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Abstract: Using field-theoretic simulations based on a self-consistent field theory (SCFT) with or
without finite compressibility, nanoscale mesophase formation in molten linear AB and ABC block
copolymers is investigated in search of candidates for new and useful nanomaterials. At selected
compositions and segregation strengths, the copolymers are shown to evolve into some new
nanostructures with either unusual crystal symmetry or a peculiar morphology. There exists a
holey layered morphology with Im3 symmetry, which lacks one mirror reflection compared with
Im3m symmetry. Also, a peculiar cubic bicontinuous morphology, whose channels are connected
with tetrapod units, is found to have Pn3m symmetry. It is shown that there is another network
morphology with tripod connections, which reveals P432 symmetry. The optimized free energies of
these new mesophases and their relative stability are discussed in comparison with those of double
gyroids and double diamonds.
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1. Introduction

Soft matters or complex fluids have drawn tremendous attention from condensed matter
researchers because of some useful features such as complexity in their various forms or structures
and flexibility in changing their physical properties through simple chemical modification [1]. Block
copolymers, or polymeric surfactants, are one particular soft matter that is produced by covalently
joining two or more different homopolymers. In many cases, disparity in their own cohesive energies
leads them to nanoscale self-assembly behaviors [2–8].

The simplest molten AB diblock copolymers have exhibited 1-dimensional lamellar layers,
2-dimensional hexagonal cylinders with P6/mm, body-centered cubic (BCC) spheres with Im3m
symmetry, double gyroids belonging to Ia3d space group, and an orthorhombic Fddd network
morphology [9–11]. There is a double diamond morphology belonging to Pn3m group as a metastable
one [12]. Molten ABC triblock copolymers with one additional component give more diversified
morphologies due to the increase in the degree of freedom [9,13–16]. There are the core-shell-type,
perforated or decorated versions of the morphologies just mentioned [9,13–15,17], alternating I4132
single gyroids [9,15,18], the centered rectangular C2mm cylinders [16], and a cubic bicontinuous P23
phase [16]. However, the morphologies reported so far are still limited for block copolymer systems.
It seems that there are still many morphologies unexplored in block copolymers, as we recognize
the emergence of the discontinuous mesophases with Pm3n (A15) and P42/mnm (Frank–Kasper σ)
symmetry in some copolymers via structural variations [19–21], and also the holey bicontinuous
mesophases possessing I43d and Ia3d symmetry with high genera [22].

While in block copolymer surfactants only the handful of morphologies have ever been observed,
it is seen in the compendium of hard matters or rocks and minerals that there are 230 space groups [23]

Polymers 2019, 11, 1081; doi:10.3390/polym11061081 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://www.mdpi.com/2073-4360/11/6/1081?type=check_update&version=1
http://dx.doi.org/10.3390/polym11061081
http://www.mdpi.com/journal/polymers


Polymers 2019, 11, 1081 2 of 15

and possible real-space morphologies for each group are supposed to be numerous. The objective
of this study is to unveil some of hidden morphologies in the molten AB and ABC copolymers over
indwelling barriers. Those morphologies studied here are peculiar with various crystal symmetries
such as Im3, Pn3m, and P432. Avoiding the lengthy steps from the synthesis of desired copolymers to
structure characterization, we employ a field-theoretic simulation method based on a self-consistent
field theory (SCFT) for copolymer systems with [24,25] or without finite compressibility [24,26–28].

2. Theoretical Methods

Consider that there are n chains of N-mers of a linear AB or ABC block copolymer melt in the
canonical ensemble of volume V, where each chain comprises N = NA + NB or N = NA + NB + NC
monomers having an identical diameter σ and its volume v∗ = πσ3/6. The hard-core volume fraction
of j-monomers can then be defined as φ j = N j/N. The packing density of j-monomers at a local

position
→
r is described by an operator η̂ j(

→
r ), which is given by η̂ j(

→
r ) = v ∗ /V ·

n∑
i=1

∫ τ f
j

τs
j

dτδ(
→
r −

→
r i(τ)),

where δ(
→
r ) is Dirac’s delta function and

→
r i(τ) denotes the position vector of each j-monomer on an ith

chain through parameterization by a contour variable τ. The first and final j-monomers are represented
by the symbols τs

j and τ f
j , respectively. A field variable η j(

→
r ) is then assigned to each operator η̂ j(

→
r ) in

order to describe the j-monomer density at
→
r over the entire system. The overall density (=

∑
η j(
→
r ))

is denoted by η(
→
r ), and a local volume fraction φ j(

→
r ) is defined as φ j(

→
r ) ≡ η j(

→
r )/η(

→
r ). In the

incompressible extreme, monomers are uniform polyhedrons and completely fill the system volume.
Then, η(

→
r )→ 1 and η j(

→
r ) becomes identical to φ j(

→
r ).

In the Edwards’ Gaussian random-walk approach [24,29], the Hamiltonian H for the given system
is given as H = H0 + W, where H0 is given by Weiner measure of Gaussian chains as follows:

βH0 = H0/kT =
3

2σ2

n∑
i=1

∫ N

0
dτ

∣∣∣∣∣∣∣d
→
r i

dτ

∣∣∣∣∣∣∣
2

(1)

and W implies perturbing inter-monomer interactions. After taking the Hubbard–Stratonovich
transformation [30], the partition function Z is then written as:

Z = Z0 ·

∫ ∏
j

Dη jDω j

[
1
V

∫
d
→
r · q(iωA, iωB, iωC)

]n

· e−βW+i
∫

d
→
r 1

v∗ω j·η j (2)

where Z0 is the partition function of the Gaussian chains free from any segmental interactions. It is
seen that the Hamiltonian H first based on particle description is converted to one based on field
description. This procedure naturally gives a hypothetical external potential ω j(

→
r ) for j-species, in

which the effect of W on chain conformations is transferred to the partition function. The symbol q in
Equation (2) denotes the end-segment probability density function of the Gaussian chains along the
chain contour with τ, which covers from 0 to N or whose scaled version s (≡ τ/N) spans from 0 to 1.

In the imaginary external potential i ·ω(
→
r ), q satisfies a modified diffusion equation as:

1
N
∂q
∂s

=
σ2

6
∇

2q− i ·ω · q (3)

along with q(
→
r , 0) = 1. In Equation (3), ω takes ωA, ωB, and ωC in turn as the contour variable s passes

through A, B, and then C blocks. It needs to be recalled that there is another function q+ conjugate to q,
so that q+ starts reversely from the other chain end with q+(

→
r , 1) = 1.

Regarding W, we take two different approaches. Firstly, a conventional treatment of W is
taken on the basis of incompressible picture with the incompressibility constraint (

∑
φ j(
→
r ) = 1). A
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phenomenological Flory–Huggins interaction parameter χ, which comes from the dimensionless
exchange energy between ij-pairs, solely describes W as:

βW{
→
r j} =

∑
i> j

nNχi j

V

∫
d
→
rφi(

→
r )φ j(

→
r ) (4)

An additional field ξ(
→
r ) below as a Lagrange multiplier is necessary to guarantee the

incompressibility condition. The partition function Z is analyzed in the mean-field level. The
essential procedure is to get the saddle point Z* of the partition function Z, which requires a set of the
following self-consistent field equations:

−

∑
i, j

Nχi jφi + iω j + ξ(
→
r ) = 0 (5)

φ j(
→
r ) =

1
1
V

∫
d
→
r q(
→
r , s = 1)

·

s f
j∫

ss
j

ds · q(
→
r , s)q+(

→
r , 1− s) (6)

where ss
j (= τs

j/N) and s f
j (= τ

f
j /N) are the rescaled contour variables at start and in the end for

j-monomers, respectively. Equations (3), (5), and (6) for all j-constituents need to be solved in the
incompressible version of SCFT for the block copolymers. The Helmholtz free energy is then given as
βA ≈ − ln Z∗ [24,26–28].

In our second approach, a finite compressibility is allowed by taking the continuum description of a
copolymer system. Then, a proper equation of state (EOS) is required [25]. For such purpose, a perturbed
hard sphere chain model suggested by the present author and Sanchez (Cho–Sanchez) is chosen [31].
The free energy is given as A = Aid + AEV + Anb, where βAid = − ln Z0 = n · ln η+ constant for the
Gaussian chains. The remaining terms, AEV and Anb, respectively give the perturbation contribution
by excluded volume (EV) to EOS [32] and a Bethe–Peierls-type mean-field energy between nonbonded
monomers as [33]:

βAEV

nN
=

3
2

 1

(1− η)2 −

(
1−

1
N

) 1
1− η

− 1
N

[
ln(1− η) +

3
2

] (7a)

βAnb

nN
=

1
2
· β ·

∑
i j

φiφ jεi j · u(η) (7b)

where εi j implies the characteristic i,j-contact interactions. The u(η) represents the density dependence

of the Bethe-Peierls energy as u(η) = fp · [(γ/C)p/3ηp/3
− (γ/C)2η2], where γ and C are respectively

1/
√

2 and π/6. For the widely used Lennard–Jones potential, p and fp are 12 and 4, respectively. This
Bethe–Peierls mean-field energy is an improvement over Bragg–Williams (van der Waals) mean-field
energy by taking the local packing of nearest neighbors into account [33]. The Cho–Sanchez model
necessitates three homopolymer parameters such as ε j j for self-interactions, σ j, and N j. It is well
known that a homopolymer with larger ε j j is denser and less compressible than one with smaller
ε j j. There is an additional parameter εi j for cross i,j-interactions to describe mixture phase behaviors.

Using the given EOS model, it was suggested that βW{
→
r j} =

∫
d
→
r β f ni(η̂ j(

→
r )), where f ni(η̂ j(

→
r )) is the

localized non-Gaussian free energy ( f ni
≡ (AEV + Anb)/V) per unit volume [25].
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The partition function Z in Equation (2) is to be analyzed again in the mean-field level. The resultant
set of self-consistent field equations are given below in case of the compressible system:

−Nv ∗ ·
∂β f ni

∂η j(
→
r )

+ N · iω j = 0 (8)

η j(
→
r ) =

η

1
V

∫
d
→
r q(
→
r , s = 1)

·

s f
j∫

ss
j

ds · q(
→
r , s)q+(

→
r , 1− s) (9)

It should be noted that there is no need for a Lagrange multiplier to suppress compressibility.
Solving Equation (3) and (7–9) for all j-constituents fulfills SCFT based on the suggested Edwards
Hamiltonian for the compressible block copolymers. The bulk density η of the disordered copolymer
at a given T and P come into play in order to describe pressure effects.

The segregation strengths in the compressible approach can be monitored through a proper
effective Flory–Huggins χ that carries its dependence not only on temperature but also on pressure. It
has been suggested in our previous works that χ consists of two terms as χ = χH + χS [34,35]. The
former χH (=β∆ε ·

∣∣∣u(η)∣∣∣/2) indicates the conventional enthalpic term with density dependence, where
∆ε is the exchange energy between εi j’s as ∆ε ≡ εii + ε j j − 2εi j. The latter χS (=P2

φv ∗ /2kTηBT) indicates
the entropic term, where Pφ is the composition coefficient of pressure as Pφ ≡ ∂P/∂φ)T,v and BT is the
bulk modulus as BT ≡ η · ∂P/∂η)T,φ′s. Pφ gives the compressibility difference between components as
Pφ ∝ (εii − ε j j) at φ→ 1/2. It needs to be mentioned that the given notion of the effective χ is perfectly
harmonious with that from Sanchez–Lacombe theory [36–38].

3. Results and Discussion

3.1. Im3

Let us first discuss a morphology with crystal symmetry Im3. The discovery of this nanostructure
was fortuitous. In our previous work on the pressure effects on morphology development in
compressible ABC linear triblock copolymer melts, we took a model system from the copolymer
having the block sizes with (NA, NB, NC) = (110, 55, 55), whose homopolymer molecular parameters
are listed in Table 1. With such block sizes, A/B or A/C pair prefers curved micelles, while A/(B+C)
pair or B/C pair favors flat micelles. It is seen that εAA > εBB = εCC, which implies that A is denser
than either B or C, and the densities of B and C are identical. To characterize the copolymer, the
cross interaction parameters, εAB, εAC, and εBC were required. We choose εAB/(εAAεBB)

1/2 = 1.0087,
εAC/(εAAεCC)

1/2 = 1.0088, and εBC/(εBBεCC)
1/2 = 0.9880 to yield NχAB, NχAC, and NχBC = 16.30,

16.13, and 16.77, respectively, at ambient pressure and at 400 K. It was revealed that C2mm cylinders
are competing with lamellae, hexagonal P6/mm cylinders, Im3m BCC spheres, and the mesophase of
lower P23 symmetry [16].

Table 1. Sets of molecular parameters of A/B/C constituents composing ABC triblock copolymers based
on Cho–Sanchez model.

Polymer
Parameter -

εjj/k (K) σj (Å) Nj/Mj·πσ
3
j /6 (cm3/g)

A 4107

4.04 0.41857B 3000

C 3000

Starting with the pre-determined BCC spheres, the SCFT simulations for the copolymer melts
were undertaken in a periodic cubic box of 12 × 12 × 12R3

G, where RG was the copolymer gyration
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radius as RG = σ · (N/6)1/2. The simulation box was discretized into 323 lattice cells, and each chain
contour was discretized into NA +NB +NC segments for A, B, and C blocks, respectively. The modified
diffusion equation in Equation (3) along with Equations (7)–(9) were solved via the pseudospectral
scheme [39]. The iteration at a given condition is continued until the variation of ω j’s is less than
~2.5 × 10−6. Using the single core of the Intel Xeon processor, it takes ~24 min per 1k iterations for the
copolymer melts, and 40k iterations are necessary to reach the target tolerance. In the early stage, BCC
stays, but eventually at the present compositions, there evolved a totally different and new morphology.
Using Biovia Material Studio Mesodyn package, we visualized the 3-dimensional morphology of the
copolymer melt, which is depicted in Figure 1. It is seen that the unit cell of the structure seems only
6 × 6 × 6R3

G just as that of BCC. In our first look at the morphology, it possesses holey layers, not the
dispersed micellar spheres.
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Figure 1. Three-dimensional morphology of the evolved nanostructure from compressible ABC
copolymer melt (a) in the simulation box of 12 × 12 × 12R3

G and (b) in the unit cell of 6 × 6 × 6R3
G (1/8th

of the simulation box). B and C domains are represented by green and blue color, respectively, and A
domain as the matrix is erased intentionally.

The symmetry of the newly obtained morphology can be probed through a Fourier transformed
second-order correlation function S j j(q) as:

S j j(q) =
∫

d
→
r · e−ir·

→
q
·

〈
(η j(

→
r ) − η j)(η j(0) − η j)

〉
(10)

where
→
q implies the scattering vector and q =

∣∣∣∣→q ∣∣∣∣. Figure 2 displays SBB(q) for B block as a function of
the dimensionless q · RG. There are a series of characteristic peaks at q · RG = 1.4810, 2.0949, 2.5651,
2.9619, 3.3115, 3.6276, etc. The calculation of 2 · (q/q1)

2, where q1 ·RG = 1.4810 is the first one, turns all
into even integers as 2, 4, 6, 8, 10, 12, etc. These numbers indicate h2 + k2 + l2 out of (hkl) Miller planes.
This particular series of (hkl) indices implies that all the possible candidates are groups of I23, I213, Im3,
I432, and I43m symmetry. For other body-centered I-type crystals suffer some systematic absence of
various planes. In detail, Ia3 lacks 2, I4132 does 4, I43d does 2 and 4, and Ia3d does 2, 4, 10, 12, etc. The
periodicity, or equivalently the lateral unit cell length c is obtained as c = 2π/(q1/

√
2) = 6RG, which is

exactly identical to our visual inspection of the morphology.
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It is observed from a careful inspection that the new morphology suffers missing mirror plane
along y-axis. We then intuitively consider Im3 as a strong candidate. For the further identification
of the newly found morphology as possessing Im3 symmetry, we try to check its known equivalent
Wyckoff positions. Table 2 lists the first three Wyckoff positions along with their discretized coordinates
and the local A block density ηA(

→
r ). It is seen that there is the near perfect equivalence of ηA(

→
r ) for

the first two position groups. Even though we observe the dual way of equivalence with half-filled and
half-depleted positions for the third position group, it is deduced that the given peculiar morphology
should belong to the crystals of Im3 symmetry.

Table 2. Wyckoff positions for Im3 morphology.

Multiplicity Position Discretized
Coordinates ηA(

→
r )

2a
0,0,0 1,1,1 0.012331

1/2,1/2,1/2 9,9,9 0.012329

6b

0,1/2,1/2 1,9,9 0.34353

1/2,0,1/2 9,1,9 0.343527

1/2,1/2,0 9,9,1 0.329676

1/2,0,0 9,1,1 0.343811

0,1/2,0 1,91, 0.343831

0,0,1/2 1,1,9 0.329386

8c

1/4,1/4,1/4 5,5,5 0.029919

1/4,3/4,3/4 5,13,13 0.344344

3/4,1/4,3/4 13,5,13 0.344256

3/4,3/4,1/4 13,13,5 0.030894

3/4,3/4,3/4 13,13,13 0.029839

3/4,1/4,1/4 13,5,5 0.344491

1/4,3/4,1/4 5,13,5 0.344419

1/4,1/4,3/4 5,5,13 0.030805
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In order to attest to the new morphology having Im3 symmetry, let us attempt to start with
a generic test reflections for Im3 studied by Germer [40]. In his thesis, there are eight such cases
to play with. The reflections with (hkl) = (130) and (hkl) = (132) are the first two to be taken. For
simplification purposes, we turned off finite compressibility and took AB diblock copolymer with
φA = 0.4 at Nχ = 14. Our trial with (132) reflection is given as:

ψ(
→
r ) = ψn[cos[6πx] cos[4πy] cos[2πz] + cos[2πx] cos[6πy] cos[4πz]
+ cos[4πx] cos[2πy] cos[6πz] − (cos[4πx] cos[6πy] cos[2πz]
+ cos[2πx] cos[4πy] cos[6πz] + cos[6πx] cos[2πy] cos[4πz])]

(11)

where ψn is a proper amplitude and the local composition for A block is taken as φA(
→
r ) = φA +ψ(

→
r ).

The contour plot for the generic surface in Equation (11) is shown in Figure 3a. The SCFT simulations
for the copolymer melts were undertaken in a tentative periodic cubic box of 5 × 5 × 5R3

G, considering
the simulation box should be smaller than that in the compressible situation. The simulation box was
discretized into 323 lattice cells, and each chain contour was discretized into 40 + 60 segments for A
and B blocks, respectively. The modified diffusion equation in Equation (3) along with Equations (4–6)
were solved via the pseudospectral scheme [39]. The iteration at a given condition was continued
until the incompressibility constraint (=

∑
φi − 1) was less than 2.5× 10−7. In the same computational

environment, it took ~13 min per 1k iterations for incompressible AB copolymer melts, and about
8.5k iterations were necessary in this case to reach the target tolerance. As was seen in Figure 4, the
simulation was found to yield exactly the same morphology given in Figure 1 that we identify as Im3
symmetry for the ABC copolymer. The periodicity or the lateral unit cell length c was obtained as
c = 2π/(q1/

√
2) = 5RG, as it should. The correlation function SAA(q) for A block is given in Figure S1

as a Supplementary Material. It needs to be mentioned that our second trial with the initial density
field generated using (130) reflection, whose contour plot is shown in Figure 3b, turns out that the
evolved morphology was merely hexagonal P6/mm cylinders.
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given in Equation (8). Its unit cell morphology is given in plot (a) and its expansion in a box of
10 × 10 × 10R3

G is shown in plot (b). A domain is represented by red color and B domain as the matrix
is intentionally removed.

3.2. Metatron’s Cube with Pn3m Symmetry

Our second concern is to start with known minimal surfaces to yield the corresponding
morphologies, as we were successful in generating for the first time I43d structure in molten AB block
copolymers in our previous report. There is such a surface named C(±Y) [41], which contains the
reflections from (111) plane and (210) plane with its equivalent ones as:

ψ(
→
r ) = −2 cos[2πx] cos[2πy] cos[2πz]+

sin[4πx] sin[2πy] + sin[4πy] sin[2πz] + sin[4πz] sin[2πx] = 0
(12)

whose generic shape is depicted in Figure 5 as follows.
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Those reflections are the first two of a crystal with Pa3 symmetry group. Then, the SCFT
simulations for the copolymer melts were undertaken in a tentative periodic box of 5 × 5 × 5R3

G. The
simulation box was discretized into 323 lattice cells, and each chain contour was discretized into 40
+ 60 segments. Finite compressibility was turned off. The modified diffusion equation was solved
and the iteration at a given condition was continued until the target function (=

∑
φi − 1) was less than

2.5× 10−7. In the same computational environment, less than 5k iterations were necessary to reach the
target tolerance.

In order to elucidate the symmetry of the resultant morphology, again the Fourier transform of a
second-order correlation function was calculated. Figure 6 shows SAA(q) for A block as a function of
the dimensionless scattering vector q ·RG. There are a series of characteristic peaks at q ·RG = 1.7772,
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2.1766, 3.0781, 3.5543, 3.7699, 3.9738, 4.1678, etc. The calculation of 2(q/q1)
2, where q · RG = 1.7772,

exhibits integers as 2, 3, 6, 8, 9, 10, 11, etc. It is perceived that all such (hkl) indices point to Pn3m
symmetry. The periodicity or the lateral unit cell length c is obtained as c = 2π/(q1/

√
2) = 5RG, which

is exactly what is observed in the morphology.
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morphology evolved from Equation (12).

Using Mesodyn and also Matlab for comparison purposes, we tried to visualize the 3-dimensional
morphology of the copolymer melt. While the well-known double diamond structure with Pn3m
symmetry is expected to appear, Figure 7 portrays a totally new image of the morphology for the
copolymer. Inside the cube, two triangular A-domains are connected with one of them rotated by
180 degrees to form a bicontinuous morphology. The B-domains then run through the triangular
A-domains via three channels. The overall shape of the new morphology is considered to resemble the
sacred Metatron’s cube [42]. It is noted that the channels are connected with tetrapod units.
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Figure 7. Three-dimensional morphology of the mesophase evolved from the generic test reflection
given in Equation (12) in a simulation box (unit cell) of 5 × 5 × 5R3

G. Its image is depicted by using
Mesodyn (a) and also by Matlab (b) just for comparison purposes. A domain as the dispersed phase is
only drawn here.

For the further identification of the newly found morphology as possessing Pn3m symmetry, we
try to check its known equivalent Wyckoff positions. Table 3 lists the first three Wyckoff positions
along with their discretized coordinates and the local A block composition φA(

→
r ). As the overall
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variations in φA(
→
r ) for each position groups are small, it is legitimate to claim that the given peculiar

morphology belongs to the crystals of Pn3m symmetry.

Table 3. Wyckoff positions for Metatron’s cube morphology with Pn3m symmetry.

Multiplicity Position Discretized Coordinates φA(
→
r )

2a
0,0,0 9,9,9 0.924754

1/2,1/2,1/2 25,25,25 0.912959

4b

1/4,1/4,1/4 1,1,1 0.184598

1/4,3/4,3/4 17,17,17 0.109947

3/4,1/4,3/4 17,1,17 0.109947

3/4,3/4,1/4 1,17,17 0.109947

4c

3/4,3/4,3/4 17,17,17 0.890423

3/4,1/4,1/4 1,1,17 0.819492

1/4,3/4,1/4 1,17,1 0.819492

1/4,1/4,3/4 17,1,1 0.819492

3.3. P432 Symmetry

Our third concern is to start with the same C(±Y) surface, but the SCFT simulations for the
copolymer melts are undertaken in a tentative periodic box of 10 × 10 × 10R3

G. The simulation box was
again discretized into 323 lattice cells, and each chain contour was discretized into 40 + 60 segments
for A and B blocks, respectively. Finite compressibility was again turned off. The iteration at a given
condition was continued until the target function (=

∑
φi − 1) was less than 2.5× 10−7. In this case, 20k

iterations were necessary to attain the target accuracy.
Figure 8 depicts SAA(q) for A block as a function of q · RG. The characteristic peaks turn up at

q · RG = 0.6283, 0.8886, 1.0883, 1.2566, 1.4050, 1.5391, 1.7772, etc. The calculation of (q/q1)
2, where

q1 · RG = 0.6283, literally exhibits all possible integers as 1, 2, 3, 4, 5, 6, 8, etc. The crystals with all
possible (hkl) indices can be some primitive groups of P23, Pm3, P432, P43m, and Pm3m symmetry.
The periodicity or the lateral unit cell length c was obtained as c = 2π/q1 = 10RG, as it should.
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Figure 8. Correlation function SAA(q) for A block plotted against the scattering vector q for the
morphology evolved from C(±Y) surface in a periodic box of 10 × 10 × 10R3

G.

Using Matlab and Mesodyn, we provide the visualization of the 3-dimensional morphology for
the copolymer melt. Figure 9a portrays another new morphology for the copolymer. It is seen from
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its 3-dimensional view that the B domains form a bicontinuous network with the wholly connected
channels over the entire system to make many holes. The new morphology is considered to have
no mirror planes along any axes. This notion rules out Pm3, P43m, and Pm3m symmetry, and there
remain P23 and P432. It is then natural for us to assign P432 symmetry to this new mesophase, since
P432 is a supergroup of P23. Furthermore, it is noted that the structural unit is a tripod, as is seen in
the one-eighth piece of the unit cell in Figure 9b.
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Figure 9. Three-dimensional morphology of the network mesophase evolved from C(±Y) surface in a
periodic box of 10 × 10 × 10R3

G. The unit cell morphology is depicted in plot (a) by using Matlab in
four different angles and its 1/8th piece is shown in plot (b) by using Mesodyn just to reveal the tripod
connections of the channels. A domain as the dispersed phase is only drawn here.

For the further identification of this morphology as possessing P432 symmetry, we try to check its
known equivalent Wyckoff positions. Table 4 lists the first four Wyckoff positions along with their
discretized coordinates and the local A block composition φA(

→
r ). As there is a satisfactory equivalence

of φA(
→
r ) for the first four position groups, it is considered that the given peculiar morphology belongs

to the crystals of P432 symmetry.

Table 4. Wyckoff Positions for P432 morphology.

Multiplicity Position Discretized Coordinates φA(
→
r )

1a 0,0,0 1,1,1 0.905336

1b 1/2,1/2,1/2 17,17,17 0.890529

3c

0,1/2,1/2 1,17,17 0.921184

1/2,0,1/2 17,1,17 0.86979

1/2,1/2,0 17,17,1 0.903127

3d

1/2,0,0 17,1,1 0.882721

0,1/2,0 1,17,1 0.911596

0,0,1/2 1,1,17 0.91643

3.4. Equilibrium Periodicity and Free Energies in the Incompressible Picture

Up to now, we have identified three new morphologies with Im3, Pn3m, and P432 crystal
symmetry. It is necessary to compare the free energies of the newly evolved nanostructures with
those of previously known structures such as double gyroids and others. For this purpose, the chain
architecture was fixed to the linear AB diblock copolymer and the compositions were set to φA = 0.4.
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Finite compressibility was turned off and the effective Flory–Huggins χ is set to χ = 14/N. Then, the
simulation box sizes, which are commensurable to the unit cells of the given structures, are to be
optimized. This procedure is necessary for a fair comparison of the relative stability and accessibility of
given morphologies. Table 5 lists the three new morphologies along with all the known morphologies
including double gyroids, Fddd, P6/mm cylinders, Im3m BCC spheres, and Pn3m double diamonds.
We also added in this table the recently identified holey morphologies in our previous work such
as I43d morphology of genus 21 and Ia3d morphology of genus 25 [22]. Single gyroids with I4132
symmetry are also included. It is well known that double gyroids are the stable morphology at the
given segregation level and composition.

Table 5. Comparison of the free energies for various morphologies of AB diblock copolymer melt at
Nχ = 14 and at φA = 0.4.

Types of Copolymers Morphology (Symmetry Group) c/RG βA/n

AB

Double gyroids (Ia3d) 8.727 3.2334

Fddd 4.055 × 8.136 × 14.404 3.2358

Im3 5.007 3.2364

P6/mm (HEX) 4.064 × 7.040 3.2370

LAM 3.553 3.2377

P432 10.131 3.2408

Metatron’s cube (Pn3m) 5.304 3.2442

BCC (Im3m) 5.303 3.2442

Double diamonds (Pn3m) 5.475 3.2451

Single gyroid (I4132) 5.012 3.2461

I43d 8.800 3.2470

Ia3d of g = 25 b 8.910 3.2532

Disorder - 3.3600
a Fddd and P6/mm (HEX) morphologies require more than one lattice constant. Therefore, we included the optimized
box dimensions in full for them. b g indicates the genus, which implies the number of independent holes on the
dividing surface. It needs to be mentioned that double gyroids with the same Ia3d symmetry possess g = 5. c The
target function for the incompressibility constraint (

∣∣∣∑φi − 1
∣∣∣) is less than 2.5 × 10−7 for all the morphologies given

in this table.

It is seen from Table 5 that Im3 structure reveals the optimized unit cell of (5.007RG)
3. Its free

energy is slightly greater than that of Fddd, and lower than that of P6/mm cylinders. The morphology
with P432 possesses a bigger unit cell of (10.131RG)

3 than double gyroids. Its free energy is slightly
greater than that of P6/mm cylinders and that of Lamellae. It is followed by Metatron’s cube with Pn3m
symmetry in its unit cell of (5.304RG)

3, where its free energy is almost the same as that of conventional
BCC Im3m spheres in an almost identical unit cell. BCC spheres are followed by double diamonds
with Pn3m symmetry. The optimized free energies of the remaining morphologies lie in between those
of double diamonds and disorder.

At the present conditions of chain architecture, compositions, and segregation strength, the
three new morphologies are metastable. However, it was reported by Matsen [43,44] and later by
Escobedo et al. [45–47] that double diamonds can be stabilized over double gyroids by blending with the
homopolymers of the minor component through the relief of packing frustration. Shi and co-workers
also suggested a different tactic to stabilize complex morphologies by blending two AB diblock
copolymers of different sizes, or in other words making the bidisperse blends of AB copolymers [48].
It is therefore the topic of our future study to pursue such blending technique to find the condition
where our new morphologies can be stabilized, especially targeting where double diamonds are stable.
It is necessary to perform an extensive and thorough investigation into the vastly extended parameter
space including the ratio of homopolymer size to copolymer size and homopolymer compositions.
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As the present work employs the SCFT, our results are subject to the known limitation of the
mean-field theory. Nonetheless, SCFT theories including ours have been the most successful with their
predictability of phase behaviors of inhomogeneous polymeric mixtures among various theories. It has
been known that the Ginzburg–Landau region [33], where the mean-field theory breaks down, scales
as N−1/3 for block copolymers [49]. The concentration fluctuations may then alter the phase boundary
for the copolymers of finite sizes. The fluctuation effects are allowed in some sophisticated analyses
such as the Gaussian fluctuation method [33,50] or one-loop correction to the mean-field approach [51],
which can be another topic of future studies regarding the stability of newly identified morphologies.

4. Conclusions

Here, we theoretically study triply periodic nanoscale mesophases of molten block copolymers in
search of useful nanomaterials for catalytic activity or mass transport capability. Taking linear AB or
ABC block copolymers as a model system, whose j-blocks are Nj-mers with N being the overall size of
the chosen copolymers, field-theoretic simulations based on Edwards Gaussian random-walk approach
are performed for our purposes. Without finite compressibility, Helfand’s conventional self-consistent
field analysis is undertaken to evaluate the canonical partition function at its saddle point while
ensuring the incompressibility constraint. In case of compressible copolymers, the recently developed
analysis is undertaken to combine Helfand’s theory with a molecular equation-of-state model.

It is firstly revealed for the compressible ABC copolymer with (NA, NB, NC) = (110, 55, 55) at the
segregation level of (NχAB, NχAC, NχBC) = (16.3, 16.13, 16.77) that there evolves a new mesophase
having Im3 symmetry, which loses a mirror reflection compared with that having Im3m symmetry.
Then, a generic surface equation to include (132) reflection is used to evolve the identical Im3 mesophase
for the incompressible AB diblock copolymer with φA = 0.4 at Nχ = 14. It is secondly shown for
the same AB copolymer that a minimal surface named C(±Y) is used to develop a new bicontinuous
mesophase with a unit cell of ~(5RG)

3 possessing Pn3m symmetry. Its channels exhibit the tetrapod

connections. It is thirdly shown for the same copolymer that starting with a unit cell of ~(10RG)
3 leads

to the evolution of a totally different bicontinuous mesophase possessing P432 symmetry. This third
morphology reveals the entirely connected channels of the domains of the minor component with
tripod units. For the identification of these nanostructures, we employed the correlation (scattering)
functions and 3-dimensional visualization along with checking their first appearing Wyckoff positions.
It is further shown in case of incompressible AB copolymer with φA = 0.4 at Nχ = 14 that the three
new mesophases in their optimized unit cells have the free energies lying between those of stable
double gyroids and metastable double diamonds. Those results urge the necessity to exert efforts on
stabilizing them through a technique to relieve packing frustration such as blending.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/6/1081/s1,
Figure S1: Correlation function SAA(q) for A block plotted against the scattering vector q for incompressible AB
diblock copolymer melt at φA = 0.4 and at Nχ = 14, whose morphology is evolved from Equation (11). Figure S2:
Local compositions profiles for the same copolymer exhibiting the lamellar morphology.
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