Supporting Information

Preparation of Half- and Post-metallocene Hafnium Complexes with Tetrahydroquinoline and Tetrahydrophenanthroline Frameworks for Olefin Polymerization

\author{
Jun Won Baek, ${ }^{1}$ Su Jin Kwon, ${ }^{1}$ Hyun Ju Lee, ${ }^{1}$ Tae Jin Kim, ${ }^{1}$ Ji Yeon Ryu, ${ }^{\text {b }}$ Junseong Lee, ${ }^{2}$ Eun Ji Shin, ${ }^{3}$ Ki Soo Lee, ${ }^{3}$ and Bun Yeoul Lee ${ }^{1, *}$
 [^0]}

Figure S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$.

Figure S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}$.

Figure S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3}$.

Figure S4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 .

Figure S5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 .

Figure S6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 .

Figure S7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 .

Figure S8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 0}$.

Figure S9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 1}$.

Figure S10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 2}$.

Figure S11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 13 .

Figure S12. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 4 .}$

Figure S13. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 5}$.

Figure S14. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 6}$.

Figure S15. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra recorded on the reaction of $\mathbf{1}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$at 3 h .

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of 2 with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F} 5\right)_{4}\right]^{-}$at 3 h.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of $\mathbf{3}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F} 5\right)_{4}\right]^{-}$at 5 h.

$1 \begin{aligned} & 1 \\ & 1\end{aligned}$

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of 4 with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F} 5\right)_{4}\right]^{-}$at 5 h.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of $\mathbf{5}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F} 5\right)_{4}\right]^{-}$at 3 h.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of $\mathbf{6}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F} 5\right)_{4}\right]^{-}$at 3 h.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of $\mathbf{1 0}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F} 5\right) 4\right]^{-}$ at 0.5 h .

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of $\mathbf{1 1}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}(\mathrm{C} 6 \mathrm{~F} 5)_{4}\right]^{-}$ at 0.5 h .

Figure S23. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra recorded on the reaction of $\mathbf{1 2}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$at 0.5 h .

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of $\mathbf{1 5}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$ at 1 h ..

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of $\mathbf{1 6}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}(\mathrm{C} 6 \mathrm{~F} 5)_{4}\right]^{-}$ at 1 h .

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum recorded on the reaction of $\mathbf{1 6}$ with $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$ containing water at 1 h .

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of anhydrous $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F} 5\right) 4\right]^{-}$prepared in this work.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\mathrm{C}_{18} \mathrm{H}_{37}\right)\right)_{2} \mathrm{~N}(\mathrm{H}) \mathrm{Me}^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$containing water prepared by the method reported in patent.

Figure S29. ${ }^{1}$ H NMR spectrum of polymer (entry 3 in Table 1).

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of Polymer (entry 5 in Table 1).

Figure S31. DSC Thermograms
$<$ Entry 1 in Table $1>$

$<$ Entry 2 in Table 1>

$<$ Entry 3 in Table 1>

<Entry 4 in Table 1>

$<$ Entry 6 in Table 1>

<Entry 7 in Table 1>

$<$ Entry 8 in Table $1>$

$<$ Entry 9 in Table 1>

$<$ Entry 10 in Table $1>$

<Entry 11 in Table 1>

[^0]: ${ }^{1}$ Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea; btw91@ajou.ac.kr (J.W.B.); ksj9355@ajou.ac.kr (S.J.K.); hjulee4639@ajou.ac.kr (H.J.L.); playing3457@ajou.ac.kr (T.J.K.)
 ${ }^{2}$ Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, South Korea; jy5330@naver.com (J.Y.R.); leespy@chonnam.ac.kr (J.L.)
 ${ }^{3}$ LG Chem, Ltd, 188, Munji-ro, Yuseong-gu Daejeon 305-738, South Korea; eunjis@lgchem.com (E.J.S.); leekisoo@lgchem.com (K.S.L.)
 * Correspondence: bunyeoul@ajou.ac.kr; Tel: 82-31-219-1844

