology of ASP solution prepared by polymer with a
molecular weight of 25 million is similar to that of ASP solution with molecular weights of 16 million
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and 19 million. However, the higher the molecular weight of the polymer, the closer the molecular
aggregates are in the solution, and scanning electron microscope images show that more multilayer
spatial structures are connected or cross-connected and the skeleton of the network structure is thicker.
Although the mesh is no longer obvious in the case of high-concentration polymer, the continuous
spatial network structure is more compact and complete [50,53–55].

During the action of the different medium tool, the ASP system passes through the flow channel
and enters the deep part of the oil layer through the bottom hole. The flow area of the tool is small, and
after ASP solution flows through the tool, the speed of the solution flowing through the contraction
section changes sharply, elongating the polymer molecules. When the molecular chain is pulled to a
certain length and exceeds its strength, it breaks or is degraded. The microstructure of molecules and the
size of molecular coils change to some extent, which will reduce the molecular weight of the polymer and
increase the viscosity loss of the solution [19,30]. The scanning electron microscope is used to observe the
micromorphology of ASP solution flowing through the different medium tool, as shown in Figure 5.

As can be seen from Figure 5, due to the effect of high-speed shearing and tensile stress of the
different medium tool, the solution produces a shearing degradation effect, which causes the short and
long molecular chains with polar groups in ASP solution to be sheared and thus broken, the stretching
property of the molecular chains becomes poor, the molecular chains are easy to curl and wind together
to form an irregular spatial structure, and the original network structure becomes incomplete and the
meshes become sparse. The ability of the network structure to wrap water molecules is greatly reduced,
resulting in a significant decrease in the ability to increase viscosity and a macroscopic decrease in
apparent viscosity of the solution [56–60]. The network structure of high-concentration ASP solution
flowing through the different medium tool is still denser than that of low-concentration ASP solution,
and the skeleton is coarser, which indicates that the rigidity of the multilayer three-dimensional
network structure of high-concentration solution is better than that of low-concentration solution after
the solution with different concentrations is sheared by the tool. With increased molecular weight
of the polymer in ASP solution, an obvious molecular chain fracture phenomenon can be observed
on electron microscope images, and the spatial network structure of the solution is more compact
and continuous. Under the same concentration, the space network structure of ASP solution with
a molecular weight of 25 million is the most compact. Although the molecular micromorphology
space network is destroyed, some molecular chains are still intertwined, maintaining the structure of
macromolecular chains, thus the network structure is more rigid. The space network of ASP solution
with a molecular weight of 16 million is evacuated the most. Macroscopically, the apparent viscosity of
ASP solution with a molecular weight of 25 million and a concentration of 2000 mg/L is greater, while
that of ASP solution with a molecular weight of 16 million and a concentration of 1000 mg/L is the
lowest after being acted on by the quality separating tool.
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(d) 19 million (MD), 2000 mg/L; (e) 25 million (MD), 1000 mg/L; (f) 25 million (MD), 2000 mg/L. 
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Figure 5. Molecular micromorphology of ASP solution after being acted on by the different medium
tool: (a) 16 million (MD), 1000 mg/L; (b) 16 million (MD), 2000 mg/L; (c) 19 million (MD), 1000 mg/L;
(d) 19 million (MD), 2000 mg/L; (e) 25 million (MD), 1000 mg/L; (f) 25 million (MD), 2000 mg/L.

Comparing the molecular morphology of ASP solution with different molecular weights and
concentrations before and after flowing through the different medium tool, it can be seen that the tool
has an obvious effect on the solution, in that it can effectively change the molecular structure, reduce
the molecular weight, and increase the viscosity loss of the solution, and it meets the design purpose.

3.2. Effect of the Different Medium Tool on Viscoelasticity of ASP Solution

The viscoelasticity of ASP solution is involved in preparation, injection, pipeline transportation,
wellbore flow, and flow in porous media under reservoir conditions. Viscoelasticity is an important
characteristic in the performance of solutions. It usually refers to the obvious viscous and elastic
characteristics when multiple macromolecular motion units respond to forces [61–66]. At present,
there are mainly two methods for measuring solution viscoelasticity: steady shear test and dynamic
mechanical test.

A steady-state shear experiment generally refers to the study of the change behavior of viscosity
and elasticity of solution within a wide range of shear rates, usually including the stages when the
solution structure will not be destroyed under low shear rate and will be destroyed under high shear
rate. In simple steady shear flow, viscosity can be used to characterize the solution, and the first normal
stress difference can be used to characterize the elasticity. In order to study the overall change trend
of viscosity ignoring the unchanged viscosity under low and high shear rates, Figure 6 shows the
viscosity of ASP solution with different concentrations and molecular weight as a function of shear
rate and Figure 7 shows the first normal stress difference as a function of shear rate before and after the
action of the different medium tool.
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As shown in Figure 6, the higher the concentration and molecular weight of the solution, the
higher the viscosity under the same shear rate before the solution flows through the different medium
tool. With increased shear rate, the viscosity decreases, and when the shear rate reaches a certain range,
the viscosity decreases gradually to a gentle level. This is because at a lower shear rate, molecular force
plays a major role, molecules rely on van der Waals force interaction, and entanglement networks are
formed between molecular chains. The higher the concentration of the solution, the more molecules
in a unit volume, so the viscosity is greater. When the relative molecular weight of the solution is
higher, the macromolecular chains are longer and it is easier for them to entangle, their conformation is
more stable, and the formed reticular entangling points are firmer, so the viscosity is higher. However,
with increased shear rate, the network structure among polymer molecules is destroyed (or partially
destroyed) and the intermolecular force is weakened, which increases the probability of alignment
consistency among molecules, reduces the relative molecular weight of the solution, and leads to
decreased viscosity. When the shear rate continues to increase, the entanglement of molecular segments
is stretched to the limit, and the arrangement between molecules is no longer disordered and becomes
directional. At this time, the viscosity decreases gradually or remains unchanged when the shear rate
increases again. On the whole, the effect of shear rate on solution viscosity is shown as shear thinning.

The viscosity curve in Figure 6 is fitted and conforms to the Carreau law, and the relaxation time
λ, zero shear viscosity η0 and power law index n of ASP solution before and after the action of the
different medium tool are obtained by fitting, as shown in Table 3.Polymers 2019, 11, 1299 12 of 22 
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Table 3. Physical parameters before and after the action of the different medium tool.

ASP
Solution

Before
Action of

Tool
λ1 (s)

After Action
of Tool
λ2 (s)

Before
Action of

Tool
ηo1 (mPa·s)

After Action
of Tool
ηo2 (mPa·s)

Before
Action of

Tool
n1

After Action
of Tool

n2

16 million
1000 mg/L 0.243 0.205 42.1 25.2 0.569 0.624

16 million
2000 mg/L 0.251 0.218 216.52 68.98 0.439 0.565

19 million
1000 mg/L 0.252 0.225 55.71 37.19 0.557 0.594

19 million
2000 mg/L 0.261 0.239 226.73 113.02 0.442 0.526

25 million
1000 mg/L 0.287 0.269 64.96 47.02 0.604 0.638

25 million
2000 mg/L 0.303 0.275 268.69 171.43 0.448 0.491



Polymers 2019, 11, 1299 14 of 22

The higher the molecular weight and concentration of ASP solution, the greater the relaxation time
value and zero shear viscosity. After the action of the different medium tool, the viscosity decreases,
and power law index n after the action of the tool increases, and power law index n can represent the
degree of flow characteristics deviating from Newtonian fluid, the more obvious the solution deviates
from the flow characteristics of Newtonian fluid.

Bird et al. [49] described the rheological behavior of polymer solution in porous media with
dumbbell molecular model, and based on this, deduced the relationship between fluid relaxation time
and relative molecular mass, intrinsic viscosity and system viscosity of polymer as follows:

λ =
[η]ηsM

AkT
(16)

where [η] is the intrinsic viscosity of the solution; M is the relative molecular weight of the polymer;
ηs is the viscosity of the solvent; A is the Avon Gadereau constant; k is Boltzmann constant; T is the
absolute temperature.

For ASP solution, the intrinsic viscosity is:

[η] =
η− ηs

ηsc
(17)

η = WcαMβ (18)

where W is the system constant, c is the concentration of the solution, α and β are parameters that vary
with the concentration. In the range of low concentration or low molecular weight, the values tends to
1, and rapidly tends to the limit value with the increase of concentration: α = 5.4, β = 3.4.

It can be seen from the Equations (16)–(18) that the molecular weight and concentration of ASP
solution are positively correlated with the viscosity and relaxation time of the solution, so in Table 3, the
influence trend of the molecular weight and concentration of ASP solution before and after the action
of the different medium tool on the zero shear viscosity and relaxation time of the solution is correct.

After ASP solution flows through the different medium tool, the change trend of viscosity is
similar to that before the tool, but after the tool, the viscosity decreases, because the action mechanism
of the tool is to reduce the viscosity of ASP solution through shearing action. When the solution flows
through the contraction section of the tool, its speed change is the most intense due to the reduced
cross-sectional area forming high-strength shearing action, and the damage to the intermolecular
network structure is the most serious [30], causing defects, breakage of molecular chains, rarer meshes,
and reduced intermolecular force, reducing the molecular weight and viscosity [67]. Moreover, due
to the effect of molecular chains and molecular structure grids, the higher the molecular weight of
ASP solution, the longer the molecular chain, and the stronger the ability of molecular weights to
entangle with each other, the higher the viscosity [68,69] and the stronger the shear resistance. The
higher the concentration of ASP solution, the more the number of molecular chains in the solution. The
molecular chains are intertwined due to insufficient extension, resulting in increased viscosity [69–71]
and stronger shear resistance.

According to the shear test, the different medium tool can effectively reduce the viscosity of the
injected ASP solution, meet the design requirements, and achieve the purpose of injecting ASP solution
into low-permeability oil layers for oil displacement.

The analysis of first normal stress difference test data shows that the solution is unstable at low
shear rates, which is due to the limitation of the measuring range of the instrument. In order to ensure
analytical accuracy, the data of the stable section are selected for curve fitting and data analysis.

As shown in Figure 7, the greater the solution concentration and molecular weight, the greater the
first normal stress difference at the same shear rate before ASP solution flows through the different
medium tool. With increased shear rate, the first normal stress difference increases linearly in the
stable section. This is because the higher the concentration of the solution and the larger the molecular
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weight, the more molecules per unit volume, the longer the molecular chains, and the stronger the
mutual attraction and entanglement between molecules, which is conducive to the elastic recovery
of the chain segments during deformation. With increased shear rate, the molecular unwrapping
rate of ASP solution increases rapidly, while the entanglement rate changes slightly, thus making the
entanglement density smaller, increasing the holes, promoting the peristalsis of molecular chains,
and reducing the tendency of shearing to produce separation, thus increasing the first normal stress
difference of the solution [72,73].

When ASP solution flows through the different medium tool, the first normal stress difference of
the solution and the elasticity decrease. This is because before the molecular conformation is unfolded,
the molecular chains are wrapped into clusters. This is the unwrapping phase, and the elasticity
at this time is unwrapping elasticity. When ASP solution flows through the different medium tool,
the shearing action on the molecules is strengthened, and the molecular conformation is completely
expanded. At this time, the molecular chains are stretched and the elasticity is obvious, and it is
called stretch elasticity. Before flowing through the different medium tool, the molecular chains of the
polymer solution are long and short, with obvious size distribution and tensile elasticity of the solution.
After passing through the tool, the shearing degree of the long-chain molecules is greater than that of
the short-chain molecules, which makes the length distribution of the chains more uniform. Therefore,
the tensile elasticity of long-chain molecules decreases significantly.

Since the first normal stress difference of ASP solution in the stable section increases linearly
with the shear rate, and the higher the concentration and molecular weight of the solution, the higher
the elasticity and the greater the slope of the first normal stress difference and the shear rate straight
line, the slope of the first normal stress difference and the shear rate straight line (expressed by
SN) can quantitatively represent the elasticity of the solution, which is convenient for comparing
different solutions. The elasticity SN1 and SN2 of ASP solution with different molecular weights and
concentrations before and after flowing through the different medium tool are shown in Table 4.

Table 4. Elastic change law of ASP solution before and after flowing through the different medium tool.

Molecular Weight
(million)

Concentration
(mg/L)

Before Action of Tool SN1
(Pa·s)

After Action of Tool SN2
(Pa·s)

16 1000 0.21 0.14
16 2000 0.54 0.43
19 1000 0.38 0.26
19 2000 0.87 0.69
25 1000 0.72 0.56
25 2000 1.32 1.03

In this study, the linear slope of the first normal stress difference with the change of shear rate
is used to quantitatively express the elasticity of the solution, which can result in a more accurate
comparison. As can be seen from the table, the higher the molecular weight and concentration of
ASP solution, the greater the elasticity and the greater the degree of decreased elasticity after passing
through the different medium tool. At the same time, the degree of influence of molecular weight on
elasticity is greater than that of concentration.

According to the results of the steady shear test, the molecular weight or concentration
of the solution can be increased in actual production to improve the viscoelasticity and the oil
displacement effect.

3.3. Effect of the Different Medium Tool on Storage Modulus and Loss Modulus of ASP Solution

Dynamic viscoelasticity is the study of linear viscoelastic behavior of a solution, which represents
the viscoelasticity of the solution without destroying its structural characteristics. In the dynamic
mechanical test, the storage modulus can reflect the elasticity and the loss modulus can reflect the
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viscosity of viscoelastic fluid. Figure 8 shows the change of storage and loss modulus with angular
frequency for ASP solution with different molecular weights and concentrations before and after the
action of the different medium tool.
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(MD), 1000 mg/L; (d) 19 million (MD), 2000 mg/L; (e) 25 million (MD), 1000 mg/L; (f) 25 million (MD),
1000 mg/L.
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As can be seen from Figure 8, with increased angular frequency, the loss modulus and storage
modulus of ASP solution increase before and after the action of the different medium tool, and the
degree of increase of the storage modulus is greater than that of the energy dissipation modulus. Under
the same angular frequency, with increased relative molecular weight and concentration of the solution,
the initial values of the energy dissipation and storage modulus before and after the action of the tool
are larger. Also, with increased solution concentration and molecular weight, the intersection point
of storage modulus and loss modulus moves to the low-frequency direction. The storage modulus
can indicate the elastic property and the loss modulus can indicate the viscous property. On the left
side of the intersection point, the viscosity is greater than the elasticity, while on the right side, the
elasticity is greater than the viscosity. This is because the viscosity of molecules is dominant when
the deformation frequency is slow, and the elasticity is not obvious. However, when the deformation
is rapid, the increased deformation energy is absorbed by the elastic deformation within or between
molecules. There is not enough time for the substance to generate viscous flow, so the elasticity exceeds
the viscosity. The larger the molecular weight and concentration of the solution, the more molecules in
the unit volume and the longer the molecular chains, and the inner part of the formed molecular chains
is wrapped into a loop, so that more instantaneous bonds formed by entanglement between molecular
chains results in more spring-like properties, and the elasticity performance is much greater than the
viscosity. Therefore, at low frequencies, the solution has mainly viscous flow, and at medium and high
frequencies, it has mainly elastic flow. The solution with low molecular weight and low concentration
has mainly viscous flow, while the solution with high molecular weight and high concentration has
mainly elastic flow [74,75].

The intersection point between the storage and loss moduli is usually associated with the largest
relaxation time of the solution, according to the Equations (14) and (15), the relaxation time calculated
by dynamic test is shown in Table 5.

Table 5. Relaxation time and zero shear viscosity of alkali/surfactant/polymer (ASP) solution before
and after flowing through the different medium tool in dynamic test.

Molecular
Weight

(million)

Concentration
(mg/L)

Before Action
of Tool
ηo1 (mPa·s)

Before Action
of Tool
ηo2 (mPa·s)

Before Action
of Tool
λ1 (s)

After Action of
Tool
λ2 (s)

16 1000 45.62 26.36 0.246 0.208
16 2000 219.38 68.73 0.253 0.221
19 1000 56.79 39.67 0.256 0.226
19 2000 228.98 115.49 0.268 0.243
25 1000 68.38 48.94 0.293 0.271
25 2000 272.68 176.38 0.309 0.277

Table 5 is basically consistent with the relaxation time and zero shear viscosity in Table 3. The
higher the molecular weight and concentration of ASP solution, the greater the relaxation time and zero
shear viscosity. The relaxation time and zero shear viscosity decrease after the action of the different
medium tool. When the relaxation time is greater than the characteristic time of oscillation test, viscous
deformation will not occur and the solution will show more elasticity. When the relaxation time is less
than the characteristic time of oscillation test, the solution shows more viscosity. When the relaxation
time is approximately equal to the characteristic time of oscillation test, the elasticity and viscosity are
equivalent, and the solution has significant viscoelasticity.

The storage modulus and loss modulus of ASP solution decrease after the solution flows through
the different medium tool, but the overall change trend is consistent with that before flowing through
the tool, which indicates that the viscosity and elasticity of ASP solution decrease after shearing by the
tool, which is consistent with the effect of the tool on viscosity and first normal stress difference in the
steady shear experiment. After the action of the different medium tool, the intersection point of the
storage modulus and loss modulus curve moves to the high-frequency direction, and the viscosity
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property is greater than the elastic property, so the effect of the tool on viscosity is greater than the
effect of elasticity, and the flow will mainly be viscous flow. With increased molecular weight and
concentration of ASP solution, the intersection point of storage modulus and loss modulus curves after
the action of the different medium tool moves to the low-frequency direction, then the effect of the
tool on viscosity is higher than that of elasticity. This is because, at a lower shear rate, molecular force
plays a major role. The higher the concentration, the more molecules per unit volume, and the stronger
the attraction between molecules, so the greater the viscosity. And the larger the relative molecular
weight, the greater the attraction between molecules, and the more stable the conformation of the
molecular chain, so its viscosity is also larger. Viscoelasticity of ASP solution is because its molecular
conformation can be changed under the action of external force (shear force under the action of the
different medium tool), that is, the curled polymer chain can be stretched, and when the stretching
force is removed, it can return to its natural curled shape. However, the chain segment adjusts its
conformation slowly under the action of external force, so the molecular deformation lags behind the
stress and shows viscoelasticity. The viscoelasticity of the solution depends on the flexibility of the
molecular chain. The greater the flexibility of the chain, the more obvious the viscoelasticity.

Based on the analysis results of steady shear experiment and dynamic mechanics experiment,
the effect of the different medium tool meets the design requirements. Compared with ASP solution
with low molecular weight and low concentration, ASP solution with high molecular weight and
high concentration has better viscoelasticity and higher oil displacement effect under the effect of the
different medium tool.

4. Conclusions

In this paper, scanning electron microscopy, steady shear testing, and dynamic mechanical
testing were used to study the molecular micromorphology of ASP solution with different molecular
weights and concentrations before and after flowing through the different medium tool, and the
rheological property and viscoelasticity were tested. According to the experimental results, the
following conclusions were obtained:

1. The molecular chain of ASP solution is broken and the spatial grid structure is destroyed under
the action of the different medium tool. The viscosity and elasticity of the solution decreased, but
the effect on the viscosity was greater.

2. The elastic effect of ASP solution is stronger than the viscous effect after the action of the different
medium tool.

3. The relaxation time, zero shear viscosity and other physical parameters obtained in the steady
shear experiment are basically consistent with the results of the dynamic mechanical experiment,
and the experimental results of the effect of the different medium tool on ASP solution are true
and effective.

4. The shearing effect of the different medium tool on ASP solution with high concentration and
high molecular weight (25 million, 2000 mg/L) is the best, and the oil displacement effect in low
permeability oil layer is the best.
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