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Abstract: This study aimed to prepare a molecularly imprinted monolithic extraction column (MIMC)
inside a micropipette tip by situ polymerization with roxithromycin as the dummy template. The
polymers possessed excellent adsorption capacity and class-specificity to multiple macrolide drugs.
MIMC was directly connected to a syringe for template removal and for the optimization of extraction
conditions without any other post-treatment of polymers. A liquid chromatography-tandem mass
spectrometric method was developed for the selective microextraction and determination of macrolide
antibiotics in animal muscles based on MIMC. High recoveries of 76.1–92.8% for six macrolides were
obtained with relative standard deviations less than 10.4%. MIMC exhibited better retention ability
and durability when compared with the traditional C18 and HLB cartridges. The proposed method
shows a great potential for the analysis of macrolide drugs at the trace level in animal foodstuffs.

Keywords: molecularly imprinted monolithic extraction column; microextraction; macrolide
antibiotics; animal muscles; liquid chromatography-tandem mass spectrometry

1. Introduction

Macrolide antibiotics (MALs), a group of alkalescent antibiotics that are produced by Streptomycetes,
consist of a large lactone ring (12–16 carbons atoms) and sugar moieties. MALs are used in animal
husbandry for therapy and prophylaxis because of their antibacterial activity against gram-positive
bacteria and some gram-negative cocci. MALs have been extensively introduced as feed supplements
in industrialized animal production since the discovery that antibiotics could increase animal growth
rate in 1940s [1,2]. Despite their benefits to animal production, the incorrect use of these drugs
may leave residues in food products, bringing adverse effects to human health, such as allergic
dermatitis [3]. Researchers have confirmed that the increase of drug resistance is associated with the
massive consumption of MALs in animal husbandry [4,5]. As a result of increasing concerns over
drug resistance, international organizations, including the European Union [6], United States [7], and
China [8], have established maximum residue limits for MALs in animal products. Besides, spiramycin
(SPM), tylosin (TYL), and tilmicosin (TIM), which were used as animal growth promoters before, are
banned or severely restricted [9,10]. Worryingly, MALs, including TYL, TIM, erythromycin (ERY), and
roxithromycin (ROX), are still frequently detected in animal foodstuffs due to their wide availability
and low cost [11–13]. Thus, it is necessary to supervise MALs residues in animal-derived food.
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At present, analytical methods for drug residues are mainly based on liquid
chromatography-tandem mass spectrometry (LC-MS/MS), since it has the merits of unambiguous
identification and accurate quantification. LC-MS/MS has become the preferred approach for the
determination of MALs residues in animal tissues, milk, egg, and honey [14,15]. To eliminate
co-extracted impurities, various purification strategies that are based on solid-phase extraction
(SPE) [16], QuEChERS (Quick Easy Cheap Effective Rugged Safe) [17], and matrix solid-phase
dispersion [18] have been reported. Among these methods, SPE is the most commonly used technique
for the extraction of MALs at the trace-level [19,20]. However, conventional SPE sorbents with the
property of reverse phase retention favor nonspecific interaction, leading to the co-extraction of
numerous impurities [21]. As a porous material, molecularly imprinted polymer (MIP) has become an
appealing alternative for sample purification due to its high recognition to the template and template
analogues. Indeed, MIP has predetermined recognition sites, which are complementary to the template
in shape, size, as well as functional groups, allowing for specifically enriching target compounds from
complex matrices [22].

Current attempts for the synthesis of MALs-MIP include traditional approaches (bulk, precipitation,
or suspension) [23–25] and some novel strategies that are based on hollow porous material [26], magnetic
particles [27], and multi-walled carbon nanotubes [28]. These MIPs were applied to the selective
extraction of MALs in animal tissues [27,29] and honey samples [26] based on molecularly imprinted
solid-phase extraction (MISPE), magnetic solid-phase extraction (MSPE), and dispersive solid-phase
extraction (DSPE). However, traditional MIPs need to be ground, sieved, and sometimes stabilizer is
necessary in polymerization, which is time-consuming. Moreover, template leakage and the poor mass
transfer of traditional MIP have limited its application. Although surface and hollow porous MIP can
solve such problems to some extent, the absence of recognition sites in the solid core of surface MIP can
reduce adsorption capacity and hollow porous MIP is inadequate toughness. Keeping these comments
in mind, the molecularly imprinted monolithic column (MIMC) prepared by situ polymerization inside
a stainless-steel, capillary tube, or micropipette tip is popular for improving adsorption capacity and
simultaneously reducing tedious steps without the great loss of polymers [30–32]. MIMC directly
connected with a syringe has been proved to be a simple and efficient way for microextraction [33,34],
known as molecularly imprinted polymer monolith microextraction (MIPMME). To date, only two
studies have reported the preparation of MIMC for the selective microextraction of macrolides from
human blood plasma [35] and swine muscle [36]. Each study focused on the selective extraction of a
single macrolide antibiotic. In addition, the specificity and adsorption differences between the MIMC
and non-molecularly imprinted monolithic column (NIMC) have not yet been proven.

This study describes the synthesis of MIMC while using ROX as the virtual template for the
selective microextraction of multiple macrolide antibiotics. Synthesis conditions, including monomer,
porogen, cross-linker, and initiator were screened and optimized. The adsorption ability and selectivity
of MIMC were investigated in more detail, and the toughness of MIMC was demonstrated by repeating
several experimental cycles. Further, the microextraction procedures of MIMC were optimized, and
finally a LC-MS/MS method that was based on MIPMME was successfully established for the analysis
of MAL residues in pork, chicken, and beef samples.

2. Materials and Methods

2.1. Reagents and Materials

Raw material of ROX (98.5% purity) was obtained from Hubei Prosperity Galaxy Chemical
Co., Ltd. (Wuhan, China). Methacryclic acid (MAA, 99% purity), acrylamide (AM, 98.5% purity),
and 2,2′-Azobisisobutyronitrile (AIBN, 98% purity) were purchased from Kermel Chemical Reagents
Development Center (Tianjin, China). 4-vinyl pyridine (4-VP, 96% purity), 2-hydroxyethyl methacrylate
(HEMA, 97% purity), and ethylene glycol dimethacrylate (EGDMA, 98% purity) were obtained from
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Sigma-Aldrich (St. Louis, MO, USA). The inhibitors inside MAA, 4-VP, and EGDMA were removed by
active carbon before use.

Chromatographic grade reagents: methanol (MeOH), acetonitrile (ACN), and formic acid (FA)
were purchased from Fisher Scientific (Fairlawn, NJ, USA). Guangzhou Chemical Reagent Factory
(Guangzhou, China) supplied other reagents (analytical grade), including toluene, dodecanol, acetone,
and ammonium hydroxide (AM). Oasis HLB (60 mg, 3 mL) and C18 cartridges (60 mg, 3 mL) were
purchased from Waters Co. (Milford, MA, USA) and Agilent Technologies Co. (Santa Clara, CA, USA),
respectively. A Milli-Q water system (Molsheim, France) was used to produce de-ionized water.

The standards of ERY, TIM, and azithromycin (AZI) were bought from Sigma Chemicals Co.
(St. Louis). ROX, SPM, clarithromycin (CLA), and tulathromycin (TUL) were purchased from European
Pharmacopoeia (EDQM, Strasbourg, France). The chemical structures of these compounds are shown
in Figure S1. The purity of each standard was above 95.5%. The individual stock standard solution
(1000 mg/L) was prepared by weighing 10 mg of each standard into a 10 mL of volumetric flask and
dissolving with MeOH. The stock solutions were stored at −20 ◦C and can be kept stable for six months.
Intermediate standard solutions (200 mg/L, 100 mg/L, and 10 mg/L) were prepared by diluting stock
solutions with MeOH. Mixed working solutions were prepared daily by mixing the intermediate
standard solutions and appropriately diluting with MeOH.

2.2. Preparation of MIMC

Figure 1 illustrates the preparation procedure of MIMC. 1 mmoL ROX (template) was dissolved
with 12.5 mL of toluene/dodecanol solution (1:6, v/v) in a 50 mL of polypropylene tube and sonicated for
5 min. 4 mmoL MAA (functional monomer) was added and pre-assembled at 4 ◦C for 4 h. Subsequently,
20 mmol EGDMA (cross-linker) and 30 mg AIBN (initiator) were successively added. Under the
protection of nitrogen, 40 µL of the mixture was transferred into a 200 µL micropipette tip, in which
the bottom part has been previously sealed, and then the upper part was sealed with a silicon rubber.
The polymerization reaction was allowed to perform in a vacuum chamber at 60 ◦C for 24 h. After
polymerization, the silicon rubbers on both ends of the pipette tip were removed to obtain the MIMC.
The MIMC was connected to a 5 mL syringe, and the syringe was then installed on a syringe infusion
pump (Baoding Longer Precision Pump Co. Ltd., Baoding, China) for the delivery of loading, washing,
and eluting solvents. The template was removed by continually loading MeOH-acetic acid (90:10, v/v)
on MIMC at a flow rate of 0.2 mL/min until no ROX could be detected by high performance liquid
chromatography with evaporative light-scattering detector (HPLC-ELSD). 20 mL of MeOH was used
to remove the remaining acetic acid. NIMC was prepared by the same procedure, but without adding
the template.
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2.3. Equipments of Characterization

A ZEISS EVO18 microscope (Jena, Germany) was used to obtain the scanning electron microscope
(SEM) images of MIMC and NIMC.

A Micromeritics Gemini VII 2390 surface area analyzer (Atlanta, GA, USA) was applied to evaluate
the specific surface area via the BET method.

Fourier-transform infrared spectroscopy (FT-IR) was carried out by a Thermo Nicolet 6700 Fourier
transform infrared spectrometer (Thermo Nicolet, Waltham, MA, USA) with anhydrous KBr as the
background. The IR spectra were recorded from 500 to 4000 cm−1.

Thermostability of MIMC was determined by a PerkinElmer STA 6000 thermo gravimetric analyzer
(PerkinElmer, Foster City, CA, USA). Analysis was performed at the following parameters: nitrogen
pressure, 0.2 mPa; initial temperature, 50 ◦C; final temperature, 600 ◦C; heating rate, 30 ◦C/min.

2.4. Binding Assays

The polymer particles of MIMC and NIMC were collected and dried before use. The adsorption
capacities for single and multiple macrolide drugs (ERY, ROX, CLA, AZI, TUL, TIM, and SPM) were
evaluated. 20.0 mg of polymers were incubated with 5 mL of single/mixed standard solutions in
ACN (200 mg/L) at 25 ◦C for 24 h. After centrifugation at 15000 rpm for 5 min., the free MALs in
the supernatant were detected by HPLC-ELSD. The adsorption amounts of MIMC and NIMC were
calculated by the equation:

Q = (C0 −Ce) × v/m,

where Q (mg/g) is the adsorption amounts at equilibrium; C0 (mg/L) and Ce (mg/L) are the initial and
equilibrium concentration, respectively; v (L) is the volume of standard solution; and, m (mg) is the
weight of polymers. Imprinting factor (IF) was introduced to evaluate the specific recognition ability
according to the equation:

IF = QMIMC/QNIMC,

where QMIMC and QNIMC (mg/g) are the adsorption amounts of MIMC and NIMC, respectively.

2.5. Sample Preparation

Chicken, pork, and beef were purchased from local supermarkets (Guangzhou, China) and there
were no MALs residues in these samples through a previous LC-MS/MS analysis. 2 g homogenized
samples were weighed into 15 mL polypropylene centrifuge tubes. For recovery test, 100 µL of mixed
solutions was added into the muscle samples to prepare three spiked levels (5.0, 10, and 25 µg/kg). The
spiked samples were kept at room temperature for 30 min. before proceeding.

5 mL of ACN was used to extract MALs with the help of ultrasonic and shaking extraction for
10 min. After centrifugation at 8000 rpm for 5 min., the supernatant was transferred into a new
centrifuge tube. Another 5 mL of ACN was added into the residue to repeat the extraction. The extract
solutions were combined for cleanup.

1 mL of ACN was applied to condition MIMC, and then 5 mL of extract solution was loaded on
MIMC at the rate of 0.2 mL/min. MIMC was successively rinsed with 1 mL of ACN and 1 mL of water.
1 mL of 2% ammonium hydroxide in MeOH was used to elute the target compounds. The eluate was
dried under a gentle stream of nitrogen at 40 ◦C, and finally, the residues were reconstituted with 1 mL
of 20% MeOH in water solution (containing 0.1% formic acid) for LC-MS/MS analysis.

2.6. HPLC and LC-MS/MS Analysis

The binding assays and optimization of MIPMME procedures were performed on HPLC-ELSD,
according to our previous study [37].

LC–MS/MS was applied for the recovery and reusability test of MIMC. LC–MS/MS conditions,
including mass parameters, mobile phase and separation program, were the same as the reported
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method [29]. Briefly, an Agilent 1200 HPLC system (PaloAlto, CA, USA) and an Agilent Zorbax SB-Aq
C18 column (150 mm × 2.1 mm i.d., 3.5 µm) separated the MALs. The mobile phase consisted of
ACN (solvent A) and 0.1% FA in water (solvent B) with the following gradient elution: 0.0–5.0 min.
10–60% A; 5.0–7.0 min. 60–45% A; 7.0–7.01 min. 45–10% A; 7.01–15 min. 10% A. The flow rate was
0.25 mL/min and the injection volume was 10 µL. Mass analyses were performed on an Applied
Biosystems API 4000 triple quadrupole mass spectrometer (Foster City, CA, USA) under the positive
electrospray ionization mode. Table S1 gives the mass parameter of each analyte.

3. Results and Discussion

3.1. Preparation of MIMC

The volume and type of monomer and porogen are the two important factors which can impact the
structural, physical, and molecular recognition properties of polymers [38], so four types of functional
monomers (MAA, AM, HEMA, and 4-VP) were estimated. 1 mL of ROX in ACN (10 µg/mL) was
percolated through the MIMC/NIMC and the analysis was performed by HPLC-ELSD. Figure 2 gives
the results. Fairly high recovery of ROX (more than 95%) was obtained from MIMC, with MAA as the
functional monomer, which was more than twice that of NIMC, which suggested the high specificity
of MIMC. Although HEMA provided satisfactory retention for ROX (recovery above 70%) on MIMC,
HEMA was not selected for further optimization, because of the IF value less than 1.5. MIMC failed
to form rigid polymers with the use of 4-VP (an alkaline monomer), leading to the poor retention of
ROX (less than 50%). As a hydrogen bond donator, the carboxyl group of MAA was more likely to
participate in the formation of hydrogen bonds with abundant hydroxyl groups of the template. As
previous studies discovered [25–27], with the 4:1 ratio of MAA to template, the polymers gained high
adsorption capacity and specificity to MALs. Based on this ratio, other polymerization parameters
were investigated while using single factor analysis.
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Figure 2. Effect of molecularly imprinted monolithic column prepared by different functional monomers
on the recovery of roxithromycin.

Generally, the combination of toluene and dodecanol as porogen can produce porous structures
in situ polymerization, which might be beneficial to the permeability of MIMC [36]. Different ratios of
toluene to dodecanol (1:4, 1:5, 1:6, 1:7, and 1:8, v/v) as porogen candidates were evaluated. As shown
in Figure S2A, the recovery of ROX in MIMC significantly reduced when the dodecanol percentage
was higher than 1:6, while, ROX had the different destiny in NIMC. This trend could be explained
by the fact that the higher ratio of dodecanol in porogen resulted in the formation of soft and low
specific polymers, and thus ROX did not retain well in these polymers. Although the percentage of
toluene-dodecanol (1:4, v/v) provided satisfactory recovery, as well as specificity, the loading process
has been prolonged, owing to the decrease of the permeability of MIMC. To make a compromise,
toluene-dodecanol (1:6, v/v) was deemed as the most suitable porogen. From Figure S2B, it was
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obvious that the increasing porogen volume did not favor the retention of ROX in MIMC. However,
when the volume of porogen was less than 12.5 mL, the polymers were highly rigid, which made the
following MIPMME step cumbersome because of the low porosity and permeability. Thus, 12.5 mL of
toluene-dodecanol (1:6, v/v) was used as the porogen for further experiments.

EGDMA was used as cross-linker after the self-assembly of MAA and ROX, followed by the
addition of AIBN as the initiator to accelerate polymerization reaction. The amounts of EGDMA
and AIBN were estimated to obtain highly specific MIMC. As presented in Figure S2C,D, with the
increase of EGDMA and AIBN, there was no significant improvement in the retention of ROX both in
MIMC and NIMC. Nevertheless, when EGDMA was less than 15 mmol, the polymers were tightly
tiny particles, so that the permeability of MIMC was fairly poor. Besides, it was rather difficult to
form rigid-shape polymers with the amount of AIBN less than 20 mg. At the participation of 20 mmol
EGDMA and 30 mg AIBN, we successfully synthesized MIMC with excellent performance (favorable
permeability, ruggedness, and adsorption capacity).

3.2. Characterization of MIMC

Figure 3 gives representative SEM images of MIMC and NIMC. The surface of MIMC was rougher
and more porous than that of NIMC, which could improve the mass transfer rate and provide larger
surface areas for binding compounds. The specific surface areas that were obtained by using BET
model were 191.5 m2/g for MIMC and 123.3 m2/g for NIMC, thus confirming the presence of more
imprinted cavities in MIMC.
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The IR spectra of MIMC and NIMC were similar (Figure S3). Adsorption bands at around
3543 cm−1 and 2990 cm−1 were the stretching vibrations of O–H and C–H bonds, respectively. An
obvious absorption peak at 1731 cm−1 was attributed to the stretching vibration of C=O, which was
provided by EGDMA and MAA. The weak adsorption peak at 1636 cm−1 was assigned to the C=C
vibration, which indicated the successful polymerization.

Thermogravimetric analysis revealed that the decomposition of MIMC occurred at 260 ◦C and
completed at 450 ◦C (loss of 95% weight), suggesting the outstanding thermal stabilities of MIMC at
extreme conditions.

3.3. Binding Assays

Adsorption capacities of MIMC and NIMC to single and multiple macrolide drugs (spiked
concentration: 200 mg/L of each compound in ACN) were investigated. 5 mL of ACN as a blank
reference was subjected to the same procedure to ensure no template-bleeding in the whole process.
As listed in Table 1, there was a great difference between the adsorption amounts of MIMC and NIMC,
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resulting from the abundant binding sites in MIMC. The specificity of MIMC seemed to be related to
the number of carbons atoms within the lactone ring, that is, the higher specificity (IF > 2.0) of MIMC
showed to 15-membered ring macrolides (ROX, CLA, and ERY), meaning higher affinity of MIMC to
analogues whose molecular structures are highly similar to the template. Furthermore, MIMC could
well recognize multiple macrolides and the IF values were higher than 1.5, to some extent, revealing
the class-specificity. When compared with single analyte, there was competitive adsorption among
multiple macrolides due to the limited binding sites that presented in MIMC. MIMC showed high
specific adsorption to CLA and ERY (IF > 2.0), because their ring sizes and spatial arrangement of
glycosidic side chains are highly similar to ROX, so they could quickly occupy the imprinted cavities
that were created by the template [29]. These results indicated that not only lactone ring sizes of MALs,
but the space structure of glycosidic side chains will play an important role in specific recognition
of MIMC.

Table 1. Specific adsorption capacities of MIMC and NIMC for single and multiple macrolides a.

Compound Polymer b
Single Multiple

Q (mg/g) c IF d Q (mg/g) IF

Roxithromycin MIMC 12.0 2.8 3.4 1.7
NIMC 4.3 1.9

Clarithromycin MIMC 11.5 2.6 3.5 2.3
NIMC 4.5 1.5

Erythromycin MIMC 11.5 2.3 8.2 2.1
NIMC 5.0 3.7

Azithromycin MIMC 12.4 1.7 3.4 1.8
NIMC 7.2 1.9

Tulathromycin MIMC 25.2 1.6 18.0 1.4
NIMC 18.4 12.9

Tilmicosin MIMC 17.1 1.8 5.1 1.6
NIMC 9.3 3.2

Spiramycin MIMC 10.2 2.0 4.8 1.8
NIMC 5.1 2.6

a multiple macrolides (roxithromycin, clarithromycin, erythromycin, azithromycin, tulathromycin, tilmicosin and
spiramycin), 200 mg/L of each drug in acetonitrile; b MIMC, molecularly imprinted monolithic column; NIMC,
non-molecularly imprinted monolithic column; c Q, adsorption capacity; d IF, imprinting factor.

3.4. Optimization of MIPMME Procedure

3.4.1. Packing Volume

The binding capacity of MIMC to MALs heavily relies on the amounts of polymers. Generally, the
more polymers that we added, the more MALs could be well retained on MIMC. At the same time, more
polymers will prolong the loading time, which is time-consuming and can reduce the microextraction
efficiency. Consequently, the volume of polymerization system packed inside micropipette tip was
measured. As presented in Figure S4, the recovery of ROX from MIMC rapidly increased with the
rising of polymerization volume and then gradually reached the equilibrium when the volume was
up to 40 µL. Meanwhile, NIMC provided steadily growing recovery to ROX, which suggested the
enhancement of non-specificity. Thus, 40 µL of polymerization mixture was packed into micropipette
tips to synthesize the MIMC.

3.4.2. Loading Solvent

The molecular recognition of MIPs is mainly based on hydrogen bonding interactions between
the MIPs and analytes, and such interactions are often more stable in weak polar media [39]. Organic
solvents with various polarities, including MeOH, ACN, and ethyl acetate (EA), which are commonly
used to extract MALs from animal tissues, were investigated as the loading candidates (fortified
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concentration: 10 µg/mL of six macrolides in 5 mL of each candidate solution). While considering
the possible leakage of template during LC-MS/MS analysis, ROX was not estimated in the following
programs. Figure 4A gives the results. Satisfactory recoveries of target compounds (above 95%) were
obtained while using ACN and EA as the loading solvents. In sharp contrast, MeOH provided low
recoveries for six MALs, especially for SPM (less than 50%), which might be caused by the strong
suppression of high polar solvent (MeOH) to imprinted interaction. We selected ACN as the loading
solvent for further study in view of easy volatilization of EA and consistency with the extraction solvent.

Polymers 2019, 11, x FOR PEER REVIEW  8 of 15 

 

(above 95%) were obtained while using ACN and EA as the loading solvents. In sharp contrast, 
MeOH provided low recoveries for six MALs, especially for SPM (less than 50%), which might be 
caused by the strong suppression of high polar solvent (MeOH) to imprinted interaction. We 
selected ACN as the loading solvent for further study in view of easy volatilization of EA and 
consistency with the extraction solvent.  

3.4.3. Washing Solution 

The optimization of washing solution is a crucial step for imprinted extraction in eliminating 
the co-extracted impurities with less loss of analytes and to simultaneously reduce the non-specific 
adsorption. Several solvents with different polarity (MeOH, ACN, acetone, and water) as washing 
solutions were estimated after loading with extract solution. As shown in Figure 4B, MeOH had 
washed off lots of analytes and the recoveries were below 50%. It has been reported that polar 
solvents, such as MeOH, could disrupt the non-covalent interactions between analytes and MIPs 
[40]. On the contrary, there was no obvious loss of six MALs for MIMC washing with ACN, acetone, 
and water. However, the recoveries were also high on NIMC (above 80%) when acetone and water 
were used as the washing solvents. Ultimately, the MIMC was successively rinsed with ACN and 
water, which could effectively remove the lipid and water-soluble impurities. Under optimal 
conditions, non-specificity adsorption could be reduced, whereas most of the analytes were trapped 
in the polymer because of the specific interactions. The recoveries of six MALs on MIMC were more 
than twice that on NIMC. 

 
Figure 4. Effects of (A) methanol (MeOH), acetonitrile (ACN) and ethyl acetate (EA) as loading 
solvents and (B) MeOH, ACN, acetone and water as washing solvents on the recoveries of six 
macrolide drugs: erythromycin (ERY); clarithromycin (CLA); azithromycin (AZI); tulathromycin 
(TUL); tilmicosin (TIM); and, spiramycin (SPM). 

3.4.4. Eluting Solution 

MeOH and different percentages of ammonium hydroxide in MeOH (1%, 2%, 3%, and 4%) as 
eluting candidates were assessed in this study in view of easy volatilization of EA and consistency 
with the extraction solvent. The results (Figure S5) revealed that the participation of AM in eluting 
solution tended to improve the elution ability, perhaps because of the weak alkalinity of MALs. A 
higher concentration of AM (>3%) in MeOH did not significantly improve the recoveries of analytes, 
but it extended the evaporation time. Therefore, 1 mL of 2% ammonium hydroxide in MeOH was 
chosen for eluting the MALs from MIMC, and the recoveries were higher than 94.5%. 

3.4.5. Class-Specificity of MIMC 

The class-specificity of MIMC was investigated through analyzing six MALs and other 
pharmaceuticals with a large consumption in animal husbandry, including florfenicol (FLO), 
sulfadimidine (SM2), and valnemulin (VAL). 1 mL of mixed standard solution in ACN (10 μg/mL) 
was loaded onto MIMC or NIMC, followed by the optimal MIPMME procedure. As illustrated in 
Figure 5, six MALs were well recognized by MIMC, with their recoveries being higher than 88% due 
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and (B) MeOH, ACN, acetone and water as washing solvents on the recoveries of six macrolide drugs:
erythromycin (ERY); clarithromycin (CLA); azithromycin (AZI); tulathromycin (TUL); tilmicosin (TIM);
and, spiramycin (SPM).

3.4.3. Washing Solution

The optimization of washing solution is a crucial step for imprinted extraction in eliminating
the co-extracted impurities with less loss of analytes and to simultaneously reduce the non-specific
adsorption. Several solvents with different polarity (MeOH, ACN, acetone, and water) as washing
solutions were estimated after loading with extract solution. As shown in Figure 4B, MeOH had
washed off lots of analytes and the recoveries were below 50%. It has been reported that polar solvents,
such as MeOH, could disrupt the non-covalent interactions between analytes and MIPs [40]. On the
contrary, there was no obvious loss of six MALs for MIMC washing with ACN, acetone, and water.
However, the recoveries were also high on NIMC (above 80%) when acetone and water were used as
the washing solvents. Ultimately, the MIMC was successively rinsed with ACN and water, which could
effectively remove the lipid and water-soluble impurities. Under optimal conditions, non-specificity
adsorption could be reduced, whereas most of the analytes were trapped in the polymer because of the
specific interactions. The recoveries of six MALs on MIMC were more than twice that on NIMC.

3.4.4. Eluting Solution

MeOH and different percentages of ammonium hydroxide in MeOH (1%, 2%, 3%, and 4%) as
eluting candidates were assessed in this study in view of easy volatilization of EA and consistency with
the extraction solvent. The results (Figure S5) revealed that the participation of AM in eluting solution
tended to improve the elution ability, perhaps because of the weak alkalinity of MALs. A higher
concentration of AM (>3%) in MeOH did not significantly improve the recoveries of analytes, but it
extended the evaporation time. Therefore, 1 mL of 2% ammonium hydroxide in MeOH was chosen for
eluting the MALs from MIMC, and the recoveries were higher than 94.5%.

3.4.5. Class-Specificity of MIMC

The class-specificity of MIMC was investigated through analyzing six MALs and other
pharmaceuticals with a large consumption in animal husbandry, including florfenicol (FLO),
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sulfadimidine (SM2), and valnemulin (VAL). 1 mL of mixed standard solution in ACN (10 µg/mL)
was loaded onto MIMC or NIMC, followed by the optimal MIPMME procedure. As illustrated in
Figure 5, six MALs were well recognized by MIMC, with their recoveries being higher than 88% due
to the complementation between target MALs and imprinted cavities, while poor recoveries were
obtained from NIMC. Both MIMC and NIMC presented low affinity to FLO, SM2, and VAL, since their
molecular structures are quite different from the template (Figure S1 for their structures). It can be
demonstrated that the MIMC had good class-specificity for multiple MALs and it had great potential
for the selective separation of MALs.
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3.5. Comparison of Different Cleanup Methods

The recoveries of six MALs obtained from different SPE cartridges, including MIPMMC, C18,
and Oasis HLB, were compared. 1 mL of blank pork matrix was spiked at 10 ng/mL of six MALs for
the further SPE procedures. For the C18 cartridge, 3 mL of MeOH and 3 mL of water were used to
condition the cartridge. 1 mL of the extract was diluted with 4 mL of water before loading. The C18
cartridge was washed with 3 mL of 10% MeOH in water and the analytes were eluted with 5 mL of 5%
ammonium hydroxide in MeOH. For Oasis HLB cartridge, 1 mL of the extract was evaporated and the
residues were re-dissolved with 5 mL of phosphate buffer solution (0.1 M, pH = 8.0) before loading.
Except for the loading process, cleanup and elution were the same as the C18 cartridge. As shown in
Figure S6, the MIMC provided higher recoveries than other cartridges for six MALs, especially for
ERY and SPM. It certified that MIMC had excellent purification and enrichment ability to six MALs in
animal muscles.

3.6. Reusability of MIMC

The MIMC was employed to repeat several binding and eluting SPE cycles to investigate its
reusability (each SEP cycle: 5 mL of pork matrix spiked at 10 ng/mL of six MALs). After each cycle,
MIMC was rinsed with 1 mL of 5% ammonium hydroxide in MeOH to remove the residual MALs, and
then regenerated by washing with 1 mL of water and 1 mL of MeOH three times. The results exhibited
that MIMC could be reused at least 20 times, with only a slight decrease of its recognition properties
(recovery loss less than 5%). In contrast, the recoveries for most MALs in C18 cartridge dramatically
declined (below 60%) after five cycles. It was obvious that the MIMC had favorable durability, which
would be economical and stable in the analysis of real samples.

3.7. Application of MIMC in Animal Foodstuff

The developed MIPMME procedure, coupled with LC-MS/MS, was applied to selectively enrich
and detect six MALs from chicken, pork, and beef samples. Good linearity was achieved in the
concentration range of 1.0–100 µg/kg for target compounds, with correlation coefficients (r2) higher
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than 0.99 under the optimized conditions of sample separation and detection (Table 2). Linear equations
for target analytes in three matrices are listed in Table S2. The limit of detection (LOD) and limit of
quantification (LOQ) were in the range of 0.5–1.0 µg/kg and 2.0–5.0 µg/kg, respectively.

Chicken, pork, and beef samples at three spiked concentration levels of six MALs (5.0, 10, and
25 µg/kg) were analyzed to investigate the accuracy and precision of this method. The precision was
described as the relative standard deviation (RSD). Table 2 also gives the results. The average recoveries
of six MALs in three muscle samples were from 76.1% to 92.8%, with intra-day and inter-day RSDs
that were lower than 10.4%. Figure 6 shows the typical SRM chromatograms of spiked chicken sample.
Figure S7 shows the chromatograms of spiked pork and beef samples after the MISPE procedure.
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Table 3 lists the comparison of other reported methods with the proposed method for the
determination of MALs. The LODs of the developed method were lower than those of LC-MS/MS
analysis based on traditional extraction approaches, such as pressurized liquid extraction (PLE) [41]
and accelerated solvent extraction (ASE) [12]. When compared with novel extraction strategies using
MIP technology, the method had lower LODs than the HPLC methods based on multi-walled carbon
nanotubes MISPE (MWNTs-MIPSE) [28] and magnetic MISPE (MMISPE) [27]. Two papers described
the determination of multiple macrolides in animal foodstuffs by LC-MS/MS based on MISPE [29] and
hollow porous MIP-DSPE (HPMIP-DSPE) [26]. Although the LODs of the method that was developed
were slightly higher than those of the MISPE method, the recoveries of this method were much better
than the latter. The HPMIP-DSPE method had higher recoveries and lower LODs for the analysis of
MALs in honey due to the differences between sample matrices. Thus, the LC-MS/MS coupled with
MIPMME was efficient and sensitive in analyzing trace amounts of MALs in animal-derived food.
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Table 2. Validation data for six macrolide antibiotics after molecularly imprinted polymer monolith microextraction (MIPMME) procedure in spiked animal muscle
samples a.

Compound Samples Linearity (r2) LOD b (µg/kg) LOQ c (µg/kg)
Intra-Day Recovery (%RSD, n = 6) d Inter-Day Recovery (%RSD, n = 18)

5 µg/kg 10 µg/kg 25 µg/kg 5 µg/kg 10 µg/kg 25 µg/kg

Erythromycin chicken 0.9977 0.5 2.0 80.4(4.2) 82.8(2.7) 85.4(1.7) 81.2(5.1) 83.3(2.4) 86.1(2.5)
pork 0.9984 0.5 2.0 81.7(3.8) 83.4(3.1) 84.8(5.9) 82.7(4.4) 83.9(3.6) 85.6(6.7)
beef 0.9962 0.5 2.0 76.8(7.2) 78.6(3.4) 82.1(4.9) 78.2(10.4) 79.1(5.6) 83.7(7.1)

Clarithromycin chicken 0.9995 0.5 2.0 84.9(6.3) 85.7(2.1) 88.4(1.6) 85.3(8.2) 84.9(3.6) 89.7(2.4)
pork 0.9992 0.5 2.0 82.6(8.1) 84.7(1.8) 85.1(4.7) 80.2(9.8) 84.1(1.1) 86.4(5.3)
beef 0.9989 0.5 2.0 80.5(4.7) 82.6(0.7) 84.6(4.2) 82.9(5.1) 83.7(2.6) 85.1(3.9)

Tulathromycin chicken 0.9992 1.0 5.0 75.8(5.8) 78.1(3.4) 79.1(2.3) 76.1(3.7) 78.6(1.9) 80.3(2.7)
pork 0.9994 1.0 5.0 76.8(1.2) 78.8(6.1) 80.2(1.9) 77.5(1.6) 79.2(3.4) 81.2(2.1)
beef 0.9988 1.0 5.0 75.3(8.3) 76.7(2.8) 78.3(5.4) 76.9(5.8) 78.1(4.2) 79.8(2.9)

Azithromycin chicken 0.9963 0.5 2.0 83.5(2.5) 84.8(2.2) 85.7(3.6) 83.9(1.4) 84.4(3.6) 87.4(7.2)
pork 0.9998 0.5 2.0 85.1(7.3) 88.4(5.4) 91.7(6.7) 86.3(8.1) 89.1(4.5) 92.8(3.1)
beef 0.9992 0.5 2.0 78.4(5.7) 80.2(6.5) 90.6(5.0) 79.6(6.4) 83.2(8.2) 86.1(4.6)

Spiramycin chicken 0.9961 1.0 5.0 84.6(3.2) 86.9(1.2) 87.6(1.1) 85.3(5.8) 87.2(2.7) 87.6(4.1)
pork 0.9987 1.0 5.0 82.3(4.1) 83.4(8.3) 85.8(1.7) 83.5(2.5) 84.8(7.2) 85.7(3.6)
beef 0.9992 1.0 5.0 79.2(4.6) 81.8(6.7) 83.6(1.5) 78.2(5.7) 83.4(8.9) 84.3(2.1)

Tilmicosin chicken 0.9930 0.5 2.0 85.1(1.5) 89.2(7.4) 91.8(2.5) 86.5(3.2) 90.6(7.1) 91.2(6.2)
pork 0.9943 0.5 2.0 82.5(3.4) 86.6(1.9) 90.7(3.6) 81.2(4.5) 87.2(2.5) 89.1(7.8)
beef 0.9985 0.5 2.0 79.4(1.9) 84.2(6.4) 88.1(2.7) 78.2(2.2) 86.2(8.1) 90.3(4.5)

a MIPMME, molecularly imprinted polymer monolith microextraction; b LOD, limit of detection; c LOQ, limit of quantification; d RSD, relative standard deviation.
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Table 3. Comparison of the method developed with other reported methods.

Preparation a Analytical
Method b Matrix Analyte c LOD

(µg/kg) d
Recovery

(%) Ref.

PLE LC-MS/MS chicken SPM, TIM, TYL 1.0–6.0 77.1–94.0 [41]

ASE LC-MS/MS pork, kidney,
liver

SPM, OLE, ERE, DOR,
IVE, TIM, ERY, ROX,

CLA, KIT, MED
0.2–0.6 76.0–102 [12]

MWNTs-MISPE HPLC-UVD chicken ERY - 85.3–95.8 [28]

MMISPE HPLC-UVD pork, fish,
shrimp

ERY, OLE, AZI, TIM,
CLA, ROX 1.5–20 64.8–84.2 [27]

HPMIP-DSPE LC-MS/MS honey AZI, SPM, TIM, CLA,
JOS, ROX, TYL 0.003–0.017 88.0–117 [26]

MISPE LC-MS/MS pork, beef,
chicken

AZI, TUL, SPM, TIM,
ERY, CLA, ROX, MED,

JOS, KIT
0.1–0.4 60.7–100 [29]

MIPMME LC-MS/MS pork, beef,
chicken

CLA, ERY, ZAI, TUL,
TIM, SPM 0.5–1.0 76.1–92.8 This work

a PLE, pressurized liquid extraction; ASE, accelerated solvent extraction; MWNTs-MISPE, molecularly imprinted
solid-phase extraction based on multi-walled carbon nanotubes; MMISPE, magnetic molecularly imprinted
solid-phase extraction; MISPE, molecularly imprinted solid-phase extraction; HPMIP-DSPE, dispersive solid-phase
extraction based on hollow porous molecularly imprinted polymers; MIPMME, molecularly imprinted polymer
monolith microextraction; b LC-MS/MS, liquid chromatography-tandem mass spectrometry; HPLC-UVD,
high-performance liquid chromatography with ultraviolet detector; c SPM, spiramycin; OLE, troleandomycin;
ERE, erythromycin ethylsuccinate; DOR, doramectin; IVE, ivermectin; TIM, tilmicosin; ERY, erythromycin; ROX,
roxithromycin; CLA, clarithromycin; KIT, kitasamycin; MED, midecamycin; JOS, josamycin; AZI, azithromycin;
TYL, tylosin; d LOD, limit of detection; LOQ, limit of quantitation.

4. Conclusions

In this work, the MIP monolithic extraction column for MALs was prepared inside a micropipette
tip while using ROX as the dummy template. MIMC was directly connected with a syringe to perform
template removal and the following microextraction procedures, which is simple and convenient
for sample pre-treatment. Based on MIMC, a LC-MS/MS method was established for the analysis of
MALs in animal muscle samples. The developed method provided good linearity, high sensitivity, and
satisfactory recoveries for MALs within the experimental concentration ranges. When compared with
traditional C18 and HLB cartridges, MIMC showed more favorable retention ability for six MALs and
it can be reused at least 20 times. Thus, the proposed method was selective, efficient, and economical
for the monitoring of trace MALs residues in animal foodstuffs.
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and NIMC; Figure S5, Effect of MeOH and different percentages of ammonium hydroxide (AM) in MeOH as
elution solutions on the recoveries of macrolides drugs; Figure S6, The comparison of MIMC, C18 and Oasis
HLB cartridges on the recoveries of target macrolides (the abbreviations are same as Figure 4) at 10 ng/mL
spiked concentration of six macrolides in pork matrix; Figure S7, Typical SRM chromatograms obtained from (A)
spiked pork and (B) spiked beef matrices at the concentration of 5 µg/kg and their corresponding blank matrices;
Table S1, SRM parameters for target analytes in positive ion mode; Table S2, Linear equation for each analyte in
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