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Abstract: A novel flame-retardant and toughened bio-based poly(lactic acid) (PLA)/glycidyl
methacrylate-grafted natural rubber (GNR) composite was fabricated by sequentially dynamical
vulcanizing and reactive melt-blending. The surface modification of aluminum hypophosphite (AHP)
enhanced the interfacial compatibility between the modified aluminum hypophosphite by silane
(SiAHP) and PLA/GNR matrix and the charring ability of the PLA/GNR/SiAHP composites to a
certain extent, and the toughness and flame retardancy of the PLA/GNR/SiAHP composites were
slightly higher than those of PLA/GNR/AHP composites, respectively. The notched impact strength
and elongation of the PLA composite with 20 wt. %GNR and 18 wt.% SiAHP were 13.1 kJ/m2 and 72%,
approximately 385% and 17 fold higher than those of PLA, respectively, and its limiting oxygen index
increased to 26.5% and a UL-94 V-0 rating was achieved. Notedly, the very serious melt-dripping
characteristics of PLA during combustion was completely suppressed. The peak heat release rate
and total heat release values of the PLA/GNR/SiAHP composites dramatically reduced, and the char
yield obviously increased with an increasing SiAHP content in the cone calorimeter test. The good
flame retardancy of the PLA/GNR/SiAHP composites was suggested to be the result of a synergistic
effect involving gaseous and condensed phase flame-retardant mechanisms. The high-performance
flame-retardant PLA/GNR/SiAHP composites have great potential application as replacements for
petroleum-based polymers in the automotive interior and building fields.

Keywords: PLA composite; flame retardancy; toughness; melt-dripping resistance; surface
modification

1. Introduction

Bio-based poly(lactic acid) (PLA) is the most promising replacement for traditional
petroleum-based polymers because of its biodegradability, sustainability, and good mechanical
strengths. However, PLA is inherently highly inflammable, with a limiting oxygen index (LOI) of only
19%, and it has a very serious melt-dripping problem. In addition, the disadvantages of brittleness
and low thermal deformation temperature, extremely restrict its potential application in engineering
plastics fields [1,2].

A variety of halogen-free flame retardants including inorganic phosphorous-containing
flame retardants [3–6], intumescent flame retardants (IFRs) [7–9], zinc–aluminum-layered double
hydroxide [10], and modified layered double hydroxides [11] were used to improve the flame retardancy
of PLA. Aluminum hypophosphite (AHP) is an efficient flame retardant for PLA/basalt fiber (BF)
composites. With the addition of 19 wt.% AHP and 1 wt.% modified carbon nanotubes (m-CNTs),
the PLA/AHP/m-CNR composite achieved a V-0 rating and an LOI value of 31% [3]. In general, the
addition of inorganic phosphorous-containing flame retardants, IFRs or metal hydroxides endows
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PLA with good flame retardancy. However, the usage of the additive flame retardant generally causes
further deterioration through the brittleness of the PLA composites due to the poor compatibility
between flame retardants and the PLA matrix.

Some highly efficient organo-phosphorus-containing flame retardants, including
phosphates [12], aluminum diethylphosphinate [13], phosphorus-containing diacid [14,15],
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives [16], phosphazene-triazine
compounds [17], flame-retardant-containing phosphorus–nitrogen silicon [18], and polymeric flame
retardant [19], have recently been used to improve the flame retardancy of PLA. With only 3 wt.%
poly(phenylphosphoryl phenylenediamine) melt-blended with PLA, a V-0 rating in the UL-94
testing was achieved and the LOI value increased to 25.5% [20]. To maintain the sustainability of
bio-based polymer, the applications of some bio-based flame retardants in PLA have also received
much attention [21–24]. A bio-based polyphosphonate (BPPT) based on plant-derived diphenolic
acid (DPA) at 4 wt.% loading was incorporated into PLA to achieve a UL-94 V-0 rating [22]. The
investigation of flame-retardant mechanisms demonstrates that the organo-phosphorus-containing
flame retardants were mainly ascribed to phosphorous-containing radical inhibition. Meanwhile,
some of the combustion heat of the flame-retardant PLA materials was carried away by melt-dripping
during the combustion process [17,19]. Thus, the high efficiency flame-retardant PLA materials could
not completely solve the melt-dripping problem. Some bio-based additives such as chitosan [4],
starch [8], and cellulose nanofiber [24] have been incorporated to improve the flame retardancy and
mechanical properties of PLA composites. A kind of modified cellulose nanofiber (PN-FR@CNF)
with 10 wt.% loading enhanced the tensile strength of PLA by approximately 24% and achieved a V-0
rating [25]. However, these biodegradable polysaccharide fillers severely embrittled the PLA matrix,
making it difficult to process [24,25].

Nowadays, super-tough PLA materials have led to considerable attention, which have been
mainly prepared through interfacial reaction and simultaneous dynamic vulcanization [26–34]. Natural
rubber (NR) was graft-modified to prepared NR-graft-glycidyl methacrylate (GNR), and PLA/GNR
thermoplastic vulcanizates (TPVs) with excellent toughness were obtained by in situ dynamical
vulcanizing [30]. However, only a few studies have focused on the improvement of the flame
retardancy of super-tough PLA TPVs. Therefore, it is necessary to simultaneously improve the flame
retardancy and toughness of PLA to broaden the potential application of degradable PLA materials.

In this study, a modified aluminum hypophosphite by silane (SiAHP) was prepared to improve
the compatibility between the flame retardant and polymer matrix. The SiAHP was incorporated
into the PLA/GNR thermoplastic vulcanizates to fabricate a series of toughened and flame-retardant
PLA-based composites. The mechanical properties, morphology, and flame retardancy of flame
retardant (FR) PLA/GNR and PLA/GNR/SiAHP composites were systematically characterized. The
thermal properties and flame-retardant mechanism of PLA/GNR/SiAHP composites were investigated.

2. Materials and Methods

2.1. Materials

PLA pellets (2003D, MW: 38 × 104 g mol−1, D = 1.59, ρ = 1.26 g cm−3, melt mass flow rate (MFR)
(6 g/10 min, 210 ◦C, 2.16 kg) were procured from Natureworks Company (US). Modified natural rubber
grafted by glycidyl methacrylate (GNR) was prepared in our lab according to a previous paper [34].
Dicumyl peroxide (DCP) was produced by Hunan Yixiang Technology Co., Ltd. (Liuyang, China).
Antioxidant 1010 was purchased from Shandong Linyi Sanfeng Chemical Co., Ltd. (Linyi, China). The
AHP was provided by Qingdao Fusilin Chemical and Technology Corp. (Qingdao, China).

2.2. Preparation of Flame-Retardant PLA/GNR/SiAHP Composites

The AHP was first modified by N-(β-aminoethyl)-γ-aminopropylmethyldimethoxy silane (APTS)
to obtain SiAHP, according to the previous literature [35]. The PLA, 20 wt.% GNR, and 0.2 wt.%
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antioxidant 1010 were mixed in a Haake chamber at 135 ◦C and at a rotor speed of 60 rpm for 5 min,
and DCP (1.5 wt.% of GNR) was added to initiate the dynamic vulcanization of GNR for 5 min, and
AHP or SiAHP (16, 18, 20 wt.%) was added to blend with PLA thermoplastic vulcanizate(TPV) for 5
min to prepare the PLA/GNR/AHP and PLA/GNR/SiAHP composites. The flame-retardant PLA/GNR
composite was pressed into a sheet at 180 ◦C for 5 min under 10 MPa. The samples were prepared by
cutting standard sizes to measure the flame retardancy and mechanical properties.

2.3. Characterization

Stress–strain curves of samples were measured using a cross-head rate of 50 mm/min according to
the ASTM D882 standard on a screw-driven universal testing machine (AL-7000M, Taiwan Gotech
Testing Machines Inc. Taichung, Taiwan).

The Izod notched impact strengths were tested according to ISO 180 using an impact tester
(Suzhou Ligao Detection Equipment Co., Ltd., Suzhou, China).

Surface morphologies of the char residue were measured using scanning electron microscopy
(SEM) (JSM-6700F, Japan Electronics Corp. Tokyo, Japan). The surface of samples was uniformly
sputter-coated with a thin layer of gold prior to examination.

The thermogravimetric (TG) curve was measured on a Perkin–Elmer TGA-7 apparatus at a heating
rate of 10 ◦C/min from 30 to 700 ◦C under a 40 mL/min flowing N2.

The LOI values of samples were obtained from a JF-3 oxygen index apparatus (Jiangning, China)
according to ASTM D2863-97, and the size of the samples was 130 × 6.5 × 3.2 mm3.

The UL-94 vertical burning test was conducted by a CFZ-1-type apparatus (Jiangning, China)
according to ASTM UL 3801–2010, and the size of specimens was 130 × 13 × 3.2 mm3.

The cone calorimeter test was carried out using a cone calorimeter (Suzhou Vouch Testing
Technology Co., Ltd., type, 6810, Suzhou, China) under a heat flux of 50 kW/m2 with a sample size of
100 × 100 × 4 mm3 according to the ASTM E1354 standard.

3. Results

3.1. Mechanical Properties and Morphology

The dynamical vulcanizing process of the PLA/GNR and melt-blending evolution of the
PLA/GNR/SiAHP composites are shown in Figure 1. With the incorporation of 20 wt.% GNR,
the melt torque of PLA/GNR increased and reached its first peak value of melt torque (44.8 N.m). After
the addition of 1.5 wt.% DCP, the melt torque slightly increased due to the occurrence of dynamical
vulcanization of GNR. After adding 16 wt.% SiAHP, the melt torque greatly increased and reached a
higher peak of melt torque of 49.9 N.m at 1009 s, and then the melt torque gradually decreased with
time. When the content of SiAHP increased to 18 wt.% and 20 wt.%, the peak values of melt torque of
PLA/GNR composites were slightly increased at the second melt-blending stage due to the increase of
the dynamic viscosity of PLA/GNR composites.

Table 1 shows the mechanical properties of the PLA/GNR TPVs with different contents of flame
retardants. Figure 2a,b shows the impact strength and stress–stain curves of the PLA/GNR/AHP and
PLA/GNR/SiAHP composites, respectively. The notched impact strength of the PLA/20wt%GNR
TPV dramatically improved from 2.7 kJ/m2 of neat PLA to 65.0 kJ/m2, and the elongation at break
increased from 4% of neat PLA to 183%. With the incorporation of 16 wt.%AHP, the notched impact
strength and elongation of the PLA/GNR/16wt%AHP composites decreased to 14.5 kJ/m2 and 68%.
The decrease in the toughness of PLA/GNR/AHP was mainly ascribed to the fact that the AHP was a
kind of inorganic phosphorus-containing flame retardant. After the modification of AHP, the notched
strength and elongation of the PLA/GNR/16wt%SiAHP composite were slightly higher than those
of the PLA/GNR/16wt%AHP composite, respectively. It was because the surface modification of
SiAHP could improve the interfacial interaction between PLA/GNR matrix and flame retardant to
a certain extent. When the SiAHP increased to 18 wt.%, the notched strength and elongation of the
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PLA/GNR/18wt%SiAHP composite were 13.1 kJ/m2 and 72%, which were 385% and 17 times higher
than those of neat PLA, respectively. The results demonstrated the PLA/GNR/SiAHP composites still
exhibited good toughness.
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Figure 1. Melt torque–time curves of the PLA/GNR/SiAHP composites. Figure 1. Melt torque–time curves of the PLA/GNR/SiAHP composites.

Table 1. Mechanical properties of the PLA/NR and FR PLA/GNR composites.

Sample Notched Impact
Strength (kJ.m−2) Tensile Strength (MPa) Elongation at Break (%)

PLA 2.7 ± 0.6 68.9 ± 4.1 4 ± 0
PLA/GNR/16wt%AHP 14.5 ± 0.9 22.0 ± 1.9 68 ± 11
PLA/GNR/20wt%AHP 10.4 ± 0.4 20.5 ± 0.7 59 ± 8

PLA/GNR/16wt%SiAHP 15.4 ± 0.7 25.6 ± 1.0 78 ± 7
PLA/GNR/18wt%SiAHP 13.1 ± 0.4 24.5 ± 1.4 72 ± 13
PLA/GNR/20wt%SiAHP 12.8 ± 0.9 23.1 ± 1.4 64 ± 8

PLA/GNR 65.0 ± 7.8 28.8 ± 1.2 183 ± 20
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Figure 2. Mechanical properties of PLA, PLA/GNR TPV, PLA/GNR/AHP, and PLA/GNR/SiAHP
composites: (a) notched impact strength, (b) stress–strain curves.

The dispersion of AHP and SiAHP in the flame-retardant PLA/GNR composites can be observed
in Figure 3. With the incorporation of 16 wt.% AHP, some irregular AHP particles were distributed
in the PLA/GNR composite, and the dimensions of these particles were in the range of 2.0–5.0 µm
(Figure 3a,a’). When the content of AHP was increased to 20 wt.%, there was obvious aggregation of
AHP particles in the PLA/GNR matrix (Figure 3b,b’). In the case of PLA/GNR/16wt%SiAHP composites,
the dispersion of SiAHP particles became more uniform (Figure 3c,c’). With the increasing SiAHP
content, most of the SiAHP particles did not aggregate in the PLA/GNR/20wt%SiAHP composite
(Figure 3d,d’).
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Figure 3. SEM images of cryo-fractured surface for PLA/GNR/AHP and PLA/GNR/SiAHP composites.
(a, a’) PLA/GNR/16wt%AHP; (b, b’) PLA/GNR/20wt%AHP; (c, c’) PLA/GNR/16wt% SiAHP; (d, d’)
PLA/GNR/20wt%SiAHP.

The surface phase morphologies of the impact-fractures of the PLA/GNR/AHP and
PLA/GNR/SiAHP composites were compared in Figure 4. For the PLA/GNR/16wt%AHP and
PLA/GNR/20wt%AHP composites, it was observed that most of the AHP particles were de-bonded
from the matrix under impact energy (Figure 4a,b), because the interfacial interaction between the
PLA/GNR matrix and AHP particles was poor (Figure 4a’,b’). For the PLA/GNR/16wt%SiAHP and
PLA/GNR/20wt%SiAHP composites, these irregular SiAHP particles were evenly distributed in the
PLA/GNR composites (Figure 4c,d), and some SiAHP particles were adhered at the PLA/GNR matrix
under impact strength (Figure 4c’,d’). The results confirmed that the modification of SiAHP could
promote the interfacial compatibility between the flame retardant and the PLA/GNR matrix. This was
mainly because the chemical interfacial reaction between the amino groups of the silane molecule in the
modified SiAHP and the epoxy groups in the GNR macromolecular chains promoted the compatibility
between the flame retardant and PLA/GNR matrix.
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Figure 4. SEM images of the impact-fractured surface for the PLA/GNR/AHP and PLA/GNR/SiAHP
composites. (a, a’) PLA/GNR/16wt%AHP; (b, b’) PLA/GNR/20wt%AHP; (c, c’) PLA/GNR/16wt%
SiAHP; and (d, d’) PLA/GNR /20wt%SiAHP.
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3.2. Thermal Stability

The TG data of the PLA/GNR and flame-retardant PLA/GNR composites are listed in Table 2.
For the PLA/GNR/16wt%AHP composite, the onset decomposition temperature (T5%) was increased
from 306 ◦C of the PLA/GNR to 329.0 ◦C, and the two maximum mass loss temperatures (Tmax1 and
Tmax2) were increased to 366.4 and 443.3 ◦C, which corresponded to the thermal decomposition of the
PLA/GNR matrix and AHP, respectively, and the char yield of the PLA/GNR/16wt%AHP composite
at 700 ◦C was increased from only 0.2% of the PLA/GNR TPV to 13.4%. Figure 5 shows the TG and
differential thermogravimetric (DTG) curves of the PLA/GNR TPV and PLA/GNR composites under
N2 atmosphere. By the surface modification, the char yield of the PLA/GNR/16wt%SiAHP composite
was increased to 17.6%, which was obviously higher than that of PLA/GNR/16wt%AHP composite.
With an increase of SiAHP content, the char yield of the PLA/GNR/20wt%SiAHP composite increased
to 24.0%. It indicated that the surface modification of SiAHP obviously enhanced the charring ability
of the PLA/GNR/SiAHP composites.

Table 2. TG data of the PLA/GNR TPV and FR PLA/GNR composites under N2 atmosphere.

Sample T5% (◦C) Tmax1 (◦C) Tmax2 (◦C) Char Yield at 700 ◦C (%)

PLA/GNR TPV 306.0 358.8 - 0.2
PLA/GNR/16wt%AHP 329.0 366.4 443.3 13.4
PLA/GNR/20wt%AHP 332.0 369.5 446.4 16.7

PLA/GNR/16wt%SiAHP 329.0 368.2 444.7 17.6
PLA/GNR/18wt%SiAHP 331.0 369.5 445.3 19.2
PLA/GNR/20wt%SiAHP 332.0 370.7 446.7 24.0
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3.3. Flame Retardancy of PLA/GNR Composites

Table 3 shows LOI and UL-94 test results of the PLA/GNR and FR PLA/GNR composites. The
LOI value of the PLA/GNR TPV was only 19.0% and its UL-94 testing was no rating, meanwhile it
produced a large amount of melt-dripping during the combustion. With the incorporation of 16 wt.%
AHP, the LOI value of PLA/GNR/AHP composite raised it up to 25.5% and its UL-94 test was no rating.
In the case of the PLA/GNR/16wt%SiAHP composite, it passed the UL-94 V-1 rating. With the addition
of 18 wt.% and 20 wt.% SiAHP, the LOI values of the PLA/GNR/SiAHP composites increased to 26.5%
and 27.0%, respectively, and the UL-94 tests passed the V-0 rating. The results indicated that the flame
retardancy of PLA/GNR/SiAHP was enhanced by the surface modification.
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Table 3. LOI and UL-94 test results of the PLA/GNA TPV and FR PLA/GNR composites.

Sample LOI (%) UL-94 Rating Smoke Dripping

PLA/GNR TPV 19.0 NR less Y
PLA/GNR/16wt%AHP 25.5 NR more N
PLA/GNR/20wt%AHP 26.5 V-0 less N

PLA/GNR/16wt%SiAHP 26.0 V-1 more N
PLA/GNR/18wt%SiAHP 26.5 V-0 less N
PLA/GNR/20wt%SiAHP 27.0 V-0 no N

In the UL-94 vertical burning test, the PLA/GNR TPV rapidly burned and continuously produced
severe melt-dripping, and then no residue was left. Figure 6a–e shows the digital photos of the residues
of the PLA/GNR/AHP and PLA/GNR/SiAHP composites. For the PLA/GNR/16wt%AHP composite, it
continued to burn and produced a large amount of smoke. In the case of the PLA/GNR/16wt%SiAHP
composite, it burned for less time and produced less smoke, and the melt dripping of the PLA was
effectively suppressed (Figure 6b). When the SiAHP content exceeded 18 wt.% or the AHP content
exceeded 20 wt.%, the burning of the PLA/GNR composites rapidly extinguished, and nearly no smoke
and melt drippings were generated, and then only a small amount of char residue was formed at the
surface of the samples (Figure 6c–e).
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Figure 6. Digital photographs of PLA/GNR and PLA/GNR/SiAHP composites after UL-94 vertical
burning tests. (a) PLA/GNR/16wt%AHP; (b) PLA/GNR/16wt%SiAHP; (c) PLA/GNR/18wt%SiAHP; (d)
PLA/GNR/20wt%AHP; (e) PLA/GNR/20wt%SiAHP.

The cone calorimeter test was conducted to study the flame-retardant mechanism of the
PLA/GNR/AHP and PLA/GNR/SiAHP composites. The corresponding cone calorimeter test data are
summarized in Table 4. Figure 7 shows the heat release rate (HRR) and total heat release (THR) curves
of the PLA/GNR TPV and flame-retardant PLA/GNR composites. The PLA/GNR TPV presented a
sharp peak of heat release rate value (pHRR) of 612.2 kW/m2 at 47 s (Figure 7a). With the addition of
16 wt.% AHP, the pHRR value was dramatically decreased to 198.0 kW/m2, and the TTI was extended
to 58 s. With an increase of AHP, the pHRR value of PLA/GNR/20wt%AHP composite was decreased.
In the case of the PLA/GNR/20wt%SiAHP composite, the pHRR value was decreased to 178.0 kW/m2,
which was lower than that of the PLA/GNR/20wt%AHP composite. As shown in Figure 7b, the THR
value of the PLA/GNR/16wt%SiAHP composite was reduced from 112.7 MJ/m2 of the PLA/GNR TPV to
82.4 MJ/m2. The THR value of the PLA/GNR/20wt%SiAHP composite decreased further to 70.2 MJ/m2,
which was lower than that of the PLA/GNR/20wt%AHP composite. These results demonstrated that
the flame retardancy of the PLA/GNR/SiAHP composites were more effectively decreased by the
surface modification.
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Table 4. Cone calorimeter data of the PLA/GNR and FR PLA/GNR composites.

Sample TTI (s) pHRR
(kW·m−2)

TpHRR (s) THR
(MJ·m−2)

TSR
(m2
·m−2)

CR (%)

PLA/GNR TPV 47 ± 2 612.2 ± 3.1 244 ± 2 112.7 ± 2.3 656.0 ± 5.3 0.2
PLA/GNR/16wt%AHP 58 ± 2 198.0 ± 1.7 83 ± 2 82.5 ± 1.6 1041.6 ± 3.4 17.6
PLA/GNR/20wt%AHP 60 ± 1 189.7 ± 2.1 86 ± 2 72.1 ± 1.3 805.8 ± 2.8 24.0
PLA/GNR/16wt%SiAHP 59 ± 2 196.9 ± 2.5 81 ± 1 82.4 ± 1.5 952.7 ± 3.7 18.0
PLA/GNR/18wt%SiAHP 61 ± 1 185.8 ± 1.6 88 ± 2 80.9 ± 2.0 789.9 ± 1.9 19.3
PLA/GNR/20wt%SiAHP 62 ± 1 178.0 ± 2.2 82 ± 1 70.2 ± 1.1 609.1 ± 2.8 26.9Polymers 2019, 11, x FOR PEER REVIEW 8 of 13 
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Figure 7. Heat release rate (HRR) (a) and total release rate (THR) (b) curves of the PLA/GNR TPV and
FR PLA/GNR composites.

The total smoke release (TSR) and char residue (CR) yield curves of the PLA/GNR composites
with different contents of AHP and SiAHP are shown in Figure 8a,b, respectively. The TSR values of
the PLA/GNR/16wt%AHP and PLA/GNR/16wt%SiAHP composites were dramatically higher than
that of PLA/GNR TPV. This was because AHP and SiAHP released phosphorus-containing compounds
in the gaseous phase to trap radicals (e.g., H, HO radicals) and interrupt the decomposition of the PLA
macromolecular chain [35,36]. In addition, the SiAHP (AHP modified by APTS) easily decomposed
into inert gases (such NH3) to dilute the concentration of combustible gases. It was suggested that
AHP or SiAHP in PLA/GNR composites presents gaseous-phase flame retardant mechanisms [35–37].
As shown in Figure 8b, the char residue yield of PLA/GNR/AHP and PLA/GNR/SiAHP composites
increased with the increase in the content of AHP or SiAHP. The more char residues of PLA/GNR
composites can effectively isolate the release of combustible gases into the interior polymer and
heat transfer, PLA/GNR/AHP, and PLA/GNR/SiAHP composites also presented a condensed-phase
flame retardant mechanism. Thus, AHP or SiAHP in PLA/GNR composites played a role in both
condensed-phase and gaseous-phase flame retardancy.
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Figure 8. Total smoke release (TSR) (a) and char residue mass (CR) (b) curves of PLA/GNR TPV and
FR PLA/GNR composites.

As shown in Table 4, for the PLA/GNR/20wt%SiAHP composite, the TSR value decreased to
609.1 m2

·m−2, which was lower than that of the PLA/GNR/20wt%AHP composite, and the char
yield (CR) of the PLA/GNR/20wt%SiAHP composite increased to 26.9%, which was obviously
higher than that of the PLA/GNR/20wt%AHP composite (24.0%). Thus, the more char residue
from the PLA/GNR/20wt%SiAHP composite kept from the release of combustible gases resulted
in a further decrease in the TSR value. The results indicated that PLA/GNR/SiAHP composites
exhibited a slightly higher charring ability and smoke suppression compared to the corresponding
PLA/GNR/AHP composites.

The maximum ratio HRR(t)/t) and pHRR/tign in the cone calorimeter test represent the fire growth
rate (FIGRA) and the flame spread rate, respectively. Figure 9a,b shows the HRR(t)/t curves and
the corresponding FIGRA of the PLA/GNR TPV and FR PLA/GNR composites. The FIGRA and
pHRR/tign values of PLA/GNR TPV and PLA/GNR composites are listed in Table 5. The pHRR/tign

values decreased with an increase in the content of AHP and SiAHP, and the FIGRA and pHRR/tign

values of PLA/GNR/SiAHP composites were lower than those of the corresponding PLA/GNR/AHP
composites, respectively. The lower FIGRA and pHRR/tign values demonstrate the better fire hazard
safety of the materials. Thus, SiAHP is a more effective flame retardant in enhancing the fire hazard
safety of the PLA/GNR TPVs.
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Figure 9. HRR(t)/t versus time curves of PLA/GNR TPV and FR PLA/GNR composites (a) and FIGRA
versus THR (b).
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Table 5. Cone calorimeter data of PLA/GNR TPV and FR PLA/GNR composites.

Sample pHRR/tign (kW/(m2/s)) FIGRA (kW/(m2/s))

PLA/GNR TPV 13.03 3.91
PLA/GNR/16wt%AHP 3.41 2.61

PLA/GNR/16wt%SiAHP 3.33 2.44
PLA/GNR/18wt%SiAHP 3.04 2.24
PLA/GNR/20wt%AHP 3.16 2.21

PLA/GNR/20wt%SiAHP 2.87 2.18

3.4. Char Morphology

Figure 10 shows the digital photographs of the burning residues of the PLA/GNR TPV and
PLA/GNR/SiAHP composites after the cone calorimeter test. For PLA/GNR TPV, a thin layer of gray
carbonized residue was formed (Figure 10a). For PLA/GNR/16wt%SiAHP composite, the residue
exhibited a thick char structure with a few small cracks, and small amount of black graphite was
distributed at the surface of residue (Figure 10b). With an increase of SiAHP content, the residue became
more compact (Figure 10c,d). In the case of the PLA/GNR/20wt%SiAHP composites, there were almost
no obvious cracks at the surface of the residue. It reveals that the incorporation of SiAHP promoted
the formation of a compact char structure of PLA/GNR composites. This kind of the compact structure
of residue could effectively insulate the diffusion of flammable gases into the interior of polymer.
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The surface microstructure of the residues of the PLA/GNR/SiAHP composites were investigated
by SEM observation. For PLA/GNR/16wt%SiAHP, a kind of porous char layer surface structure was
shown in Figure 11a. In the enlarged micrograph (Figure 11a’), it was observed that many nanoscale
particles were aggregated at the surface of char layer. In the case of the PLA/GNR/18wt%SiAHP, the
residue displayed more even and smaller porous structure (Figure 11b). In the enlarged micrograph
(Figure 11b’), many nanoscale particles were connected to form a three-dimensional network structure
at the surface of residue. In case of the PLA/GNR/20wt%SiAHP composite (Figure 11c), it was
observed that many different sizes of particles were distributed in the residue. In the enlarged
magnification, it was found that small nanoparticles were attached at the surface of microscale particles
(Figure 11c’). These nano- and microscale particles were suggested as the thermal decomposition
product of PLA/GNR matrix and SiAHP, respectively.
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Figure 11. SEM images of char residues for PLA/GNR/SiAHP composites. (a, a’) PLA/GNR/16wt%
SiAHP; (b, b’) PLA/GNR/18wt%SiAHP; (c, c’) PLA/GNR/20wt%SiAHP.

In the PLA/GNR/SiAHP composites, SiAHP generated phosphorus-containing gaseous substance
(such as PH3), which could act to generate P and PO in the gaseous phase during the combustion
to capture the highly reactive radicals (HO, H), and hence, extinguish the flame. Meanwhile, the
compact char layer containing polyphosphate could effectively insulate the diffusion of combustible
gases, and further protect the inner polymer from decomposing [35,36]. Therefore, the flame-retardant
mechanism of the PLA/GNR/SiAHP composites is considered to be a synergistic effect of the gaseous
flame retardant and condensed flame-retardant mechanisms. In particular, the melt-dripping behavior
of the PLA matrix could be effectively suppressed by the protective barrier of char layer.

4. Conclusions

In this study, a toughened and good flame-retardant PLA/GNR/SiAHP composite was prepared
by sequentially dynamically vulcanizing and reactive melt-blending. The surface modification of
AHP enhanced the interfacial compatibility between the SiAHP and PLA matrix and charring ability
of PLA/GNR/SiAHP composites to a certain extent, the toughness and flame retardancy of the
PLA/GNR/SiAHP composites were slightly higher than those of the corresponding PLA/GNR/AHP
composites, respectively. The notched impact strength and elongation of the PLA/GNR/18wt%SiAHP
composite were approximately 3.9 and 17 times higher than those of neat PLA, respectively. The
LOI of the PLA/20wt%GNR TPV with 18 wt.% SiAHP increased to 26.5%, and its UL-94 test passed
V-0 rating. Importantly, the addition of SiAHP completely inhibited the melt-dripping behavior of
the PLA/GNR/SiAHP composite. The pHRR and THR values of PLA/GNR/SiAHP composite were
dramatically decreased. The good flame retardancy of SiAHP in PLA/GNR composites was suggested
to the synergistic effect of gaseous flame retardant and condensed phase flame retardant mechanisms.
Moreover, the high char residue yield and compact protective char layer of PLA/GNR/SiAHP composite
endowed it excellent melt-dripping resistance.
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