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Abstract: Semi-conductive composites composed of carbon black-polymer play an important role
in uniform electric field in high voltage direct current (HVDC) cable. They also affect space charge
behaviors in the insulation material. However, the charge injection characteristics of semi-conductive
composites are not detailed. In this work, the electrode structure of ‘Semi-conductive composites-
Insulation material- Metal bottom’ (S-I-M) is proposed, and the currents formed by injected charges
from semi-conductive composites are characterized by the thermally stimulated depolarization
current (TSDC) method. Further, the experimental results based on the structure of S-I-M are
compared with the traditional electrode structure of M-I-M (Metal upper electrode- Insulation
material- Metal bottom electrode) and the simplified cable electrode structure of MS-I-M (Metal
upper electrode-Semi-conductive electrode- Insulation material- Metal bottom electrode), respectively.
The experimental results show that the semi-conductive composite plays an important role in the
charge injection process and it presents a different tendency under different compound modes of
temperature and electric field. For the low electric field (E ≤ 5 kV/mm) and the low temperature
(T ≤ 50 ◦C), the current caused by the accumulated charges follows the rule, IS > IMS > IM. For the
low electric field and high temperature (T > 50 ◦C), the current caused by the injected charges follows
the rule, IMS > IM > IS. This phenomenon is closely related to the interface characterization and
contact barrier.

Keywords: semi-conductive composites; carbon black-polymer; charge injection characteristics;
HVDC cable

1. Introduction

The semi-conductive layer is an essential component of high voltage direct current (HVDC) cables
and plays an important role in the uniform electric field and makes the conductor wire core and
the insulation layer connect tightly [1–7]. The semi-conductive composites are mainly composed of
ethylene-vinyl acetate copolymer (EVA), low-density polyethylene (LDPE) and carbon black (CB).
In the actual application, space charge accumulation in the insulation layer is one of the key factors
that threaten the safe operation of the HVDC cable, which can cause local electric field distortion,
resulting in the degradation or breakdown of the insulation material. The semi-conductive layer is
located between the conductor wire core and the insulation layer. As the electron transport path
from the conductor to the insulation material, it affects space charge accumulation in the insulation
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material [8–13]. Hence, it is important to thoroughly understand the charge injection characteristic of
semi-conductive composites.

The space charge problem in the cable insulation material has been investigated by theoretical
calculation and experimental measurements in many works [1,14–17]. However, most studies ignored
the effect of charges injected by the semi-conductive layer, only focusing on the injected charges from the
metal electrode, such as the thermally stimulated depolarization current (TSDC), pulsed electroacoustic
(PEA) and space charge limited current (SCLC).

In recent years, there have been some studies paying attention to the semi-conductive
composites of the HVDC cable mainly from two aspects: the interfacial characterization between the
semi-conductive composites and the insulating material, and the modification of semi-conductive
material [2,11,14,18–23]. For the former, some works have been investigated, including the aging
mechanism of the interface between the semi-conductive composites and the insulating material
under stress of high voltage, and the relationship between breakdown field strength and insulation
structure nearby the semi-conductive composites [2,11,14]. For the latter, the influence of the doping
ratio of carbon black on the conductivity of the semi-conductive composites has been studied as
well as the influence of semi-conductive prescription on the space charge behaviors of the insulation
material [18–23].

The above studies all tried to solve the space charge accumulation in the insulation material in the
view of the space charge source. However, the injected charges were considered to come entirely from
the metal electrode, ignoring the charges injected by semi-conductive material. At present, the charge
injection characteristic of the semi-conductive composites in the HVDC cable are not detailed as it is
difficult to distinguish the charge injection from the metal electrode and semi-conductive composites.
Hence, it is not clear what the contribution of the space charge from the semi-conductive composite is.

In this work, in order to analyze the charge injection characteristics of the semi-conductive
composites, the electrode structure of the semi-conductive composites is designed as a high voltage
terminal. Then, the currents formed by charges injected by the semi-conductive composites
are characterized by the thermally stimulated depolarization current (TSDC) method. Further,
the experimental results based on the structure of S-I-M (Semi-conductive composites- Insulation
material- Metal bottom) are compared with the traditional electrode structure of M-I-M (Metal upper
electrode- Insulation material- Metal bottom electrode) and the simplified cable electrode structure
of MS-I-M (Metal upper electrode-Semi-conductive electrode- Insulation material- Metal bottom
electrode), respectively. Finally, the charge injection mechanisms with different high voltage terminals
are discussed.

2. Experimental Method and Setup

2.1. Preparation of Semi-Conductive Composite

For the HVDC cable, the semi-conductive layer is a kind of composite, which mainly includes
ethylene-vinyl acetate copolymer (EVA), low-density polyethylene and carbon black (CB). The insulation
layer is mainly composed of polyethylene (PE), a cross-linking agent. Fourier transform infrared
spectroscopy (FTIR) of the semi-conductive composite was implemented is shown in Figure 1.

The results show that there are four typical absorption peaks at 1469 cm−1, 1735 cm−1, 2850 cm−1

and 2922 cm−1. As can be seen from Figure 1, a strong absorption peak appears near 2922 cm−1

and 2985 cm−1, which are both characteristic absorption peaks of the stretching vibration of –CH2 in
PE. The absorption peak near 1735 cm−1 is weak, which is the characteristic peak of –CO stretching
vibration in CB or EVA. The absorption peak at 1469 cm−1 is the –CH telescopic vibration peak in
PE. The absorption peaks less than 1000 cm−1 represent the vibrations of small molecular groups,
which are not analyzed here [24,25].
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Figure 1. Fourier transform infrared spectroscopy (FTIR) image of semi-conductive composites.

In the experiments, the semi-conductive composites with a thickness of 200 µm were prepared by
the melt-compounding method. Firstly, the raw materials were dried in a vacuum chamber at 60 ◦C
for 2 h, and were then molded by a plate vulcanizing press at 110 ◦C for 10 min. After that, the cross
linked process was implemented by another plate vulcanizing press at 180 ◦C for 15 min. Finally,
the specimen was cooled for 10 min. Adopting a similar method, cross-linked polyethylene (XLPE)
films with a thickness of 300 µm were prepared. The dispersion properties of carbon black particles in
the polymer matrix were observed by scanning electron microscopy (SEM) and the surface roughness
of composites was observed by atomic force microscopy (AFM), as shown in Figures 2 and 3.

Figure 2. Scanning electron microscopy (SEM) image of semi-conductive composites.

Figure 3. Atomic force microscopy (AFM) image of semi-conductive composites. (a) Two-dimensional
distribution; (b) three-dimensional distribution.
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As seen in Figure 2, carbon black particles and white spots were observed clearly. They filled in the
polymer matrix, forming the electron conductive channel. Overall, most carbon black particles were
dispersed uniformly in the polymer matrix. The surface roughness of the semi-conductive composites
had a great effect on the charge emission characteristic, because semi-conductive composites are
composed of countless tiny conductive spheres, which can cause the interface electric field distortion
between the semi-conductive layer and the insulation layer. From Figure 3a, it can be seen that the
average roughness of the semi-conductive composites was 11.9 nm.

2.2. Test Method and Validation

In most studies, the traditional electrode structure of ‘Metal upper electrode- Insulation material-
Metal bottom electrode’ (M-I-M) is adopted to study the conductivity property and charge property
of the insulation material, as shown in Figure 4a, in which the metal of the high voltage terminal
applies voltage on the insulation material. In the actual application, the cable mainly consists of
a metal wire core, an inner semi-conductive layer, an insulation layer, an outside semi-conductive
layer and a metal armor layer. Among them, the inner semi-conductive layer between the metal
wire core and the insulation layer plays an important role in the space charge accumulation property
in the insulation layer. Figure 4b shows the simplified cable electrode structure of ‘Metal upper
electrode-Semi-conductive electrode- Insulation material- Metal bottom electrode’ (M-S-I-M), in which
the metal and semi-conductive layer are a whole high voltage terminal applying voltage on the
insulation material. While, it is difficult to distinguish whether the charges accumulated in the
insulation material come from the metal electrode or the semi-conductive electrode.

Figure 4. Schematic diagram of electrode structures with different high voltage terminals. (a) The
traditional electrode structure of Metal upper electrode- Insulation material Metal bottom electrode
(M-I-M); (b) the simplified cable electrode structure of Metal upper electrode-Semi-conductive electrode-
Insulation material- Metal bottom electrode (M-S-I-M); (c) the electrode structure of Semi-conductive
composites- Insulation material- Metal bottom (S-I-M).

In this work, a kind of electrode structure for assessing the charge emission characteristics of
semi-conductive composites was proposed, in which the semi-conductive composites acted as a high
voltage terminal applying voltage on the insulation material, as shown in Figure 4c.

For the method, a specific ring structure made of aluminum was designed as the upper electrode,
which was connected closely with the semi-conductive layer composed of EVA, LDPE and CB.
When applying voltage on the ring structure, the equal potential formed on the semi-conductive
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composites because the resistivity of semi-conductive composites was much lower than that of the
insulation material. Figure 5a shows changes of the resistivity of the semi-conductive composites with
temperature. It can be seen that the volume resistivity changes from 25 Ω·cm to 85 Ω·cm at the test
temperature from 25 ◦C to 80 ◦C. While, the volume resistivity of XLPE is around 1016 Ω·cm. In order
to ensure the charge emission was from the semi-conductive composites rather than the ring structure,
the test region of the specimen was much smaller than the ring structure, which is marked in blue in
Figure 4c, and the diameter of the test region was 20 mm. Besides, in order to make a good contact
between the semi-conductive composites and the specimen, an insulation structure of cylinder made of
heat-resisting material of polytetrafluoroethylene (PTFE) with the same weight of the upper electrode
in Figure 4a,b was placed on the semi-conductive composites.

Figure 5. Test method and validation. (a) Changes of resistivity of semi-conductive composites with
temperature; (b) surface potential decay over time of semi-conductive composites under different
electrode structures.

In the experiments, the charge injection processes with different high voltage terminals were
firstly carried out based on the three-electrode structure. After that, the accumulated charges in
the insulation material injected by different high voltage terminals were characterized by thermally
stimulated depolarization current (TSDC), which can reflect the changes of the trapped charges in
insulation material with the increasing depolarization temperature. For the charge injection processes,
three typical polarization temperatures of 25 ◦C, 50 ◦C and 70 ◦C were considered, two typical electric
fields of 5 kV/mm and 60 kV/mm were set and four typical compound modes of temperature and
electric field were carried out, that is, low temperature and high field, high temperature and low
field, low temperature and low field, high temperature and high field. For each compound mode,
the electrode structure of S-I-M was placed in a temperature control chamber, and the applying voltage
time was 30 min. For the TSDC process, the specimen was taken out at room temperature for the
depolarization current measurement. The depolarization temperature changed from 25 ◦C to 80 ◦C,
the heating rate was 2 ◦C/min. Keeping the same specimen condition and test method, the traditional
electrode structure of M-I-M and the simplified cable electrode structure of MS-I-M were carried out.

In order to verify the test method, surface potential decay curves of XLPE stressed of different
electrode structures were measured by a non-contact surface potentiometer. In theory, the injected
charges in the insulation material are different for different high voltage terminals, and the changes
can be reflected by the surface potential, which decays over time after the voltage is removed. Firstly,
the specimen was applied voltage under 15 kV/mm at 25 ◦C and the duration of the voltage was 30 min.
Secondly, after charging, the specimen was moved instantly to the measuring position via a moving
platform. During the measurement, the distance between the probe and XLPE film was set to 5 mm.
The surface potential was recorded for 30 min. The measured results are shown in Figure 5b.

It can be seen that the initial surface potential was different for the three types of electrode
structures. The maximum surface potential was 1.93 kV caused by the electrode structure of M-I-M,
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followed by the electrode structure of MS-I-M with 1.73 kV and S-I-M with 1.03 kV. It indicated that
there was an obvious charge injection of the semi-conductive composites. It should be noted that
the surface potential decay (SPD) method was only used to verify qualitatively the charge emission
characteristics with different electrode structures, because it only reflects the changes of surface charge.
In the experiments, the accumulated charges in the insulation material bulk were characterized by the
TSDC method.

3. Experimental Results and Analysis

In the experiments, two typical electric fields, a low electric field of 5 kV/mm and a high electric
field of 60 kV/mm, were considered. Three typical polarization temperatures of 25 ◦C, 50 ◦C and 70 ◦C
were set and the depolarization temperature was changed from 25 ◦C to 80 ◦C, the heating rate was
2 ◦C/min. Figure 6 shows the depolarization current of XLPE polarized using three types of electrode
structures under the low electric field.
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Figure 6. Depolarization current of cross-linked polyethylene (XLPE) polarized using different electrode
structures under low electric field with different polarization temperatures. (a) 25 ◦C; (b) 50 ◦C; (c) 70 ◦C.

Generally, depolarization currents of dielectric mainly have contribution from the dipole
depolarization process and de-trapping process of the captured charges [26]. For different electrode
structures, dipole depolarization processes are the same because the same voltages are applied on the
insulation material. While, the charge injection processes are different, these charges will struggle
gradually against the trap centers with the increasing temperature. Hence, the depolarization current
can represent the injected charges from different high voltage terminals. As shown in Figure 6, for the
three electrode structures, the depolarization current firstly increases, and then decreases with the
increasing depolarization temperature, and the maximum current appears at around 50 ◦C to 60 ◦C.
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Besides, the maximum depolarization currents made changes when polarization temperatures were
different for the three electrode structures, which illustrate the effects of temperature on the injected
charge from the metal electrode and semi-conductive electrode are different. When the polarization
temperature is lower than 50 ◦C, the injected charges from the semi-conductive electrode are obviously
larger than that from the metal electrode. It illustrates that the semi-conductive composites play a
great significant role in the charge injection process, as shown in Figure 6a,b. The maximum current
caused by the injected charges from the semi-conductive composites was 0.8 pA at 25 ◦C, and the value
increased to 1.51 pA at 50 ◦C. When the polarization temperature exceeded 50 ◦C, it was found that the
charge emission characteristics were different for the three electrode structures. The charges from the
electrode structure of MS-I-M were larger than that of M-I-M and S-I-M, the maximum current was
0.69 pA at 70 ◦C, as shown in Figure 6c.

In the experiments, the insulation specimens polarized under a high electric field of 60 kV/mm
were also carried out, adopting the three types of the electrode structures, and the total charges were
calculated by the TSDC curves [26]. Figure 7 shows total charge amount as a function of the polarization
temperature in XLPE stressed of different electrode structures. Comparing the two cases of low electric
field and high electric field, it was observed from Figure 7a that when the polarization temperature
was lower than 50 ◦C, the charges from the semi-conductive composites were obviously larger than
that from the metal electrode. When the polarization temperature exceeded 50 ◦C, the charges from
the whole electrodes of ‘MS’ became evident, while the charges from the semi-conductive composites
cannot be ignored, since both of them had the same order. The phenomenon was closely related to the
interface characterization and the contact barrier among the metal, the semi-conductive composites and
the insulation material. It can be observed from Figure 7b that for different polarization temperatures,
the total charges all present the consistent variation trend, that is, the charges from the electrode
structure of MS-I-M were the most among the three electrode structures. The same phenomenon
occurred at the low electric field and high temperature, as shown in Figure 7a.

Figure 7. Total charge amount as a function of the polarization temperature in XLPE stressed of different
electrode structures. (a) Low electric field of 5 kV/mm; (b) high electric field of 60 kV/mm.

Comparing the three types of electrode structures, it can be summarized that the semi-conductive
composite a significant influence on charge accumulation in the insulation material, and for different
compound modes of temperature and electric field, the charge injection characteristics from the
semi-conductive composites were different. Figure 8 shows a schematic diagram of charge injection
from different high voltage terminals. Here, the low electric field refers to how the applied electric field
is lower than 5 kV/mm, and the relatively low temperature refers to how the polarization temperature
is lower than 50 ◦C. For the low electric field and the low temperature, the depolarization current
follows the rule, IS > IMS > IM. For the low electric field and high temperature, the rule becomes
IMS > IM > IS.
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Figure 8. Schematic diagram of charge injection from different high voltage terminals. (a) M-I; (b) S-I;
(c) MS-I.

For the low electric field and the low temperature, it was difficult to obtain sufficient energy
for the electrons in the metal electrode to overcome the interface barrier between the metal and
the insulation material, hence the injected charges from the traditional electrode structure were few,
as shown in Figure 8a. For XLPE, the charge injection electric field at the room temperature was
around 10 kV/mm [14]. While the charge injection characteristic was different for the semi-conductive
composites, which consist of countless tiny carbon black particles (see Figure 2), as shown in Figure 8b.
From the AFM image in Figure 3a, it can be seen that the average roughness of the semi-conductive
composites was 11.9 nm. These tiny bump structures on the semi-conductive composites surface can
cause the interface electric field distortion between semi-conductive composites and the insulation
material, resulting in the lower injected barrier. Hence, the charges can be easily injected from the
electrode structure of S-I-M under the condition of the low electric field and the low temperature.

For the low electric field and high temperature or the case of the high electric field, the charges
from the whole electrode structure of MS-I-M were the largest among three electrode structures,
as shown in Figure 8c. This is because most charges in the metal and semi-conductive composites could
get enough energy under the effect of temperature and electric field to overcome the interface barrier
and inject into the insulation material, especially for the high temperature of 70 ◦C or the high electric
field of 60 kV/mm. By contrast, for the electrode structure of M-I-M, there was no contribution of
charges injected by semi-conductive composites. Besides, the interface barrier between the metal and
insulation material was higher than that between the semi-conductive composites and the insulation
material, which led to the injected charges from the electrode structure of M-I-M being less than that of
the electrode structure of MS-I-M. It also implied that the semi-conductive composite plays a key role
during the process of charge exchange.

In addition, the maximum charge amount all appears at the polarization temperature of 50 ◦C,
which has a close link with the charge transport of trapping and de-tapping in the insulation material,
as shown by the charge transport processes in the insulation material in Figure 8. A similar phenomenon
has also been found in LDPE stressed by the metal electrode [26]. At room temperature, it is difficult
for the captured charges to release from the trap sites, resulting in the accumulation of homo-charges
near the cathode, thus depressing the further injection of the charges. When the temperature exceeds
about 50 ◦C, the charge movement is accelerated which can enhance the hopping probability of charges
between the adjacent traps, resulting in less charge accumulation.

4. Conclusions

In conclusion, the injection charge characteristics with different high voltage terminals (S-I-M,
M-I-M and MS-I-M) were investigated by the thermally stimulated depolarization current method.
The conclusions are drawn as follows:

(1) For the low electric field (E ≤ 5 kV/mm) and the low temperature (T ≤ 50 ◦C), the current
caused by the injected charges follows the rule, IS > IMS > IM. The phenomenon can be explained in
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that it is difficult for the electrons in the metal electrode to overcome the interface barrier between the
metal and the insulation material. While, for semi-conductive composites, the charges can be injected
to the insulation material because of countless tiny conducting spheres, which can cause the interface
electric field distortion between semi-conductive composites and the insulation material, resulting in
the lower interface barrier.

(2) For the low electric field (E ≤ 5 kV/mm) and high temperature (T > 50 ◦C) or the case of a
high electric field, the current caused by the injected charges follows the rule, IMS > IM > IS. This can
be interpreted as how most charges in the metal and semi-conductive composites can get enough
energy to overcome the interface barrier. By contrast, for the electrode structure of M-I-M, there is no
contribution of injected charges from semi-conductive composites and the interface barrier between
the metal and insulation material is higher than that between the semi-conductive composites and the
insulation material.
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