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Abstract: Investigating the constitutive relationship of a material can provide better understanding of
the mechanical properties of a material and has an irreplaceable effect on optimizing the performance
of a material. This paper investigated a constitutive model for tungsten/polymethyl-methacrylate
(W/PMMA) composite microcellular foams prepared by using melt mixing and supercritical carbon
dioxide foaming. The stress-strain relationships of these foams with different W contents were
measured under static compression. The elastic modulus and compressive strength values of the
foams were remarkably greater than those of the pure PMMA foams: at a W content of 20 wt %, these
values were increased by 269.1% and 123.9%, respectively. Based on the Maxwell constitutive model,
the relevant coefficients were fitted according to the experimental data of different relative densities
and W contents in quasi-static compression. According to the numerical relationships between the
relevant coefficients and the relative densities and W contents, the quasi-static mechanical constitutive
model of W/PMMA composite microcellular foams with W contents of 0~60 wt % and relative
densities of 0.15~0.55 were predicted. This study provided basic data for the optimal design of the
W/PMMA composite microcellular foams and proposed a method for investigating the mechanical
properties of composite microcellular foam materials.

Keywords: composite material; microcellular foam; constitutive model; data fitting;
parameter identification

1. Introduction

The constitutive relationship is the relationship between the stress tensor and the strain tensor,
which is a comprehensive reflection of the macroscopic mechanical properties of a structure or material.
Investigating the constitutive relationship can provide better understanding of the mechanical properties
of a material and has an irreplaceable effect on the performance optimization of a material [1–7].
Foam materials are widely used in automotive, helmet, aerospace, and transportation packaging
fields because of their light weight, flexible design, good cushioning and shock absorption properties,
etc. [8–12]. To reasonably design a buffer structure and avoid resource waste and economic loss, it is
necessary to accurately grasp the constitutive relationship of a buffer material or structure. The design
of structural elements for impact safety and crashworthiness analysis is important [13–18], and usually
based on finite element methods. The constitutive relationships of these materials must be fully
understood in order to provide material parameter input into the finite element model [19–24].
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Many researchers have proposed simplified constitutive equations that can be input into finite
element models for impact simulation calculations. Rusch et al. [25] proposed a simple and general
power exponential model, which can only be used to simply fit experimental data, i.e., the model cannot
explain the effect of density. The Gibson-Ashby model, which is based on structural behavior [26,27],
can explain the effect of density, but the microstructure of polymer foam needs to be analyzed, and the
applicability of the model is limited. Both Subhash [28] and Avalle [29] proposed phenomenological
constitutive models suitable for structural foams subjected to large deformations; these models can
fully represent the three characteristics of compressive stress-strain response, i.e., linear elasticity,
plastic plateau and densification stage. Although these models can systematically change the model
parameters to account for the effect of density, it was not possible to quantitatively analyze the effect
of foam density on the model parameters. Voga [30] proposed a five-parameter model named the
Maxwell model. The Maxwell model can be used to predict the stress-strain curve of a foam and obtain
the relationship between the parameters and the relative density. The use of the Maxwell model can
reduce the number of experimental tests. Each parameter in the model has a mechanical significance,
which can help researchers to better study the mechanical properties of foam materials.

In this study, we prepared W/PMMA composite microcellular foams by melt-mixing and
supercritical carbon dioxide foaming methods and then tested the static compression mechanical
properties of these composite microcellular foam materials. Studies have shown that density is the
most important feature affecting foam compression performance. [26] We used the Maxwell model to
fit the static compressive stress-strain curves of the W/PMMA composite microcellular foam materials.
The experimental data accurately reflected the typical behavior of these microcellular foams and were
consistent with the model calculation results, which verified the accuracy of the model. Through a
series of model parameter identifications of different relative densities and W contents, we innovatively
obtained the relationship between relative density, W content and model parameters in the static
mechanical constitutive model of W/PMMA composite microcellular foam material. The mechanical
properties of W/PMMA composite microcellular foams with W contents of 0–60 wt % and relative
densities of 0.15–0.55 were predicted. This work innovatively achieved the prediction of the mechanical
properties of W/PMMA composite microcellular foams with different relative densities and W contents
through extensive data fitting and model parameter identification, which can significantly reduce the
number of experimental tests and increase the speed of analysis and prediction. We provided a basic
method for optimizing the design of various W/PMMA composite microcellular foams. The calculation
method in this paper can be further extended to other polymer systems and the addition of composite
microcellular foams.

2. Materials and Methods

2.1. Preparation of W/PMMA Composite Microcellular Foams

The W particles and PMMA were fed into the melt-mixer (Torque Rheometer XSS-300, Shanghai
Kechuang Rubber Plastics Machinery Set Ltd. Co., Shanghai, China) to prepare the composites from W
particles and PMMA with various components. The melt-mixing was performed at 240 ◦C for 20 min.
The rotor rotating speed was set to 60 r/min. Then, the composites were hot pressed at 170 ◦C for
60 min, thereby forming sheets with thicknesses of approximately 2 mm.

Then, the W/PMMA samples were placed into a specific mold with an inner height of 3 mm in a
high-pressure autoclave under a fixed gas pressure of 18 MPa and at four foaming temperatures (65 ◦C,
80 ◦C, 95 ◦C and 120 ◦C). The physical blowing agent in this work was carbon dioxide. After complete
saturation (approximately 12 h), cell growth was induced by the rapidly releasing the pressure within
1 s, and the foams were stabilized when the autoclave was cooled with a mixture of ice and water after
10 s of foaming.
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2.2. Compressive Tests of W/PMMA Composite Microcellular Foams

The compressive modulus and strength of neat PMMA and W/PMMA composite microcellular
foams were measured by a universal testing machine (QJ210A-5000N, Shanghai Instrument Co.,
Ltd. tilting technology, Shanghai, China) with a constant displacement rate of 0.5 mm/min under
atmospheric pressure and ambient temperature. Each sample was tested three times, and the average
value was calculated.

2.3. Constitutive Models of Foam Material

The compressive stress-strain curve of foam material has three distinct stages: linear elastic region,
plateau region and densified region. Rusch [25] first presented one widely accepted model that can
describe the relationship between compressive stress and strain:

σ(ε) = Aεm + Bεn with 0 < m < 1, 1 < n < ∞ (1)

where A, B, m, and n are curve-fitting constants that can be empirically determined. The first power
formulation is used to fit the elastic-plateau region, while the second is used to model the densification
region. Although this model represents the load-compression behavior of a flexible foam, it is inaccurate
in describing the densification stage.

Then Gibson and Ashby proposed three equations to describe each region as follows [26]:

σ(ε) = Eε when σ ≤ σγ (2)

σ(ε) = σγ when εγ ≤ ε ≤ εD
(
1−D−1

)
+ εγ (3)

σ(ε) = σγD−1
(
εD

εD − ε

)m
when ε > εD

(
1−D−1

)
+ εγ (4)

where E is the elastic modulus, σγ is the yield stress, εD is the densification strain, and D and m are
constants. However, the plateau region of this model has a constant value, and the stress-strain curve
is not smooth at the boundaries of the two regions.

Liu and Subhash [28] proposed a mathematical formula to describe the stress-strain relationship
of polyurethane foam in terms of the linear elastic, yielding plateau and densification stage of the foam
under compressive loading:

σ(ε) = A
(

eαε − 1
B + eβε

)
+ eC(eγε − 1) (5)

where parameters A, B, α and β are constant for a given initial density and strain rate and parameters
C and γ depict the densification stage. Avalle et al. [29] used the exponential function, which provided
a relevant improvement in the fit of the curve knee at the connection of the elastic region and the
plateau region:

σ(ε) = A
(
1− e−(E/A)ε(1−ε)m)

+ B
(
ε

1− ε

)n
(6)

where: A, B, E, m and n are the parameters to be identified; note that the first item of the constitutive
model characterizes the linear elasticity and yielding plateau region of the polyurethane foam during
the compression process, and the second term represents the densification region.

Then, Voga [30] proposed a new phenomenological model named the Maxwell model to describe
the compressive performance curve of foams. The stiffness coefficient k is equivalent to the elastic
modulus of the foam, the damping coefficient c is equivalent to the plateau stress, which is the
compressive strength, the stiffness kP represents the slope of the plateau region, and the stiffness
coefficient kD is the 2-parameters (γ and n) exponential function of strain, which describes the
densification region:

kD(ε) = γ(1− eε)n (7)
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σ(ε) = e−
kε
c

(
−1 + e

kε
c

)
c +

[
kP + γ(1− eε)n

]
ε (8)

The values of parameter n could be only positive even numbers.

3. Results

3.1. Characterization of W/PMMA Composite Microcellular Foams

Figure 1 shows fracture micrographs of W/PMMA composites with various W contents. As the W
content increased, the fracture surface of the composite material became rougher, and the W particle
agglomeration became more substantial. Figure 2 shows a comparison of the theoretical density and
experimental density of the W/PMMA composites. The degree of densification of the composites was
greater than 97.5 %, and when the W content reached 73 wt % (15 vol %), the experimental density
was significantly less than the theoretical density. Some voids can be clearly seen in Figure 1f; hence,
the composite material is not dense, which may result in CO2 enrichment in the nondensified voids
during the supercritical foaming process. This phenomenon will cause the formation of large cells,
resulting in uneven foaming. Therefore, subsequent experimental studies did not consider the content
of W particles of 73 wt %.
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(c) 20 wt % W/PMMA, (d) 40 wt % W/PMMA, (e) 60 wt % W/PMMA, and (f) 73 wt % W/PMMA composites.
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with different contents of W particles produced at a saturation pressure of 18 MPa, a foaming 
temperature of 80 °C and a foaming time of 10 s: (a) pure PMMA foam, (b) 10 wt % W/PMMA foam, 
(c) 20 wt % W/PMMA foam, and (d) 40 wt % W/PMMA foam (e) 60 wt % W/PMMA foam. 

Figure 2. Comparison of theoretical density and experimental density of W/PMMA composites.

Figures 3 and 4 show the morphology and density of the W/PMMA composite microcellular
foams with different contents of W particles. The cell sizes of the W/PMMA composite microcellular
foams are significantly smaller than those of the pure PMMA foams, and the cell density of the former
is significantly greater. According to the classical nucleation theory [31], cell nucleation needs to
overcome a large nucleation energy barrier, and cells are difficult to nucleate in a pure PMMA matrix.
The remaining gas in the PMMA matrix was insufficient to generate new cells and instead entered
existing cells. As a result, the cell sizes increased rapidly. With the added W particles, the nucleation
energy barrier was greatly reduced, and additional cells were formed. After the cells stabilized, the
gas remaining in the PMMA matrix that was unable to generate cells was distributed into the already
formed cells, so that the cell sizes were smaller than those obtained by pure PMMA. W particles can
act as heterogeneous nucleation agents to reduce the energy barrier and lead to higher cell densities
(~5 × 1010 cells/cm3) and smaller cell sizes (~1.9 µm).
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Figure 3. FESEM images of the typical cell morphology of W/PMMA composite microcellular foams
with different contents of W particles produced at a saturation pressure of 18 MPa, a foaming temperature
of 80 ◦C and a foaming time of 10 s: (a) pure PMMA foam, (b) 10 wt % W/PMMA foam, (c) 20 wt %
W/PMMA foam, and (d) 40 wt % W/PMMA foam (e) 60 wt % W/PMMA foam.



Polymers 2019, 11, 1136 6 of 14
Polymers 2018, 10, x FOR PEER REVIEW  6 of 14 

 

 
Figure 4. Density of W/PMMA composite microcellular foams with different contents of W particles. 

3.2. Mechanical Properties of W/PMMA Composite Microcellular Foams 

Figure 5 shows the typical compressive stress–strain curves of pure PMMA foams and 20 wt % 
W/PMMA composite microcellular foams. The stress-strain curves of the microcellular foams have 
three distinct stages: linear elastic region, plateau region and densified region. Compared with the 
pure PMMA foams, the W/PMMA composite microcellular foams obtained under the same foaming 
conditions have a shorter plateau region and exhibit significantly greater elastic modulus (269.1 % 
greater) and compressive strength (123.9 % greater).  

 
Figure 5. Compressive stress-strain curves of pure PMMA foams and W/PMMA composite 
microcellular foams containing 20 wt % W particles produced at a saturation pressure of 18 MPa, a 
foaming time of 10 s and foaming temperatures of 65 °C and 120 °C. 

Figure 4. Density of W/PMMA composite microcellular foams with different contents of W particles.

3.2. Mechanical Properties of W/PMMA Composite Microcellular Foams

Figure 5 shows the typical compressive stress–strain curves of pure PMMA foams and 20 wt %
W/PMMA composite microcellular foams. The stress-strain curves of the microcellular foams have
three distinct stages: linear elastic region, plateau region and densified region. Compared with the
pure PMMA foams, the W/PMMA composite microcellular foams obtained under the same foaming
conditions have a shorter plateau region and exhibit significantly greater elastic modulus (269.1 %
greater) and compressive strength (123.9 % greater).
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Figure 5. Compressive stress-strain curves of pure PMMA foams and W/PMMA composite microcellular
foams containing 20 wt % W particles produced at a saturation pressure of 18 MPa, a foaming time of
10 s and foaming temperatures of 65 ◦C and 120 ◦C.
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Because the mechanical properties of the foams have a significant correspondence with the
density, the relationship between the elastic modulus, the compressive strength obtained by the
stress-strain curves and the relative density is shown in Figure 6. Even under the same relative density,
the elastic modulus and compressive strength values of the W/PMMA composite microcellular foams
are approximately 50 % and 40 % greater than those of the pure PMMA foams, respectively. The W
particles provide a point-like dispersion enhancement to the PMMA matrix. In addition, under the
same relative density, the mechanical strength of the polymer foam depends not only on the matrix
material, but also on its cell structure [32]. Several authors imply that smaller cell size might improve
the mechanical strength [33,34]. Previous studies have shown that the heterogeneous nucleation
of W particles can reduce the cell size of pure PMMA foams to approximately 1/3 and significantly
homogenize the cell distribution, which greatly improves the mechanical properties of composite
microcellular foams.
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composite microcellular foams with varying relative densities.

3.3. Constitutive Model of W/PMMA Composite Microcellular Foams

In this study, we chose the Maxwell model to describe the compressive curves of W/PMMA
composite microcellular foams. According to the experimental curves of the foams, the least squares
fitting method was used to obtain five parameters in the constitutive equation. The calculated
parameters are listed in Table 1. The experimental and empirical fit curves are shown in Figure 7.
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Table 1. Parameters in Maxwell model.

W Content in the
Microcellular Foams Relative Density (ρr) k (MPa) c (MPa) kp (MPa) n γ (MPa)

0 wt %

0.134 39.6 2.15 5.5 4 5.84
0.290 114.3 7.77 17.4 4 10.9
0.463 152.8 11.87 39.2 4 12.8
0.541 180.5 23.68 49.4 2 43.4

10 wt %

0.196 78.4 5.14 0.7 4 10.8
0.287 142.0 11.14 13.7 4 24.1
0.381 211.4 11.68 31.5 4 28.9
0.513 265.9 19.23 41.7 2 59.2

20 wt %

0.200 105.4 6.45 13.2 4 14.2
0.242 144.2 9.88 16.9 4 18.2
0.320 201.7 11.47 34.6 4 24.1
0.522 306.3 18.66 44.8 2 62.0

40 wt %

0.194 103.6 6.96 3.7 4 14.0
0.310 168.3 9.93 16.1 4 21.4
0.347 191.9 10.02 42.7 4 24.6
0.512 259.6 16.74 52.8 2 52.5

60 wt %

0.180 95.3 4.10 6.9 4 11.2
0.314 148.4 8.40 21.8 4 20.1
0.344 192.2 9.64 43.1 4 34.3
0.526 260.0 17.92 53.3 2 67.0

Although Voga [30] considered the parameter c representing the plateau stress, in this paper, the
compressive strength (i.e., the plateau stress) should be based on the plateau stress of the curve fitted
by the Maxwell constitutive equation, not the value of the parameter c.

20 wt % W/PMMA composite microcellular foams with relative densities of 0.200, 0.242, 0.320
and 0.522 were analyzed. The Maxwell model curves are compared with the experimental results.
Figure 7 clearly shows that under the static compression of foams with different relative densities,
the correlation coefficients between the calculated curves and the experimental curves are greater than
0.97, which fully demonstrates the high accuracy of the Maxwell model used in this paper.
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4. Discussion

4.1. Parameter Identification of W/PMMA Composite Microcellular Foams

Figure 8 shows the relationships between the parameters in the Maxwell model and the relative
density of the W/PMMA composite microcellular foams except the parameter n. This parameter must
be a positive and even number: it is 4 for high density foam (ρr > 0.5) and 2 for low density foam
(0.15 ≤ ρr ≤ 0.5). The analysis of each parameter in the Maxwell model of W/PMMA composite
microcellular foams shows that the parameter k is linear with the 1/3 power of the relative density,
and the parameters c, kp, and γ are parabolically related to the relative density, the 1/3 power of the
relative density, and the square of the relative density, respectively. The variance in the fitting of each
parameter of W/PMMA composite microcellular foams is greater than 0.9. The relationship between
each parameter and relative density is listed in Table 2.
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Table 2. Relationship between each parameter and relative density in the Maxwell model.

W Content in the W/PMMA
Microcellular Foams

k = A ∗ ρr + B c = D ∗ ρ2
r + E ∗ ρr + F kP=M ∗ ρ2/3

r +N ∗ρ1/3
r +O γ = P ∗ ρ4

r + Q ∗ ρ2
r + R

A B D E F M N O P Q R

0 wt % 450 −189 116 −31.8 5.03 423 −416 107 871 −154 11.5
10 wt % 871 −428 9.48 34.5 −1.35 −95.2 325 −157 243 131 7.40
20 wt % 905 −421 −25.8 54.5 −2.83 −490 834 −309 278 116 9.64
40 wt % 707 −307 47.8 −3.43 5.91 −85.5 351 −172 298 81.4 10.6
60 wt % 687 −299 35.4 14.9 0.260 −95.8 328 −149 37.2 222 3.09
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Table 2 shows that the parameters in the Maxwell model are related not only to the relative
density but also to the W content. Taking the W content as an independent variable, the coefficient of
the relationship between each parameter and the relative density is the dependent variable, and the
relationships can be found in Figure 9. The variance in the fitting of each coefficient of each parameter
is greater than 0.95.
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By fitting and analyzing the parameters corresponding to each W content in the W/PMMA
composite microcellular foams, the relationship between relative density, W content and various model
parameters can be obtained, as shown in Figure 10. The Maxwell model of the composite microcellular
foams with W contents of 0~60 wt % and relative densities of 0.15~0.55 can be predicted, and simulated
stress-strain curves can be obtained.



Polymers 2019, 11, 1136 12 of 14
Polymers 2018, 10, x FOR PEER REVIEW  12 of 14 

 

 
Figure 10. Parameters (a) 𝑘, (b) 𝑐, (c) 𝑘 , and (d) 𝛾 in the Maxwell model as functions of relative 
density and W content. 

4.2. Application and Verification of the Constitutive Model 

Figure 11 compares the predicted curve of the 50 wt % W/PMMA composite microcellular foam 
with a relative density of 0.184 to the experimental curve. The calculated parameters of the 50 wt % 
W/PMMA composite microcellular foam with a relative of 0.184 are shown in Table 3. The correlation 
coefficient of the model results and the experimental results is greater than 0.98, which verified the 
accuracy of the Maxwell model and the correct fitting relationship of each parameter. 

Table 3. Parameters of the 50 wt % W/PMMA composite microcellular foam in the Maxwell model. 

Relative Density (ρr) k (MPa) c (MPa) kp (MPa) n γ (MPa) 
0.184 100.5 4.94 2.0 4 13.3 

 
Figure 11. Comparison of experimental and simulated curves of the 50 wt % W/PMMA composite 
microcellular foam with a relative density ρr = 0.184. 

Figure 10. Parameters (a) k, (b) c, (c) kP, and (d) γ in the Maxwell model as functions of relative density
and W content.

4.2. Application and Verification of the Constitutive Model

Figure 11 compares the predicted curve of the 50 wt % W/PMMA composite microcellular foam
with a relative density of 0.184 to the experimental curve. The calculated parameters of the 50 wt %
W/PMMA composite microcellular foam with a relative of 0.184 are shown in Table 3. The correlation
coefficient of the model results and the experimental results is greater than 0.98, which verified the
accuracy of the Maxwell model and the correct fitting relationship of each parameter.

Table 3. Parameters of the 50 wt % W/PMMA composite microcellular foam in the Maxwell model.

Relative Density (ρr) k (MPa) c (MPa) kp
(MPa) n γ (MPa)

0.184 100.5 4.94 2.0 4 13.3
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5. Conclusions

We prepared tungsten/polymethyl-methacrylate (W/PMMA) composite microcellular foams by
melt mixing and supercritical carbon dioxide foaming methods and tested the static compression
mechanical properties of these microcellular foams. Then, we used the Maxwell model to fit the static
compressive stress-strain curves of the W/PMMA composite microcellular foams. The experimental
data accurately reflected the typical behavior of these microcellular foams and were in agreement with
the model simulation results, which verified the accuracy of the model.

Through a series of model parameter identifications of different relative densities and W contents,
we innovatively obtained the relationship between relative density, W content and model parameters in
the static mechanical constitutive model of W/PMMA composite microcellular foams. The mechanical
properties of W/PMMA composite microcellular foams with W contents of 0–60 wt % and relative
densities of 0.15–0.55 can be predicted.

This work, for the first time, achieved the prediction of the mechanical properties of W/PMMA
composite microcellular foams with different relative densities and W contents by extensive data
fitting and model parameter identification, which can significantly reduce the number of experimental
tests and increase the speed of analysis and prediction. We provided basic data and basic methods
for optimizing the design of various W/PMMA composite microcellular foams and also provided a
method for investigating the mechanical properties of composite microcellular foams, which can be
further extended to other polymer systems and particle additions.
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