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Abstract: A novel flame retardant (HSPCTP) was successfully designed and incorporated into a 
polycarbonate (PC) matrix. Combining the advantages of cyclotriphosphazene and silicone oil, 
PC/HSPCTP composites passed UL-94 V-0 rating testing with only 3 wt% HSPCTP, and their LOI 
value increased from 25.0% to 28.4%. The findings showed that HSPCTP exhibits both gas-phase 
and solid-phase flame-retardant effects. Furthermore, the incorporation of HSPCTP into PC could 
suppress the release of smoke. Finally, the flame-retardant mechanism is discussed in depth. 
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1. Introduction 

Due to its strong impact resistance, heat resistance, and dimensional stability, polycarbonate 
(PC) has been widely used in fields such as automobiles, office equipment, packaging, construction, 
sports equipment and health care industries. Although pure PC resin has a certain degree of flame 
retardancy (25% of LOI value and UL-94 V-2 rating), it is still not suitable in harsh applications 
requiring a more stringent flame-retardant rating. Many studies have been carried out on the 
improvement of the flame retardancy of PC in recent decades, and various kinds of flame retardants 
(including halogenated organic compounds, organophosphates, and silicon-containing compounds) 
have been developed [1–13]. For example, halogen-containing flame retardants are known to be 
highly efficient for PC. However, they release toxic and corrosive substances during their 
decomposition and cause environmental problems. Therefore, it is necessary to develop a halogen-
free and environment-friendly flame retardant to improve the flame retardancy of PC. 

Cyclotriphosphazene derivatives are important types of inorganic materials containing alternate 
phosphorus and nitrogen atoms in their cyclic skeletons [14–16]. Moreover, 
hexachlorocyclotriphosphazene (HCCP) is often used as a starting material to prepare 
cyclotriphosphazene derivatives due to the high reactivity of the Cl atom. Varieties of derivatives 
have been synthesized by the substitution reaction of Cl with organic nucleophiles (alkyl-CH3, 
alkoxy-OCH3, phenoxy-OPh, amine-NH2, etc.) [11,17–20]. The cyclotriphosphazene derivatives 
display both inorganic properties and organic properties, such as high temperature resistance, flame 
retardancy and self-extinguishing properties [21–24]. A phosphorus/nitrogen-containing compound 
based on maleimide and cyclotriphosphazene was synthesized by Yang and used as the flame 
retardancy for epoxy resin [25]. An LOI value of 36.5% and a UL94 V-0 rating were achieved with a 
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high loading level of a 17 wt% flame retardant. Cao synthesized hexakis (4-nitrophenoxy) 
cyclotriphosphazene (HNTP) and combined it with ammonium polyphosphate to improve the 
intumescent flammability and thermal properties of acrylonitrile-butadiene-styrene copolymer 
(ABS). The LOI value of 25.6% and UL-94 V-0 rating were obtained in the case of ABS (70 wt%) /HNTP 
(15 wt%) /APP (15 wt%) [26]. Notably, although the flame-retardant grade of these composites 
reached V-0 rating, the weight ratios of the flame retardants were too high, which worsens the 
mechanical performance. 

On the other hand, silicon-containing compounds have been considered as a kind of high-
efficient flame retardants [27,28]. For example, Song synthesized carboxyl-containing polysiloxane 
[29] and incorporated it into PC to improve the flame-retardant abilities. The LOI value of the 
composites was 38.5% and the sample passed UL-94 V-0 testing even when the content of flame-
retardant was as low as 1.0 wt%. Unfortunately, the use of platinum dioxide catalyst (PtO2) increased 
the cost of reaction and the difficulty of post-treatment. 

Therefore, it is necessary to combine the excellent flame retardancy of cyclotriphosphazene with 
silicone oil. However, silicon-containing cyclotriphosphazene flame retardants have scarcely been 
reported. He et.al [30] employed hydroxyl silicone oil to replace chlorine on HCCP (SCP), however, 
the chlorine was not completely replaced. Furthermore, a relatively larger amount of flame retardant 
(7.5%) was required to achieve the UL94 V-0 flame-retardant rating for PC materials.  

In this study, a novel silicon-containing cyclotriphosphazene compound was designed and 
prepared through the substitution of hexachlorocyclotriphosphazene with dihydroxypropyl silicone 
oil and sodium phenoxide. It was found that chlorine atoms almost disappeared. Moreover, PC 
material reached the UL94 V-0 flame-retardant grade, with an amount of only 3 wt% of flame 
retardant. In addition, the flame-retardant mechanism was investigated deeply by thermogravimetric 
analysis/infrared spectrometry (TG-IR), scanning electron microscopy (SEM), and cone calorimeter 
tests. 

2. Materials and Methods 

2.1. Materials 

Hexachlorocyclotriphosphazene (HCCP) was pursed from the Zibo Blueprint Chemical Co. Ltd. 
(Zibo, China). Dihydroxypropyl silicone oil (WSS-140, hydroxyl value 1.5%) was purchased from the 
Wushi New Material Co. Ltd. (Hangzhou, China). Phenol, Sodium (Na), Triethylamine(TEA), N-
hexane, Tetrahydrofuran, Benzophenone, talcum powder, and polytetrafluoroethylene (PTFE) were 
purchased from the Jiangsu Qiangsheng Functional Chemical Co. Ltd. (Nantong, China). 
Dichloromethane was purchased from the Sinopharm Group Chemical Reagent Co. Ltd. (Shanghai, 
China). Polycarbonate was purchased from Bayer AG (Leverkusen, Germany). 

2.2. Synthesis of HSPCTP 

The target product (HSPCTP) was prepared according to the following two steps and the 
synthetic routes are shown in Scheme 1. 

Firstly, 3.0 g (8.63 mmol) hexachlorocyclotriphosphazene (HCCP), 16.40 g (8.63 mmol) 
bihydroxypropyl silicone oil and 10 mL dry tetrahydrofuran (THF) were added at 25 °C to a 250 mL 
four-necked flask equipped with a mechanical stirrer, a reflux condenser and a nitrogen inlet. Then 
the reaction temperature was raised to 70 °C, and 1.75 g (17.26 mmol) triethylamine was slowly added 
to the four-necked flask under a nitrogen atmosphere. After completion of the drop-wise addition, 
the reaction continued for another 24 h to obtain a yellow oily product, and was then filtered under 
reduced pressure to remove triethylamine salt. Finally, the lower liquid was separated and then the 
solvent was removed by rotary evaporation. An amount of 15.93 g HSCPT was obtained with a yield 
of 84.82%. 

Anhydrous THF (20 mL) and 1.19 g (51.7 mmol) of sodium swarf were placed in a three-necked 
flask, and 4.87 g (51.7 mmol) of phenol was slowly added at room temperature. The reaction 
continued for 5–6 h. The sodium phenolate solution was successfully prepared. 
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The obtained intermediate product HSCPT and 10 mL dry THF were added to a four-necked 
flask equipped with a mechanical stirrer, a reflux condenser and a nitrogen inlet. After, the HSCPT 
was completely dissolved in dry THF and stirred. The reaction temperature was raised to 70 °C and 
the prepared sodium phenolate solution (5.00 g, 43.15 mmol) was slowly added to the four-necked 
flask under a nitrogen atmosphere. After completion of the addition, the reaction continued for 24 h 
to obtain a pale yellow viscous liquid product. The reaction mixture was concentrated by rotary 
evaporation to remove excess solvent and achieve a thick liquid. Then, the liquid was dissolved with 
the proper amount of methylene chloride and washed with plenty of deionized water 3–4 times until 
the water layer became clear. Afterwards, the lower liquid was separated and the solvent was 
removed by rotary evaporation. The liquid product was placed in a vacuum oven at 60 °C for 12 h. 
An amount of 17.35 g HSPCTP was obtained, with a yield of 84.65%. 

 
Scheme1. The synthetic route of HSPCTP. 

2.3. Preparation of Flame-Retardant PC Composites 

A series of PC/HCPTP composites were prepared by melt blending varying contents of HCPTP 
from 0 to 5 wt%. PC, talcum powder and polytetrafluoroethylene (PTFE) were placed in a vacuum 
oven and dried at 100 °C for 12 h before blending. Then, PC, talc, polytetrafluoroethylene (PTFE) and 
cyclotriphosphazene derivatives were added to the internal mixer and blended at 250 °C for 4 min. 
Then, the mixture was poured into the prepared molds. Thereafter, all samples were cooled slowly 
at room temperature in order to avoid cracking, and then the performance testing was carried out. 

2.4. Characterization 

The Fourier transform infrared (FTIR) spectra were investigated by a Nicolet 6700 FTIR 
(Madison, WI, USA) instrument at room temperature. The samples were mixed with KBr pellets and 
scanned 32 times over a spectral range of 4000–400 cm−1 with a resolution of 4 cm−1. 

The 29Si NMR and 31P NMR spectra were conducted on a Bruker AV II- 400 MHz (Billerica, MA, 
USA) at room temperature, using DMSO-d6 as the solvent. 

Elemental analysis spectra were investigated by a PerkinElmer EA 2400 II (Waltham, MA, USA) 
at room temperature in a vacuum environment. 

To detect volatile pyrolysis products, a PerkinElmer TGA thermogravimetric analyzer was 
coupled to a PerkinElmer Fourier-transform infrared spectrometer (Waltham, MA, USA). Each 
sample was placed in an alumina crucible and heated from 50 to 700 °C at a heating rate of 20 °C/min 
under an N2 atmosphere. The thermogravimetric analyzer and the FTIR spectrometer were connected 
by quartz capillary at 230 °C. 

The field-emission scanning electronic microscopy (FESEM), observed on an Hitachi SU8010 
(Tokyo, Japan), was used to investigate the sectional morphology of the brittle fracture surface of 
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flame-retardant PC composites and the surface of char residue of the flame-retardant PC composites 
after the vertical burning test was investigated by an Hitachi S3400 N (Tokyo, Japan). The surface of 
the particles and the char residue were sputter-coated with a conductive gold layer before 
observation. The EDS result of the residual char was measured by an energy-dispersive X-ray 
spectrometer. 

Limiting oxygen indexes (LOI) were measured by an LOI analyzer (JF-3, Jiangning Co. Ltd., 
Nanjing, China) with sheet dimensions of 130 mm × 6.5 mm × 1.8 mm, according to GB/T 2406-93 
standard. The vertical burning test (UL-94) of each sample was evaluated on a CZF-5-type instrument 
(Shine Ray Instrument Co. Ltd., Nanjing, China) with sheet dimensions of 130 mm × 13 mm × 1.8 mm 
according to ASTMD3801. An average of at least five replicas was used for each sample. 

The fire behavior of the flame-retardant PC composites was evaluated via a cone calorimeter 
device (Fire Testing Technology, East Grinstead, UK) according to ISO 5660-1. The foursquare 
samples with the dimension of 100 mm × 100 mm × 3 mm were exposed to a radiant cone at a heat 
flux of 35 kW/m2. In both micro-combustion calorimetry and cone calorimetry tests, the data we 
obtained from the two parallel tests were close to each other (±5%). 

3. Results 

3.1. Characterization of Chemical Structure 

3.1.1. Fourier Transform Infrared (FTIR) Analysis 

 
Figure 1. FTIR spectra of HCCP, HSCTP and HSPCTP. 
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Figure 2. The XPS spectrum of the synthesized HSPCTP. 

Figure 1 illustrates the FTIR spectra of HCCP, HSCTP and HSPCTP. All the specimens observed 
reached a characteristic P=N absorption peak at around 1250 cm−1, which indicates that the structure 
of the phosphazene ring is not destroyed after the incorporation of silicone oil and phenol. Compared 
with HCCP, the spectrum of HSCTP reached two new peaks at 2960 cm−1 and 1000~1130 cm−1, which 
belong to the Si–CH3 and Si–O bonds from dihydroxypropyl silicone oil, respectively. In other words, 
the silicone oil was successfully introduced into the phosphazene ring. Meanwhile, another two 
peaks appear at 1500 cm−1 and 970 cm−1 in the spectrum of HSCTP, which are attributed to the 
deforming vibration of the benzene ring skeleton and the stretching vibration of the P–O–C bond, 
respectively. This indicates that the partial chlorine atom in the phosphazene ring was replaced by 
the phenoxy group. Notably, the vibration peak (600 cm−1 and 520 cm−1) of the P–Cl bond almost 
disappears in the spectrum of HSCTP, suggesting that the chlorine was almost replaced by the 
silicone oil and phenoxy groups. This is further confirmed by the XPS spectrum, as shown in Figure 
2, and the elemental data of HSPCTP are summarized in Table 1. It is found that the weight ratio of 
chlorine is as low as 0.63 wt%, which suggests that it can meet the requirements of RoHS (the 
Restriction of the use of certain hazardous substances in electrical and electronic equipment). 

Table 1. Elemental data of HSPCTP. 

Sample Peak BE (eV) Area (P) Atom (%) Quality (wt%) 
C 1s 281.95 16394.23 58.49 44.10 
N 1s 395.35 1459.72 2.93 2.58 
Cl 2p 197.65 179.06 0.28 0.63 
Si 2p 99.1 3242.93 13.99 24.62 
P 2p 131.14 1305.92 3.87 7.54 
O 1s 529.59 16307.59 20.45 20.54 
Total   100.01 100.01 

3.1.2. Nuclear Magnetic Characterization 

The chemical structure of the target product HSPCTP was further characterized via NMR 
including 31P and 29Si NMR, as shown in Figures 3 and 4, respectively. For the 31P NMR spectrum, the 
peaks at 4.90–6.40 ppm and 8.00–10.53 ppm correspond to the phosphorus with two dihydroxypropyl 
silicone oil groups and two phenoxy groups, respectively. The peak at 12.30–14.35 ppm is attributed 
to the phosphorus with one phenoxy group and one dihydroxypropyl silicone oil group. In other 
words, the synthesized HSPCTP is a mixture of different groups. The 29Si NMR spectrum shows two 
peaks, which correspond to two different environments of silicon in the dihydroxypropyl silicone oil. 
The results indicate that the groups of dihydroxypropyl silicone oil were successfully connected to 
the hexachlorocyclotriphosphazene. 
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Figure 3. The 31P NMR spectrum of the synthesized HSPCTP. 

 
Figure 4. The 29Si NMR spectrum of the synthesized HSPCTP. 

3.2. Effect of HSPCTP on the Flame Retardancy of PC-Based Blends 

Table 2. Flame retardancy of the PC/HSPCTP blends. 

Sample PC wt% 
Talc 
wt% 

PTFE  
wt% 

HSPCTP 
wt% 

UL-94 rating  
(1.8 mm) Dripping or not LOI/% 

Pure PC 100 0 0 0 V-2 Yes 25 
PC-HSPCTP0 100 5 0.5 0 V-2 Yes 25 
PC-HSPCTP2 100 5 0.5 2 V-1 No 26.2 
PC-HSPCTP3 100 5 0.5 3 V-0 No 28.4 

The flame retardancy of pure PC and its blends were measured in terms of LOI and UL-94 
testing, and the experimental data are listed in Table 2. PTFE can prevent PC melt dripping and talc 
can strengthen the mechanical properties of PC. Both pure PC and PC/talc/PTFE specimens give 25% 
of LOI value and UL-94 V-2 rating due to the serious dripping. Notably, the incorporation of HSPCTP 
can improve the flame retardancy of the PC-based blends. In the case of 2 wt% HSPCTP loading level, 
the PC-based blend shows 26.2% of the LOI value and UL-94 V-1 rating without dripping. 
Furthermore, the incorporation of 3 wt% HSPCTP endows the PC-based blend with 28.4% of LOI and 
UL-94 V-0 rating without dripping. On the other hand, we calculated the chlorine content (W) of 
PC/HSPCTP3 with the formula shown in Equation 1 and found that the chlorine content of 
PC/HSPCTP3 is 0.017%, which is lower than that of RoHS. W 100% (1) 

3.3. Cone Calorimetry Analysis 

The cone calorimeter has been widely used to evaluate the flammability and potential fire safety 
of polymer materials, which can reflect the flame-retardant properties of materials precisely [3,4]. 
Table 3 presents detailed information on the combustion behavior of pure PC and PC/HSPCTP3 
composites obtained from the cone calorimeter tests at a heat flux of 50 kW/m2. 

As shown Table 3, the time to ignition (TTI) of PC/HSPCTP3 composites decreases from 58 to 41 
s. This reveals that the flame-retardant additive of HSPCTP not only decomposes ahead of time itself, 
but also promotes the PC matrix to degrade at a lower temperature, which contributes to charring 
earlier during combustion and improves the flame retardancy of PC. This phenomenon is in 
agreement with others reports [24,25,27]. 
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Figure 5. Heart release rate (HRR) (a), total heat release (THR) (b), smoke produce rate (SPR) (c) and 
total smoke production (TSP) (d) curves of pure PC and PC/HSPCTP3 composites. 

The heat release rate (HRR) and the total heat release (THR) are important parameters to 
quantify the size of fire. Lower HRR and THR values show an effective flame retardancy. Figure 5 
gives the HRR, the THR, the smoke produce rate (SPR) and the total smoke production (TSP) curves 
of pure PC and PC/HSPCTP3 composites. The results show that pure PC burns rapidly after ignition 
and the highest peak of HRR appears at 110 s, with a peak heat release rate (PHRR) of 438.38 kW/m2, 
as Figure 5a and Table 3 reveal. However, the highest HRR peak of PC/HSPCTP3 composites appears 
at 140 s with a PHRR of 245.90 kW/m2, which is later and lower than that of pure PC. This may be 
because the HSPCTP additive decomposes and promotes the degradation and charring of the PC 
matrix earlier. Besides, silicon oxide derivatives and phosphoric acid derivatives are produced by 
decomposition of HSPCTP, which promotes decomposition of PC [5,20,30,36]. Figure 5b and Table 3 
show that the THR curve of PC/HSPCTP3 composites is lower than that of pure PC, and the THR 
value decreased from 71.56 to 59.11 MJ/m2. This is attributed to the fact that the PTFE formed a 
network structure after mixing and to the decomposition of HSPCTP, which contains phosphazene 
and hydroxypropyl silicone oil groups [37–43]. These results show that HSPCTP has a synergistic 
flame-retardant effect with PTFE, and that HSPCTP plays a major role in flame retardancy. 

Figure 5c and Table 3 show that the SPR curve of pure PC presents a highest peak at 105 s with 
a value of 0.135 m2/s. However, the SPR curve of PC/HSPCTP3 composites appears to peak at 49 s, 
which is earlier than that of pure PC. This phenomenon indicates that HSPCTP decomposed first and 
produced CO2 and phosphoric acid. Besides, the SPR curve of PC/HSPCTP3 composites is lower than 
that of pure PC. This also indicates that HSPCTP promotes the formation of a dense carbon layer by 
PC, which suppresses combustion and decreases the release of a large quantity of smoke. From Figure 
5d and Table 3, it is evident that the TSP value of PC/HSPCTP3 is 11.57 m2/kg, which is smaller than 
that of pure PC. This also shows that HSPCTP has a good smoke-suppressing effect on PC. 

As Table 3 reveals, the average value of effective heat combustion (EHC) for PC/HSPCTP3 is 
15.90 MJ/kg, which is smaller than that of pure PC. This phenomenon occurs because HSPCTP 
contains phosphazene and dihydroxypropyl silicone oil groups, which produce noncombustible 
gases, such as NH3, CO2, H2O and volatile phosphide during the combustion process [37–43]. Finally, 
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the average value of HRR for PC/HSPCTP3 is 131.93 kW/m2, which is also smaller than pure PC. As 
discussed above, HSPCTP exhibits a high flame retardancy. 

Table 3. Cone calorimeter data for pure PC and PC/HSPCTP3 composites. 

Sample Pure PC PC/HSPCTP3 
TTI(s) 58 41 

Peak-HRR(kW/m2) 438.38 245.90 
t Peak-HRR(s) 110 140 

THR(MJ/m2) 71.56 59.11 
Peak-SPR(m2/s) 0.135 0.045 

t Peak-SPR(s) 105 98 
TSP(m2/kg) 20.25 11.57 

av-EHC(MJ/kg) 23.82 15.90 
av-HRR(kW/m2) 170.26 131.93 

3.4. Morphology and EDS Analysis of Char Residue 

 
Figure 6. SEM images of the char residue of the PC/HSPCTP composites: outer surface of pure PC (a), 
PC/HSPCTP3 (c); inner surface of pure PC (b), PC/HSPCTP3 (d). 

 
Figure 7. EDS results of the surface for PC/HSPCTP3 composites. 

To investigate the relationship between the morphology of the char layers and the flame-
retardant properties of the PC/HSPCTP composites, the char residues of the PC/HSPCTP composites 
are measured by SEM, as shown in Figure 6. It is evident that the outer surface of pure PC presents 
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large holes due to insufficient char formation during combustion, as shown in Figure 6a; therefore, 
heat and flammable volatiles can penetrate the char layer and enter the flame zone. The inner surface 
has larges holes and cracks, as shown in Figure 6b, which lead to reduced flame retardancy. On the 
contrary, there is no hole observed on the outer surface of the PC/HSPCTP3 composite char layer, but 
there are many microspheres on the surface, as shown in Figure 6c. This is due to the decomposition 
of HSPCTP. These microspheres block the pores and promote the formation of a dense and regular 
carbon layer, which improves the flame retardancy of PC. Another reason is that the silica derivatives 
react with the PC chain to produce a cross-linked structure, which also promotes the formation of a 
compact carbon layer. In addition, phosphorus, nitrogen and benzene ring structures can also 
promote the formation of a regular carbon layer [16,25–32]. The inner surface, shown in Figure 6d, 
has more holes and microspheres. This phenomenon may be due to a large amount of inert gases, 
such as carbon dioxide, being decomposed by HSPCTP [15,16,25–32].  

To further investigate the quality of the residual char, the composition of the char layer was 
investigated by the scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS). 
It was found that microspheres on the char surface of the PC/HSPCTP3 blend contain the elements 
of C, O, P and Si, as shown in Figure 7a. This suggests that the microspheres may be silica 
microspheres, which block the pores and promote the formation of a dense and regular carbon layer. 
However, the non-microsphere part of the carbon layer contains the elements of C, O and Si, as shown 
in Figure 7b, which indicates that the silica derivatives react with the PC chain to produce cross-
linked structures, and also promote the formation of a compact carbon layer [15,16,25,27–32]. 
Although the peak corresponding to phosphorus in Figure 7b contains a small portion, it is lower 
than the lower limit of instrument detection. 

3.5. FTIR Spectra of Residual Char 

In order to further investigate the formation of the intumescent char layer, the residual char of 
pure PC and PC/HSPCTP3 composites was examined by FTIR spectra, as revealed in Figure 8. The 
peak of pure PC at 1761 cm−1 belongs to the ester bond (–COO–), which is a part of the PC chain 
structure. The multiple peaks around 760 cm−1 correspond to the characteristic of the para-substituted 
benzene ring. The multiple peaks around 1200 cm−1 correspond to the C–O bonds. These prove the 
integrity of the PC chain structure. However, the peak of pure PC disappears at 1761 cm−1 and 
decreases at around 1500 cm−1, 1200 cm−1 and 760 cm−1 or even disappears. This phenomenon indicates 
that the PC chain structure was destroyed after burning. Besides, new peaks around 3405 cm−1 and 
3098 cm−1 appeared, which correspond to the hydroxyl group and the C–H bonds on phenol, 
respectively. The peaks at 2873 cm−1 and 2901 cm−1 correspond to the aliphatic C–H bonds. The peaks 
around 1750 cm−1, 1300 cm−1 and 1100 cm−1 correspond to the aromatic ester groups. These also 
indicate that PC decomposes to produce small molecules after burning. 

 
Figure 8. FTIR spectrum of the residual char of Pure PC, PC/HSPCTP3 composites obtained after the 
cone calorimeter test. 
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Compared with pure PC, the peaks at 3405 cm−1 and 3098 cm−1 of the residual char for 
PC/HSPCTP3 became stronger. This was caused by the degradation of HSPCTP, which reacted with 
PC and produced aliphatic amines (N–H, 3405 cm−1) and aromatic amines (N–H, 3098 cm−1). The 
peaks at 2370 cm−1 and 2365 cm−1 belong to P–H bonds, which indicates that compounds containing 
phosphorus appeared. The peaks at 1460 and 1580 cm−1 are assigned to the remaining aromatic rings 
after combustion [8–16,25,27–32]. The peak at 1196 cm−1 is attributed to the stretching vibration of P–
N bonds in phosphazene, which provides direct evidence for the phosphazene structure with 
excellent thermal stability existing in the residual char [10–16,26–32]. The peak at 1110 cm−1 is ascribed 
to the stretching vibration of PO2/PO3 in phosphate carbon complexes and aliphatic Si–O–C and Si–
C bonds, and the peak at 912 cm−1 belongs to the stretching vibration of the P–O–P bond [31,32]. These 
indicate that polyphosphoric acid and silicon-containing compounds appeared during the thermal 
degradation of PC. The formed acid can promote the formation of the carbonaceous char by 
carbonization. The silicon-containing compounds also react with the PC matrix to produce a cross-
linked structure, which improves drip resistance and carbon layer formation. 

3.6. FTIR Spectra of Residual Char 

To understand the flame-retardant effect of HSPCTP on PC, the TG-IR of pure PC and 
PC/HSPCTP3 were investigated, as shown in Figure 9. It is clear that both the curves of pure PC and 
PC/HSPCTP3 show characteristic bands of water (3650 cm−1, 1259 cm−1, O–H bond) [33,34], aliphatic 
compounds (2972 cm−1, 1248 cm−1, 748 cm−1) [35,36], carbon dioxide (2300–2400 cm−1) [35,36], 
compounds containing aromatic rings (1610 cm−1, 1505 cm−1) [35,36] and nitrogen compounds (1200 
cm−1) [33]. The characteristic bands of the two samples are similar. 

 
Figure 9. TG-IR spectra of pure PC (a) and PC/HSPCTP3 (b) at different decomposition 

temperatures. 

Moreover, it is also observed that the pure PC and other composites start to produce gas 
products at 24.5 min at a temperature of 590 °C. Pure PC continues to generate gas from 490 °C to 610 
°C. However, PC/HSPCTP3 composites release a lot of gas products at 26 min with the temperature 
at 520 °C. As the temperature increases, the amount of gas generation reduces significantly. It can be 
concluded that HSPCTP can promote decomposition to produce a large amount of inert gas to 
achieve a flame-retardant effect quickly. 

3.7. Flame-Retardant Mechanisms of PC/HSPCTP Blends 

As discussed above, HSPCTP is an efficient flame retardant for PC, which involves both a gas 
phase and a solid phase flame-retardant effect. As shown in Figure 10, the main degradation process 
is separated into three stages. In the first degradation stage, HSPCTP decomposed into silicone 
derivatives and a phosphazene ring-opened compound (chemical reaction 1.1). In this case, the 
phosphazene ring-opened compound further decomposed into phenoxy radical (PH–O·), ammonia 
(gas source) and metaphosphoric acid (acid source) [31,32]. Moreover, the phosphazene ring-opened 
compound is prone to generating phosphorus-based radicals (PO·, PO2·, etc.), which could manifest 
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as radical scavengers to trap the H· and HO· for combustion reactions in the gas zone; it is believed 
that these radical scavengers are beneficial to flame retardancy [32]. With increasing temperature, the 
Fries rearrangement reaction of PC chains occurs (chemical reaction 1.2) [36]. This reaction can 
accelerate cross-linking and the carbon formation of PC. 

In the second degradation, the metaphosphoric acid accelerated the dehydration of PC, and the 
silicone derivatives decomposed into other small molecule silicone derivatives and carbon dioxide 
(chemical reaction 1.3) [6–15,36]. The reactions 1.1 and 1.3 produced inert gases to promote flame 
retardancy. 
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Figure 10. Schematic illustration of the flame-retardant mechanism of PC/HSPCTP composites. 

In the last stage, silicon-containing groups attacked the hydroxyl groups formed after the PC 
rearrangement reaction to form cross-linked carbon-forming silyl ether structures, which promoted 
the formation of dense, regular carbon layers (chemical reaction 1.4) [5–18,36]. The silicon-containing 
compounds also reacted with the PC matrix to produce a cross-linked structure, which improved 
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drip resistance and carbon layer formation. Besides, the formed acid can react with the PC chains and 
promote the formation of cross-linked structures containing phosphorus (chemical reaction 1.5). 
Undecomposed cyclotriphosphazene reacted with short-chain molecules produced by the 
decomposition of PC, and then produced phenol, nitrogen-containing compounds, phosphorus-
containing compounds and aliphatic compounds (chemical reaction 1.6). Some parts of silicon oil 
groups also turned out to be SiO2 (chemical reaction 1.7). 

4. Conclusions 

A novel flame retardant, HSPCTP, with phenoxy and hydroxypropyl silicone oil groups, was 
designed and incorporated into PC to improve its flame retardancy. Combining the advantages of 
cyclotriphosphazene and silicon compounds, PC composites passed UL-94 V-0 rating with only 3 
wt% HSPCTP. This study found that HSPCTP stimulated PC matrix decomposition and char 
formation ahead of time and enhanced the char yield and the thermal stability of PC/HSPCTP 
composites at high temperature. Furthermore, HSPCTP also promoted the formation of a uniform, 
sealing, intumescent and continuous char layer with high thermal stability due to the existence of an 
abundant aromatic structure, phosphazene and hydroxypropyl silicone oil groups in the HSPCTP 
additive. The formed char layer prevented heat transmission and diffusion, limited the production 
of combustible gases, inhibited the emission of smoke and then led to the reduction of the heat release 
rate and the smoke produce rate. On the other hand, hydroxypropyl silicone oil groups generated a 
large amount of inert gases, such as carbon dioxide, at a high temperature, which diluted flammable 
and combustion-supporting gas. In other words, HSPCTP showed both gas-phase and solid-phase 
flame-retardation. As a result, the introduction of the prepared HSPCTP flame retardant additive to 
PC led to a higher flame-retardant efficiency and thermal stability. 
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