Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril

Composites

Supporting Information

Eftihia Barnes^{1,*}, Jennifer A. Jefcoat¹, Erik M. Alberts², Mason A. McKechnie¹, Hannah R.

Peel³, J. Paige Buchanan¹, Charles A. Weiss Jr.¹, Kyle L. Klaus¹, L. Christopher Mimun³, Christopher M. Warner³

¹Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center

3909 Halls Ferry Road, Vicksburg, Mississippi, USA

²HX5, LLC, Vicksburg, Mississippi, USA

³Environmental Laboratory, U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road, Vicksburg, Mississippi, USA

*Correspondence: Eftihia.V.Barnes@usace.army.mil; Tel.: +01-601-634-3084

The supporting information includes: I. Pricing of cellulose nanomaterials, Spring 2019, II. Atomic Force Microscopy results on as-received CNFs and TOCNFs, surface topology of composites, and surface roughness, III. DSC first and second melting curves from CNF and TOCNF/PVDF composites. IV. Tensile properties of the CNF and TOCNF/PVDF composites.

I. Pricing of cellulose nanomaterials, Spring 2019.

CNF/CMF	UMaine Cellulose Nanofibrils	Unit Size	Lead Time	Number of Units	Cost per Unit \$USD	Cost - \$USD S/H will be added
1	Standard Slurry, 3% Solids	1 pound 5-gallon pail	1-2 Days	2000.000	\$50	
2	Standard Slurry, ~15% solids	1 pound 1-gallon pail	2-3 Days		\$75	
3	Standard Slurry, Freeze-dried	1/4 pound bag	2-3 Days		\$200	
4	High fines slurry, 3% solids	1 pound 5-gallon pail	Made to Order		\$75	1.1
5	CNF Slurry – bulk volume	55-gallon barrel	Please Call			
CNC	FPL Cellulose Nanocrystals, acid-hydrolyzed	Unit Size		Number of Units	Cost per Unit \$USD	Cost - \$USD S/H will be added
6	Slurry, ~11.8% Solids	1 pound 2-gallon pail	1-2 Days		\$250	
7	Freeze-dried powder	1/4 pound bag	1-2 Days		\$112.50	8
8	CNC Slurry - bulk volume	55-gallon barrel	Please Call			83.
TOCN	FPL Cellulose Nanofibrils, TEMPO-oxidized	Unit Size		Number of 100 gram units	Cost per unit \$USD	Cost - \$USD S/H will be added
9	Slurry, ~1% Solids	100 grams 4-gallon pail	1-2 Days	4550	\$330	
10	Freeze-dried powder	100 grams bag	2-3 Days		\$690	
11	TOCN Slurry – bulk volume	55-gallon barrel	Please Call			
					TOTAL for samples	

University of Maine Process Development Center.

Figure S1. Nanocellulose pricing (spring 2019), University of Maine Process Development Center.

Product Series	Cellulose Lab Catalog Number			Small Pa	ckage Order	Large Package Order			
		Product	Form	Size (oven-dry weight basis)	Cost, USD per gram (oven-dry weight)	Size (oven-dry weight basis)	Cost, USD per gram (oven-dry weight)	Order	
	CNF-Slurry	Cellulose Nanofibrils	Slurry, 3.0% solids	1g-500g	\$2.00	501g-5kg	\$1.75		
	CNF-FD	Cellulose Nanofibrils Freeze-dried	Dry	1g-200g	\$6.00	201 g - 2 kg	\$5.50		
	CNF-CM-Slurry	Carboxymethylated Cellulose Nanofibrils	Slurry, 0.5% - 7% solids	1g-60g	\$15.00	61g-1kg	\$12.00	7	
NFC series (Cellulose Nanofibrils or	CNF-CM-FD-P	Carboxymethylated Cellulose Nanofibrils, Freeze-dried, Pulp material	Dry	1g-60g	\$15.00	61 g - 1 kg	\$12.00		
nano fibrillated cellulose) or MFC series (micro fibrillated cellulose)	CNF-CM-SD-C	Carboxymethylated Cellulose Nanofibrils, Spray-dried, Cotton material	Dry	1g-50g	\$20.00	51g-1kg	\$15.00		
	CNF-CM-SD-S	Carboxymethylated Cellulose Nanofibrils, Spray-dried, Sisal material	Dry	1g-50g	\$25.00	51g-1kg	\$20.00	8	
	CNF-Cationic	Cationic type Cellulose Nanofibrils	Slurry, 0.5% - 7% solids	1g-60g	\$20.00	61g-1kg	\$17.50		
	CNF-TEMPO-FD	TEMPO (Anionic type) Cellulose Nanofibrils Powder	Dry	1g-50g	\$25.00	51g-1kg	\$20.00	Please contact us	
	CNF-TEMPO-S	TEMPO (Anionic type) Cellulose Nanofibrils Slurry	Slurry, 0.5% - 7% solids	1g-60g	\$20.00	61g-1kg	\$17.50		
NCC (or CNC) series (Nanocrystalline Cellulose or Cellulose Nanocrystals)	CNC-Slurry	Cellulose Nanocrystals, acid hydrolysis	Slurry, 11.8% solids	1g-500g	\$3.00	501g-5kg	\$2.50		
	CNC-FD	Cellulose Nanocrystals Freeze-dried	Dry	1g-200g	\$6.00	201 g - 1 kg	\$5.50		
	CNC-SD	Cellulose Nanocrystals Spray-dried	Dry	1g-200g	\$6.00	201 g - 1 kg	\$5.50		
	CNC-CM-SD	C-CM-SD Carboxymethylated Cellulose Nanocrystals, Spray-dried, Pulp material		1g-100g	\$10.00	101 g - 1 kg	\$8.00		
	CNC-Cationic	Cationic type Cellulose Nanocrystals	Slurry, 1% - 7% solids	1g-50g	\$25.00	51g-1kg	\$20.00	2	
	CNC-TEMPO	TEMPO (Anionic type) Cellulose Nanocrystals	Slurry, 1% - 7% solids	1g-50g	\$25.00	51g-1kg	\$20.00		

CelluloseLab, contact@celluloselab.com.

Figure S2. Nanocellulose pricing (spring 2019). CelluloseLab.

Nanografi

→ C' û	🛈 🔒 https:/	//nanografi.com/nanoparticles/cellulose-nanocrystal-nar	nocrystalline ••	• 🗢 🏠 🔍 Search 👱 🔟 🗈 💌				
nanografi		Search the store		Q 🛱 Gift Certificates 箳 Cart				
Carbon Nanotubes	>	HOME / NANOPARTICLES / CELLULOSE NANOCRYSTAL (NANOC	RYSTALLINE CELLULOS	- SE(CNC)				
Graphene	>			Cellulose Nanocrystal (Nanocrystalline				
Fullerene	>		$\langle - \rangle$	(No reviews vot) Write a Peview				
Nanoparticles	>	Crystalline	nanografi					
Microparticles	>	Nanocellulose		SKU: NG01NC0101				
Rare Earth Materials	>	Crystalline Nanocellulose(CNC), Dia 10-20 nm. L: 300-900 nm		SHIPPING: Calculated at Checkout				
Sputtering Targets	>			€18.00				
Dispersions	>			IF YOU ARE INTERESTED IN A QUOTE FOR A LARGE QUANTITY, PLEASE CONTACT US: REQUIRED				
Silicon Wafers & Semiconductor Wafers	>			5 g 25 g 100 g 500 g 1000 g				
Special Materials				QUANTITY:				
				× 1 ^				
nanografi		Search the store		Q 🛱 Gift Certificates 🕁 Cart				
Carbon Nanotubes	>	IOME / NANOPARTICLES / CELLULOSE NANOFIBER (CELLULOSE	E NANOFIBRIL, NANOFIE	SRILLATED CELLULOSE, CNFS)				
Graphene	>			Cellulose Nanofiber (Cellulose Nanofibril,				
Fullerene	>		$\langle \overline{c} \rangle$					
Nanoparticles	>	Nanofibrilated	nanografi	(NU LEVIEWS yet) Wille a Review				
Microparticles	>	Cellulose		SKU: NG01NC0201 SHIPPING: Calculated at Checkout				
Rare Earth Materials	>	Nanofibrilated Cellulose(CNFs), Dia 10-20 nm, L: 2-3 um		€30.00				
Sputtering Targets	>							
Dispersions	>			IF YOU ARE INTERESTED IN A QUOTE FOR A LARGE QUANTITY, PLEASE CONTACT US: REQUIRED				
Silicon Wafers & Semiconductor Wafers	>			5 g 25 g 100 g 500 g 1000 g				
Special Materials				QUANTITY:				
Battery Equipment	>			× 1 ^				

Figure S3. Nanocellulose pricing (spring 2019), Nanographi.

II. Atomic Force Microscopy results

High resolution images of the as-received CNFs and TOCNFs were obtained with Atomic Force Microscopy (Dimension Icon, Bruker) following the preparation method outlined by [30]. Topographical images were captured in the ScanAsyst® mode using a tip with a 2 nm nominal tip radius. AFM data were plotted and processed with Gwyddion [31]. Figure S4 shows 10 μ m × 10 μ m scans of (a) as-received CNFs and (b) TOCNFs deposited on freshly cleaved mica substrates. Figures S2 and S3 show 10 μ m × 10 μ m scans obtained from the top (free) and bottom (constrained) surfaces from the PVDF, CNF/PVDF, and TOCNF/PVDF composites. Figures S2 and S3 show the morphology of the PVDF, CNF/PVDF and TOCNF/PVDF top surfaces. Table S1 lists the surface roughness values obtained from the AFM scans shown in Figures S2 and S3.

wt%	Surface Roughness Top surface (rms), nm	Surface Roughness Bottom surface (rms), nm
0	74	2.9
CNF		
0.5	124	3.1
1	188	3.2
2	131	5.1
3	231	7.0
4	293	5.5
5	382	5.3
TOCNF		
0.5	317	4.0
1	255	4.2
2	255	8.0
3	431	6.1
4	327	7.7
5	446	5.3

Table S1. Surface roughness of films obtained from AFM scans.

Figure S4. AFM of (a) as-received CNFs, and (b) TOCNFs. Scan size is 10 $\mu m \times ~10 ~\mu m.$

Figure S5. Surface topography of the top (free) surface of (a) PVDF, (b) 0.5,(c) 1,(d) 2,(e) 3,(f) 4,(g) 5 wt% CNF/PVDF, and (h) 0.5, (i) 1,(j) 2,(k) 3,(l) 4,(m) 5 wt% TOCNF/PVDF. Scan sizes are 10 μ m × 10 μ m.

Figure S6. Surface topography of the bottom (constrained) surface of (a) PVDF, (b) 0.5,(c) 1,(d) 2,(e) 3,(f) 4,(g) 5 wt% CNF/PVDF, and (h) 0.5, (i) 1,(j) 2,(k) 3,(l) 4,(m) 5 wt% TOCNF/PVDF. Scan sizes are 10 μ m × 10 μ m.

		top s	surface			bottom surface				
wt%	<i>θ</i> i (°)	<i>k</i> (×10 ⁻⁴ s ⁻¹)	п	r ^{2*}	X ^{2**}	<i>в</i> і (°)	k (×10 ⁻⁴ s ⁻¹)	п	r ^{2*}	X ^{2**}
0	$\begin{array}{c} 94.08 \pm \\ 0.05 \end{array}$	5.6 ± 1.1	$\begin{array}{c} 0.75 \pm \\ 0.04 \end{array}$	0.971	0.008	$\begin{array}{c} 84.87 \pm \\ 0.02 \end{array}$	1.4 ± 0.3	$\begin{array}{c} 1.00 \pm \\ 0.04 \end{array}$	0.979	0.004
CNF										
0.5	91.07 ± 0.02	2.6 ± 0.2	$\begin{array}{c} 0.95 \pm \\ 0.02 \end{array}$	0.995	0.002	77.63 ± 0.02	1.8 ± 0.0	1.00 ± 0.02	0.993	0.002
1	93.16 ± 0.02	1.3 ± 0.2	$\begin{array}{c} 1.00 \pm \\ 0.02 \end{array}$	0.992	0.002	$\begin{array}{c} 85.48 \pm \\ 0.02 \end{array}$	1.8 ± 0.3	$\begin{array}{c} 1.00 \pm \\ 0.03 \end{array}$	0.987	0.004
2	105.20 ± 0.03	5.3 ± 0.7	$\begin{array}{c} 0.70 \pm \\ 0.03 \end{array}$	0.985	0.003	$\begin{array}{c} 78.54 \pm \\ 0.03 \end{array}$	2.4 ± 0.4	$\begin{array}{c} 0.97 \pm \\ 0.04 \end{array}$	0.983	0.005
3	-	-	-	-	-	$\begin{array}{c} 80.43 \pm \\ 0.02 \end{array}$	2.0 ± 0.2	$\begin{array}{c} 1.00 \pm \\ 0.02 \end{array}$	0.994	0.002
4	103.42 ± 0.07	2.1 ± 0.3	$\begin{array}{c} 0.51 \pm \\ 0.03 \end{array}$	0.983	0.006	$\begin{array}{c} 77.70 \pm \\ 0.01 \end{array}$	1.9 ± 0.2	$\begin{array}{c} 1.00 \pm \\ 0.02 \end{array}$	0.995	0.001
5	-	-	-	-	-	$\begin{array}{c} 78.80 \pm \\ 0.03 \end{array}$	2.8 ± 0.4	$\begin{array}{c} 1.00 \pm \\ 0.03 \end{array}$	0.992	0.005
TOCNF										
0.5	$\begin{array}{c} 85.68 \pm \\ 0.02 \end{array}$	1.9 ± 0.3	$\begin{array}{c} 0.98 \pm \\ 0.03 \end{array}$	0.989	0.003	$\begin{array}{c} 81.43 \pm \\ 0.01 \end{array}$	2.9 ± 0.3	$\begin{array}{c} 0.89 \pm \\ 0.02 \end{array}$	0.996	0.001
1	$\begin{array}{c} 96.10 \pm \\ 0.07 \end{array}$	8.9 ± 0.2	$\begin{array}{c} 0.70 \pm \\ 0.05 \end{array}$	0.960	0.017	$\begin{array}{c} 77.32 \pm \\ 0.01 \end{array}$	1.8 ± 0.2	$\begin{array}{c} 1.00 \pm \\ 0.02 \end{array}$	0.997	0.001
2	$\begin{array}{c} 93.20 \pm \\ 0.06 \end{array}$	14.9 ± 2.8	$\begin{array}{c} 0.58 \pm \\ 0.03 \end{array}$	0.973	0.009	$\begin{array}{c} 79.80 \pm \\ 0.01 \end{array}$	2.5 ± 0.2	$\begin{array}{c} 0.91 \pm \\ 0.01 \end{array}$	0.997	0.001
3	90.43 ± 0.05	7.8 ± 0.2	$\begin{array}{c} 0.71 \pm \\ 0.04 \end{array}$	0.970	0.010	$\begin{array}{c} 75.36 \pm \\ 0.01 \end{array}$	1.7 ± 0.2	$\begin{array}{c} 1.00 \pm \\ 0.02 \end{array}$	0.994	0.001
4	-	-	-	-	-	75.43 ± 0.01	1.6 ± 0.1	$\begin{array}{c} 1.00 \pm \\ 0.02 \end{array}$	0.996	0.001
5	-	-	-	-	-	73.23 ± 0.01	1.2 ± 0.20	0.99 ± 0.03	0.984	0.001

Table S2. Summary of Equation 1 fitting results for PVDF, CNF/PVDF, and TOCNF/PVDF films.

*adjusted r^2 , **reduced χ^2

III. DSC first and second melting curves from CNF and TOCNF/PVDF composites.

Figure S7 shows the first and second DSC melting curves for the PVDF, CNF/PVDF, and

TOCNF/PVDF composites.

Figure S7. First (a)-(b), and (c)-(d) second DSC melting curves for (a) CNF/PVDF composites and (b) TOCNF/PVDF composites. The results from (b) imply the presence of multiple crystalline phases, melting of imperfect crystalline phase or solid-solid phase transition.

IV. Tensile properties of the CNF and TOCNF/PVDF composites.

The mechanical properties of the composites obtained from the tensile tests (tensile modulus, ultimate tensile strength and % elongation at break) are shown in Figure S8.

Figure S8. Mechanical properties of the composites as function of CNF/TOCNF wt%, (a) tensile modulus, (b) ultimate tensile strength, and (c) % elongation at break.