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Abstract: The combination of acetazolamide-loaded nano-liposomes and Hydroxypropyl
methylcellulose (HPMC) with similar components to the preocular tear film in an osmoprotectant
media (trehalose and erythritol) is proposed as a novel strategy to increase the ocular bioavailability
of poorly soluble drugs. Ophthalmic formulations based on acetazolamide-loaded liposomes,
dispersed in the osmoprotectant solution (ACZ-LP) or in combination with HPMC (ACZ-LP-P)
were characterized and in vivo evaluated. The pH and tonicity of both formulations resulted in
physiological ranges. The inclusion of HPMC produced an increment in viscosity (from 0.9 to
4.7 mPa·s. 64.9 ± 2.6% of acetazolamide initially included in the formulation was retained in vesicles.
In both formulations, a similar onset time (1 h) and effective time periods were observed (7 h) after a
single instillation (25 µL) in normotensive rabbits’ eyes. The AUC0–8h of the ACZ-LP-P was 1.5-fold
higher than of ACZ-LP (p < 0.001) and the maximum hypotensive effect resulted in 1.4-fold higher
(p < 0.001). In addition, the formulation of ACZ in the hybrid liposome/HPMC system produced
a 30.25-folds total increment in ocular bioavailability, compared with the drug solution. Excellent
tolerance in rabbits’ eyes was confirmed during the study.
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1. Introduction

Glaucoma is considered the second leading cause of blindness in the world after cataracts and
one of the main causes of irreversible blindness. This disease is expected to affect 111.8 million patients
in 2040 [1,2]. The aetiology of the disease is not completely clear. Glaucoma is considered as a group of
chronic eye neuropathies characterized by the non-reversible degeneration of retinal ganglion cells,
whose axons form the optic nerve [3]. In most cases, glaucoma is associated with a high and continuous
elevation of intraocular pressure (IOP) due to an accumulation of aqueous humour in the anterior
segment of the eye owing to different causes. This increment in IOP is spread to the posterior segment
of the eye and generates injury in the retina and optic nerve, and also compromises the blood flow in
this area, contributing to the damage [4]. For this reason, the topical administration of antihypertensive
drugs is the first therapeutic step in clinical practice when IOP is increased [5]. These substances can
reduce aqueous humour production and/or promote its drainage. However, the main restriction of
this therapy is the lack of patients’ compliance, due to the need for frequent applications and the
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appearance of severe ocular surface discomfort after chronic treatments. This, joined to the fact that
glaucoma is asymptomatic until the last stages of the disease, explains why almost 60% of patients
do not fulfill with the prescribed treatment [6,7]. The use of eye-drop formulations able to improve
the ocular bioavailability of antihypertensive drugs might reduce the number of applications per day.
In addition, if the preparation includes components that can reduce the ocular surface alterations the
long-term patient compliance would increase.

Acetazolamide (ACZ) is a carbonic anhydrase inhibitor with a potent specific effect in
reducing aqueous humour production and, therefore, intraocular pressure [8–11]. According to
the biopharmaceutical classification system (BCS), acetazolamide is a class IV drug (low solubility and
low permeability) so, unfortunately, its topical instillation in simple solution is not effective [12–14].
Several technological approaches have been recently investigated to increase its solubility and/or its
retention time on the ocular surface and, as a consequence, its ocular bioavailability. Some of these
include the use of niosomes [15], cyclodextrins [16], dendrimers [17], nanoparticles or liposomes [18].

Niosomes are prepared from amphiphilic mixtures in aqueous media that create bilayer vesicles.
Some authors argue that niosomes are in between liposomes and microemulsions, since they can entrap
hydrophilic and poor water-soluble substances (an inherited characteristic from liposomes). In addition,
they have been described to enhance corneal penetration due to their surfactant properties, similar to
those present in the microemulsions [19]. Despite the fact that niosomes exhibit an adequate corneal
permeability, they were proven to be toxic for corneal cells, particularly those charged positively [20].
In spite of these findings, niosomes formulations could be improved and considered a potential
therapeutic tool for the treatment of ocular diseases.

Another interesting approach involves the use of cyclodextrins, which are very versatile
compounds composed of oligosaccharides creating a cyclic structure [21]. They are able to form
interesting systems that present good properties for drug delivery and particularly for the treatment of
ocular pathologies. In fact, a recent pilot study demonstrated that eye drops containing γ-cyclodextrin
based-nanoparticles loaded with dexamethasone presented good tolerance and high efficacy ratios in
patients suffering from diabetic macular edema [22].

Dendrimers are super branched-like structures ranging from 1–200 nm able to transport active
substances. Due to their particular structure, the interactions between dendrimers and corneal tissue
could improve ocular bioavailability [19]. Besides all these, dendrimers could avoid some problems
such as blurred vision, commonly described with the use of bioadhesive substances.

Another interesting approach regarding ocular drug delivery strategies is the use of solid lipid
nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). Apart from the well-known advantage
of encapsulating lipophilic drugs, they can undergo autoclave sterilization and low toxicity. They also
have in common with the previous systems mentioned before that could entail an efficient ocular drug
delivery system due to the enhancement of corneal penetration [23].

The use of polymeric nanoparticles such as polysaccharide like chitosan, gelatin or poly
lactic-co-glycolic acid (PLGA) based nanoparticles are extended in the development of ocular drug
delivery systems. They protect the active ingredients in the inner core from external degradations and
allow the controlled release of the drug. These certain characteristics are particularly interesting with
respect to topical ocular administration due to the presence of enzymes that could inactivate the active
substances. It also makes the nanoparticles especially resistant to shear forces present in the ocular
surfaces allowing them to maintain their structure [24].

Nanosuspensions work as an effective alternative poor soluble substances such as those that tend
to form crystal. Furthermore, these carriers do not create discomfort or swelling after their application,
therefore they are considered as an inert carrier for ocular drug delivery [25]. Nanoemulsions have
interesting properties for delivering drugs topically in ophthalmology. One excellent characteristic is
their good spreadability and their stability [26].

Liposomes are one of the most explored due to their important advantages such as high ocular
compatibility, lack of immunogenicity and low toxicity. Furthermore, liposomes can be loaded with
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poorly soluble drugs that have low bioavailability in suspensions or solutions forms, e.g., idoxuridine
for acute and chronic herpetic keratitis, penicillin G, Indoxole or some steroids such as triamcinolone
acetonide [27]. In addition, the simplicity of the formulations and the versatility of their physical
characteristics make liposomes very suitable for the ocular administration of drugs [28].

Another interesting strategy to increase the ocular residence time of active compounds is the
inclusion of polymers in the eye-drops formulations. They contribute to forming a viscous continuous
layer on the ocular surface able to partially protect the drug against lacrimal drainage, extending
the ocular residence time [29,30]. In fact, polymers such as carboxymethylcellulose, hydroxypropyl
methylcellulose (HPMC), hyaluronic acid or xanthan gum have been employed with this aim [19,30,31].
All of them have shown also good in vitro and in vivo tolerance. The bioavailability of drugs applied
topically can be increased by extending the residence time of the ophthalmic formulation. Moreover,
the use of polymers together with the inclusion of liposomes and other nanosystems makes of this
approach ideal to reach higher effectiveness, therefore managing more successfully the treatment of
ophthalmic diseases [32].

It has been widely recognized that hyperosmolarity may play a crucial role by worsening the
pro-inflammatory responses in the ocular surface [33]. Osmoprotectants are osmolytes which act as
protecting cells and microorganisms from osmotic stress. The accumulation of osmolytes result in a
maintenance of the cell fluid balance and cell volume, and hence keeping the equilibrium balanced with
the external environment [34]. There are several osmoprotective substances that have demonstrated
protecting properties such as L-carnitine, erythritol or trehalose among others [35]. The use of these
osmoprotective substances can be considered as a potential therapeutic tool to tackle the harmful
effects of different anti-glaucoma drugs such as dry eye or ocular discomfort.

This experimental work has been conducted to develop a novel eye-drop formulation useful in the
treatment of glaucoma. To this, the mentioned technological strategies have been combined. In a first
step, acetazolamide loaded liposomes were prepared in an osmoprotectant aqueous solution containing
borates, trehalose and erythritol, characterized and in vivo evaluated in terms of hypotensive efficacy.
Furthermore, the developed formulation was subsequently combined with HPMC to create a new
hybrid liposome/polymer system in an osmoprotectant media able to increase the acetazolamide
bioavailability and therefore its hypotensive activity after ocular topical administration, trying to
preserve at the same time the ocular surface and the functionality of the precorneal film. To this, both
efficacy and tolerance in vivo studies of the hybrid osmoprotectants/liposome/HPMC formulation
were performed. To our knowledge, this is the first time in which a hybrid system (liposomes/polymer)
exclusively composed by components similar to those present in the precorneal film, and with
osmoprotectants, are prepared and in vivo tested for glaucoma treatment.

2. Materials and Methods

2.1. Materials

Phosphatidylcholine (PC) (Phospholipon 90G®) was obtained from Lipoid GmbH (Ludwigshafen,
Germany). Trehalose and erythritol were purchased from Cymit Química S.L. (Barcelona, Spain).
HPMC was supplied by Abarán materias primas (Madrid, Spain). Cholesterol (Ch) and Vitamin E were
purchased from Sigma-Aldrich Chemical Co. (Madrid, Spain). Acetazolamide (ACZ) was supplied by
Fagron Ibérica S.A.U (Barcelona, Spain). All solvents and other reagents were obtained from Panreac
Química S.A. (Madrid, Spain) and used as received.

2.2. Animals

Male New Zealand white rabbits (San Bernardo Farm, Navarra, Spain), weighing 3–3.5 kg,
normotensive, were used for in vivo experiments. They were kept in individual boxes with food and
water ad libitum under controlled light/dark cycles (12/12 h) and in a room with controlled temperature
and humidity (22 ◦C and 50% relative humidity). The animals were handled following the European
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Union regulations for the use of animals in research and the ARVO (Association for Research in Vision
and Ophthalmology) Statement for the Use of Animals in Ophthalmic Vision Research [36], European
Communities Council Directive (86/609/EEC) and Spanish Regulation of Experimental Studies with
Animals (RD 53/2013, February 1; Ref PROEX 316/16, January 25 2017).

2.3. HPLC Quantification of Acetazolamide

Acetazolamide quantification was carried out using a Gilson HPLC instrument (Middleton,
WI, USA), a 305 solvent delivery pump, a 118 UV–vis detector and UniPointTM® controller
software. The injector was equipped with a 20 µL loop 7125 Rheodyne (Middleton, WI, USA).
The chromatographic separation was achieved by a reversed phase protocol with a Tracer Excel ODSA
column (25 cm × 4 mm, 5 µm particle size) (Teknokroma, Barcelona, Spain). The mobile phase was a
mixture of sodium acetate and ultrapure (milliQ) water (1:5). The flow rate was set at 1mL/min and the
eluent was monitored at 245 nm. The quantification of acetazolamide in the liposome was performed
after lyophilization and subsequent dissolution in ethanol. The method was validated in terms of
linearity, accuracy and precision in the concentration range of 1–10 µg/mL.

2.4. Preparation of Acetazolamide Liposomal Formulations

Liposomes (LP) were prepared by the solvent evaporation technique as previously described [37].
To this, 15 mg of acetazolamide was dissolved in 20 mL of ethanol by stirring for 24 h. PC, Ch and
vitamin E were then added. The ratio of Pc:Ch:Vit-E:ACZ components in the organic solution was
8:1:0.08:0.3 respectively. The solvent was evaporated under reduced pressure (50 hPa) on a rotary
evaporator (Buchi R-205, Mass Analytical S.A., Barcelona, Spain) at 33 ◦C for 60 min. The film
formed was then hydrated with dispersion solution of borates, trehalose and erythritol (named
hereinafter “base vehicle”, BV). The composition of this aqueous solution was as follows: 8.38%�

H3BO3, 0.755%� Na2B4O7, 29.8%� trehalose and 6.1%� erythritol. The lipid vesicles were extruded
through a size-controlled 0.2 µm pore size polycarbonate membrane (Spectra/Por® dialysis membrane,
MWCO 3500, Spectrum Laboratories, Iberlabo, Madrid, Spain) for 10 cycles under nitrogen pressure
(1,379 MPa) to obtain lipid vesicles with a homogenize size distribution. The final formulations were
prepared by dilution 1:2 with the corresponding solutions: for the ACZ liposomal formulation (ACZ-LP)
the dilution was performed with the base vehicle (BV). For the liposomal formulation included in the
HPMC (ACZ-LP-P) the dilution was performed with a solution of 0.6% HPMC prepared in the base
vehicle. Final PC and ACZ concentrations in the final dispersions were 20 mg/mL and 0.7 mg/mL,
respectively. The final composition of the two liposomal formulations prepared is described in Table 1.

Table 1. Composition of liposomal formulations.

ACZ Formulation Composition

ACZ-LP
Acetazolamide (0.7 mg/mL) and liposomes (expressed in concentration of PC,
20 mg/mL) in base vehicle (8.38%� H3BO3, 0.755%� Na2B4O7, 29.8%� trehalose and
6.1%� Erythritol).

ACZ-LP-P Acetazolamide (0.7 mg/mL), liposomes (expressed in concentration PC, 20 mg/mL)
and HPMC (0.3%) in base vehicle.

All preparation steps were performed under aseptic conditions. Base vehicle and polymer solution
were sterilized by autoclaving (Autester ST DRY PV-111, Selecta, Barcelona, Spain) and the final
formulations underwent sterilizing filtration (0.2 µm). For comparative purposes, a saturated solution
of ACZ in VB was prepared by stirred overnight to ensure total dissolution, with a final concentration
of 0.7 mg/mL.
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2.5. Liposomal Formulations Characterization

2.5.1. Mean Particle Size and Size Distribution

Mean particle size and particle size distribution of ACZ-LP formulation was measured by
dynamic light scattering using a particle analyzer (Microtrac® S3500 Series Particle Size Analyzer
(Montgomeryville, PA, USA) at room temperature in milliQ® water.

2.5.2. pH Determination

A pH-meter (pH-meter (model 230, Mettler, Barcelona, Spain) equipped with a microelectrode
(InLab, Mettler, Madrid, Spain) was used to measure the pH of the formulations. Data were recovered
in triplicate at room temperature.

2.5.3. Osmolarity Analysis

Osmolarity was analyzed by vapor pressure osmometer (model k-7000: Knauer) at 33 ◦C (ocular
surface temperature) [38]. The apparatus was previously calibrated with 400 mOsm/L NaCl solution.

2.5.4. Viscosity Evaluation

Viscosity was evaluated with a rheometer (Rheostress R1, Haake) using a parallel plate system
(60 mm diameter and 0.5 mm separation). Viscosity was measured when the steady sate was reached
with shear rates increasing from 0 to 1000 s−1 in 20 steps. The determination was performed in triplicate
at 33 ◦C.

2.5.5. Surface Tension Measurement

Surface tension was measured with a tensiometer (K-11, Kruss) using the Wilhelmy plate method.
Before each measurement, the tensiometer was calibrated with MilliQ water (72.0 ± 1 mN/m). The time
required for equilibration of the formulations was set to 3 min. The formulations were assayed
in triplicate.

2.5.6. Entrapment Efficiency Quantification

The drug loading was determined by an ultra-filtration method [39]. Briefly, 500 µL of ACZ
loaded-liposomal dispersion was placed into an Amicon Ultra 4 centrifugal filter unit with a nominal
molecular weight limit of 10 KDa (Merck Millipore Ltd., Darmstadt, Germany). The membranes
were previously rinsed with Mili-Q® water, immediately filled with the dispersions and centrifuged
at 5300× g for 60 min (Hettich Universal 32). The amount of free ACZ was analyzed by HPLC as
previously described. The entrapped drug was obtained by subtracting the amount of free ACZ from
the total drug incorporated in 500 µL of ACZ loaded-liposomes. The entrapment efficiency (EE) was
calculated using the following equation (Equation (1)).

EE% =
(Total amount of ACZ− Free amount of ACZ)

Total amount of ACZ
× 100 (1)

2.6. Intraocular Pressure Measurements

Efficacy studies were performed in normotensive rabbits. 25 µL of the corresponding formulation
was applied to both eyes of the same rabbit. IOP measurements were performed hourly over a period
of 8 h with a Tonovet rebound tonometer (Tiolat, Helsinki, Finland).

The efficacy in vivo studies were carried out in 2 stages according to designs of cross-tests in
which several variables were evaluated: the animal, the period and the treatment. In the first stage, 3
treatments were studied in three consecutive periods (design crossover 3 × 3) and in the second stage 2
treatments were evaluated (design crossover 2 × 2). Six animals were used for each treatment (12 eyes)
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in both cases. The minimum wash time between consecutive treatments was 48 h. Furthermore, a
minimum period of 72 h was established between the two stages of the study.

The assay treatments in the first stage were: (i) ACZ-LP formulation, (ii) base vehicle (BV) and (iii)
0.7 mg/mL ACZ solution in vehicle base, ACZ-VB.

In the second stage, the treatment corresponded to liposomal formulations: (i) liposomes alone
ACZ-LP and (ii) hybrid system formed by liposomes included in the polymer solution ACZ-LP-P.

The hypotensive activity of each treatment was defined in terms of IOP pressure reduction (∆IOP).
This data was calculated using as reference the IOP basal (100%) data determined 30 min before and
immediately before instillation of the formulation or base vehicle. The maximum percentage of IOP
reduction (∆IOPmax) and the area under the ∆IOP (%)-time curve from 0 to 8 h (estimated by the
trapezoidal rule, AUC(0–8h) were calculated for the different formulations and stages. Other parameters
such as the maximum intraocular pressure (∆IOPmax), the onset time of hypotensive effect (tonset) and
the effective time period were also evaluated.

2.7. Tolerance Studies

The ocular tolerance study of the two liposomal formulations, acetazolamide-loaded liposomes
alone with the osmoprotectant solution (ACZ-LP) or in combination with HPMC solution (ACZ-LP-P)
was performed by instillation of 25 µL of the formulation each 30 min for 6 h onto the right eye in six
male New Zealand albino rabbits. The contralateral eye received the same volume of saline solution
(control). The examination of the eyes was performed by specular microscopy before instillation, just
after instillation, and at three, six and twenty-four hours post instillation. A slit lamp (SL-8Z, Topcon,
Barcelona, Spain) was used to evaluate clinical signs (pupillary reflex, pupil size, superior and inferior
eyelids, presence of redness, blepharitis and blepharospasm, tear charge, exudates, fluorescein tear
film breakup time (TBUT), redness of bulbar, limbal, and tarsal conjunctival surfaces, inflammation of
nictitating membrane, and transparency of the cornea). Ocular signs were graded using a modification
of the scoring system established in the guidelines of the Organization of Cooperation and Development
in 2002 [40] and the protocols described by Enriquez et al. [41].

2.8. Statistical Analysis

Data were expressed as the means ± standard errors of the mean. Statistical differences were
evaluated by analysis of variance (ANOVA). P-values less than 0.05 were considered significant.
For efficacy studies, a comparison of the confidence interval was performed for several activity
parameters: maximal IOP reduction and area under the curve of the IOP variation versus time plot.
The treatments were considered significant when the two-sided 95% confidence interval for the
difference between the means of the selected parameters excluded zero [42]. Stat graphics centurion 18
analysis software was used to perform the statistical analysis.

3. Results

3.1. Liposomal Formulation Characterization

The physicochemical data obtained from both liposomal formulations, the acetazolamide-loaded
liposome in osmoprotectant solution (ACZ-LP) and its combination with HPMC (ACZ-LP-P) are
shown in Table 2 and Figure 1.
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Table 2. Mean particle size, pH, surface tension, osmolarity, and viscosity data of the ACZ liposomal
formulations. Data are expressed as means ± standard error.

ACZ-LP ACZ-LP-P

Size 157.3 ± 4.9 169.7 ± 6.1
pH 6.5 ± 0.1 7.0 ± 0.1

Surface tension (mN/m) 30.6 ± 0.9 47.6 ± 0.5
Osmolarity (mOsm/L) 297.7 ± 1.9 295.5 ± 1.5

Viscosity (mPa·s) 0.9 ± 0.1 4.7 ± 0.1
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Figure 1. (a) Particle size distribution and (b) rheological behaviour of formulations composed by
acetazolamide-loaded liposomes alone (ACZ-LP) or in combination with HPMC (ACZ-LP-P).

The mean particle size in both cases resulted similar and lower than 200 nm. Unimodal distribution
was always observed (Figure 1a). pH of both formulations falls within the range 6.5–9 avoiding
discomfort at the time of application [43,44]. The surface tension of ACZ-LP was significantly
lower than that ACZ-LP-P (p < 0.05). The osmolarity of the formulations was within the range of
isotonicity [45]. In both liposomal formulations, the viscosity values are similar to those of human tear
(0.3 to 8.3 mPa·s) [46,47], however, the addition of HPMC significantly increases this parameter from
0.9 to 4.7 mPa·s maintaining a Newtonian behavior (Figure 1b).

According to drug loading calculations, 64.9 ± 2.6% of acetazolamide initially included in the
formulation was retained in liposomal vesicles, being the rest of the drug present in the aqueous
solution surrounding them.

3.2. Hypotensive Activity of Liposomal Formulations on IOP in Rabbits

3.2.1. Stage 1

In this first stage, the efficacy of the acetazolamide-loaded liposomes formulation was tested and
compared to the solution of the drug in vehicle base and vehicle base alone. Data are presented in
Figure 2 as well as in Tables 3 and 4. According to the ANOVA analysis performed, there were no
significant differences between time period, animal and eye (right or left) of the same animal for the
parameters studied (AUC0–8h and ∆IOPmax).
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Figure 2. Stage one: (a) Intraocular pressure (IOP, %) mean after instillation of 25 µL of ACZ-VB
(0.7 µg/mL acetazolamide in vehicle base), ACZ-LP liposomal formulation (0.7 mg/mL acetazolamide
and 20 mg/mL liposomes expressed in concentration of PC in vehicle base) and VB (vehicle base used as
control). (b) Area under curve of the ∆IOP (%) versus time (h) from 0 to 8 h—AUC (0–8h). (c) Maximal
IOP reduction (∆IOPmax, %). The results are expressed as the mean ± standard error.

Table 3. Probability values obtained for the different sources of variation of the statistical
model proposed.

Source of Variation P-Value (AUC0–8h) P-Value (∆IOPmax)

Treatment <0.001 <0.001
Period 0.900 0.414
Animal 0.550 0.744

Eye (animal) 0.432 0.260
Variability explained by the model (%) 90.5 87.4

Degrees of freedom 20 20

Table 4. Stage one: mean values of area under the ∆IOP-time curve and the ∆IOPmax of each treatment
(90% confidence limits).

Formulation AUC0–8h (%·h) ∆IOPmax (%)

ACZ-LP 137.4 (122.4–152.5) 16.6 (14.9–18.4)
ACZ-VB 58.9 (40.1–77.8) 10.1 (8.6–12.1)

VB 7.2 (−0.2–14.6) 3.9 (2.4–5.4)

As expected, the control vehicle base (VB) alone had no hypotensive effect. On the contrary, when
a simple solution of ACZ in this vehicle (ACZ-VB) was instilled in rabbit eyes, the onset of hypotension
was evident at 2 h post instillation and lasted for a total period of four hours (Figure 1a). When the
same amount of drug was formulated in liposomes (ACZ-LP) the hypotensive onset was more rapid
and already observed 1h post instillation. Furthermore, the hypotensive effect was maintained until
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the end of the study (a total of 7h) (p < 0.05). ANOVA analysis performed to compare the efficacy
of ACZ-VB versus ACZ-LP in terms of ∆IOPmax, and the AUC0–8h revealed significant differences
between treatments: the formulation of ACZ in liposomes led to a maximum hypotensive effect of
16.6%, significantly greater than the value achieved by ACZ-VB, 10%. Furthermore, The AUC0–8h of
ACZ-LP 137.4% h was 2.3-folds higher than that of ACZ-VB. The mean values of the ∆IOPmax, and the
AUC0–8h and their 90% confidence limits are listed in Table 4.

3.2.2. Stage 2

In this second stage, the efficacy of the acetazolamide-loaded liposomes in the osmoprotectant
solution (ACZ-LP) or including also HPMC (ACZ-LP-P) was compared. Data are presented in Figure 3,
Tables 5 and 6. In both cases, similar onset time and effective time periods were observed. However,
the combination of the ACZ-loaded liposomes with HPMC resulted in a more pronounced effect, as
was suggested in Figure 2 and confirmed by ANOVA analysis. The mean values of the ∆IOPmax, and
the AUC0–8h and their 90% confidence limits are listed in Table 5.
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Figure 3. Stage two: (a) Intraocular pressure (IOP, %) mean after instillation of 25 µL of ACZ-LP
liposomal formulation (0.7 mg/mL acetazolamide and 20 mg/mL liposomes expressed in concentration
of PC in vehicle base) and ACZ-LP-P (0.7 mg/mL acetazolamide, 20 mg/mL liposomes expressed in
concentration of PC and 0.3% HPMC in vehicle base). (b) Area under curve of the ∆IOP (%) versus
time (h) from 0 to 8 h—AUC(0–8h). (c) Maximal IOP reduction (∆IOPmax, %). The results are expressed
as the mean ± standard error.

Table 5. Stage two: mean values of area under the ∆IOP-time curve and the ∆IOPmax of each treatment
(90% confidence limits). For the purpose of comparison, the vehicle base data have been also included
in Table 5.

Formulation AUC0–8h (%·h) ∆IOPmax (%)

ACZ-LP 7.2 (−0.2–14.6) 3.9 (2.4–5.4)
ACZ-LP-P 142.6 (128.9–156.3) 18.0 (16.3–19.7)

VB 217.8 (203.8–231.8) 25.0 (23.9–26.1)
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Table 6. Relationship between the two mean difference test (P-value of Student’s test) and confidence
intervals for the difference of the means. Formulation ACZ-VB and formulation ACZ-LP.

P-Value for H0: Difference = 0 95% Confidence Interval

Maximal IOP reduction (%) <0.001 5.6 < F2 − F1 < 10.4
AUC0–8h (%·h) <0.001 58.2 < F2 − F1 < 98.8

Effectively, the AUC0–8h of the ACZ-LP-P was 1.5-fold higher than of ACZ-LP (p < 0.001) and
the maximum hypotensive effect resulted 1.4-fold higher (p < 0.001). The efficacy of acetazolamide
significantly increased with the addition of the HPMC polymer. The confidence intervals for the
difference of the means of the AUC0–8h and the ∆IOPmax do not include the value of zero (Table 6).

As combination of the results obtained in stage 1 and stage 2 it can be observed that the
formulation of ACZ in the hybrid liposome/HPMC system (ACZ-LP-P) produced an increment in
ocular bioavailability (measured as AUC0–8h) 30.25-fold higher than that obtained when the drug was
formulated as solution in the base vehicle (ACZ-VB).

3.3. In vivo Ocular Tolerance Studies

The ocular tolerance of the final prototype selected, ACZ-LP-P liposomal formulation, was in vivo
tested according to the protocol described in materials and methods. Results are presented in Table 7.

Table 7. Macroscopic evaluation of signs and symptoms in the in vivo tolerance study for
liposomal formulations.

Symptoms Studied ACZ-LP ACZ-LP-P

DISCOMFORT Grade 0 (no reaction) Grade 0 (no reaction)
CORNEA Grade 0 (unaltered) Grade 0 (unaltered)

CONJUNCTIVA Grade 0 (unaltered) Grade 0 (unaltered)
DISCHARGE Grade 0 (no discharge) Grade 0 (no discharge)

EYELIDS Grade 0 (no swelling) Grade 0 (no swelling)

For both formulations tested, rabbits’ eyes presented neither discomfort nor abnormal clinical
signs during the six hours study in which a total of 12 instillations were performed. Furthermore, the
cornea remained transparent throughout the test and the conjunctiva maintained its normal coloration.
All the observations indicated an optimal tolerance for ACZ-LP and ACZ-LP-P formulations.

4. Discussion

The tolerance of eye-drops intended for glaucoma treatment is a critical factor. Patients suffering
this chronic disease are forced to instill the formulation several times per day. This frequent
administration initially damages the precorneal film, a protective layer covering the ocular surface.
This precorneal film is formed by an external lipid layer mainly composed of phospholipids, a
subsequent aqueous layer in which mucins and enzymes among other components are dissolved,
and finally a transmembrane mucin layer connecting this precorneal film with the corneal cells [48].
The alteration of this layer promotes the partial evaporation of the aqueous content and produces severe
injury on corneal epithelium. It can even provoke “dry eye syndrome” [49]. It has been considered that
preservatives included in multi-dose eye-drops formulations were the main cause of this important
side effect. However, it is well known that the intrinsic nature of the active compound can also promote
damage on the ocular surface; this is, for example, the case of timolol maleate [33]. Considering that,
the formulation of antihypertensive drugs in eye-drops might be not only preservative-free but ideally
might also include agents able to protect the ocular surface, such as osmoprotectants, antioxidants
and phospholipids.
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The objective of this experimental work was then to create a hybrid formulation able to increase
the bioavailability of active compounds with poor solubility on the ocular surface and, potentially
at the same time, ensure the integrity of the precorneal film. With this in mind, liposomes were
selected as suitable platform able to load low water-soluble compounds such as acetazolamide [50,51].
These systems are known to increase the retention time of several drugs on the ocular surface [52].
Trying to mimic the precorneal tear film, liposomes were prepared with phosphatidylcholine as
the main component, a phospholipid widely present on the lipid layer, and hence demonstrated
a very good tolerance profile on the ocular surface. In fact, an artificial tear containing several
components similar to those present in the precorneal film has been recently proposed including
phosphatidylcholine as lipid component [37,53]. Vitamin E, a hydrophobic antioxidant compound,
was also included in the liposome formulation to improve their stability and to contribute to ocular
surface protection. Furthermore, the ophthalmic composition included two osmoprotectants (trehalose
and erythritol). The benefits of trehalose are based on its ability to protect cells from desiccation and
restore damaged epithelial cells offering also some extent of anti-inflammatory activity [53]. Similarly,
erythritol, has not only the ability to mitigate the effects of hyperosmolar stress, but also has been
proposed as anti-inflammatory compound. Additionally, certain potential antioxidant activity has
been also postulated for this compound, very useful in protecting ocular surface [54].

In the present work, the method for elaborating liposomes was modified by the substitution
of chloroform or mixtures of chloroform: methanol, typically used in the preparation of liposomes,
by ethanol, to create an initial organic phase in which the liposomes components were dissolved.
This change in solvents allowed the solubilization of a higher amount of acetazolamide, which is
practically insoluble in chloroform but slightly soluble in ethanol. Furthermore, this change avoids
the use of halogenated class 2 solvents, categorized as probable human carcinogens agents and also
ozone-depleting chemical [55]. In fact, class 3 solvents, such as ethanol, are preferred for pharmaceutical
preparations according to ICH Q3C guidelines [56]. Thanks to this technological approach, the liposomal
formulation so prepared contained acetazolamide in a final concentration of 1.4 mg/mL. It was
found that 64% of the dose resulted entrapped in the liposome (bilayer and inner aqueous media).
Several authors have observed lower acetazolamide entrapment in phosphatidylcholine liposomes
prepared using chloroform [51] or chloroform: methanol [18]. The higher entrapment values observed
in the present work might be related to the change of solvent previously mentioned. As demonstrated
by Hathout et al. (2007) [18], a significant interaction of the drug with the lipid bilayer occurs.
This evidence, supported with the low aqueous solubility of acetazolamide, makes it logical to assume
that most of the drug might be dissolved in the lipid bilayer.

The ACZ-liposomal preparation was finally diluted 1:2 either with the base vehicle (borates,
trehalose and erythritol solution) or with the polymeric solution in the base vehicle. This dilution
was performed in order to better compare with the control composed by the drug dissolved in the
base vehicle (solubility 0.7 mg/mL). For both liposomal formulations, pH and osmolarity resulted in
the physiological range. The polymer selected, HPMC, is a non-charged polymer commonly used in
the formulation of artificial tears at the concentration used in this work (0.3%) [57–59]. This polymer
increases the viscosity of the formulation, and as consequence, the retention time of the formulation on
the ocular surface [60], but in both cases remained in the range of natural tears. Surface tension values,
also in the range of natural precorneal film values (43.6 ± 2.7 mN/m) [40], were low enough to enhance
the spreading of the formulation on the ocular surface but not so low as to promote destabilization and
damage on the precorneal film [61].

Tolerance of topical ophthalmic formulations in chronic therapies is a critical issue. Recent
studies have shown that the inclusion in the ocular topical formulations of some polymers such
as hyaluronic acid (HA), HPMC or carboxymethylcellulose (CMC) provided an additional positive
effect improving the ocular tolerance of eye-drops [32]. More precisely, in the case of HPMC, it has
been demonstrated that its inclusion in artificial tears intended for patients suffering from dry eye
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disease [53] or in antihypertensive formulations for glaucoma treatment [62] can increase the tolerance
of the formulations.

The inclusion of acetazolamide in the liposomal formulation prepared in this work increased
its ocular bioavailability, according to AUC0–8h measurements. Furthermore, its hypotensive activity
appeared earlier, with a significant reduction in IOP in the first measurement time (1h) in comparison
with acetazolamide solution, which needed 2 h to produce any effect. Interestingly, the effective time
period was also increased, so at the end of the study, significant IOP reduction still appeared when the
drug was formulated in liposomes although a tendency to recover normal IOP values was denoted.

There is still controversy concerning the right way to perform the in vivo antihypertensive studies.
Some authors use, for example, the contralateral eye as control during the whole assay [18], other
authors prefer to reserve an animal group for this purpose [51] or they use IOP basal (100%) data as
reference [50], which is the option followed in this experimental work. Furthermore, the presentation
of IOP data also differs from different works, in some cases the reduction is presented directly as
“–X mmHg” while in other cases the data are showed as a percentage of IOP reduction. All these
discrepancies in the experimental design and data presentation make difficult an absolute comparison
between research works, thus only general tendencies are presented. Taking this into account, it might
be worthy to comment that in the present work the same extent of IOP reduction than other previous
works evaluating the hypotensive effect of acetazolamide loaded neutral liposomes was observed but
with the administration of lower amounts of the drug. For example, Hathout et al. (2007) [8] instilled
in each rabbit eye 50 uL of the liposomal suspension containing 1% of ACZ or El-Gazayerly and Hikal
(1997) [51] administered 50 uL of the liposomal suspension containing 2% of the drug per eye, while in
the present study only 25 uL of the liposomal suspension containing 0.07% of the antihypertensive
drug was applied.

The increment in drug ocular availability observed by the inclusion of acetazolamide in liposomes
was even exacerbated when HPMC was combined with the liposomes. This final hybrid formulation
produced an increase in acetazolamide ocular bioavailability more than 30 times, showing at the
same time excellent tolerance behaviour in vivo. The new hybrid system proposed might reduce the
administration frequency and also might increase the patient compliance. The strategy to combine
nanosystems and hydrogels to improve the ophthalmic bioavailability of drugs after topical instillation
has gained attention in the last years, which is the case of nanoparticles [63], nanoemulsion [64] or
niosomes [65]. Furthermore, several research groups are also evaluating the combination of liposomes
and hydrogels. For example, Yu et al., 2005 [66] prepared timolol maleate-loaded liposomes and
included them in a gellan gum gel. This combination increased the drug effect period of time and
reduced the onset time point.

Among the polymers used to create the mentioned nano-hydrogel hybrid systems, Carbopol®,
chitosan and natural gums have been the most commonly employed. However, other alternatives such
as HPMC are being also studied. For example, Morsi et al., 2017 [64] prepared an acetazolamide-based
nanoemulsion formulation by the inclusion of the combination of several polymers, HPMC among
them, in the external phase. In agreement with our results, the authors observed that HPMC acted as a
viscosity enhancer able to prolong the IOP lowering in glaucomatous rabbits this effect was attributed
to the increase of the nanoemulsion retention time on the ocular surface.

The mechanism by which the drug bioavailability after liposomal administration is increased,
remains unclear; even more when they are included in a hydrogel. It has been established that
vesicles can produce an intimate contact with corneal cells due to their surface charge (in the case
of cationic liposomes) or to the presence of any bioadhesive or viscosizing agent (which is the case
of HPMC) [50]. In this scenario, the high concentration of drug released in the vicinity of corneal
epithelium might improve its passive diffusion trough corneal barrier. However, another hypothesis
such as the penetration of liposomes itself into the corneal cells or even the modification of the
tight-junctions of corneal epithelium by liposomes might not be completely excluded. In any case,
further studies are necessary to investigate those hypotheses.
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5. Conclusions

In the present study, the combination of acetazolamide-loaded liposomes and polymer solutions
with osmoprotectants was evaluated as a new strategy to increase the drug bioavailability after
ocular instillation. Materials used in the formulation were carefully selected to potentially ensure
precorneal film integrity and in vivo ocular tolerance with optimal results. The in vivo activity study
demonstrated that the new hybrid formulation proposed was able to promote sustained hypotensive
effect for several hours, potentially reducing the administration frequency and increasing the patient
compliance. The acetazolamide-liposome/HPMC/osmoprotectants hybrid system can be considered a
promising topically applied dosage form for the treatment of glaucoma.

6. Patents

National Patent #2284398. Formulación de Vesículas Liposomales en Soluciones Acuosas con
Características de Película Lagrimal. Available online: http://www.oepm.es/pdf/ES/0000/000/02/28/43/

ES-2284398_B2.pdf accessed on 11 April 2018).
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