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Abstract: In recent years, the pursuit of new polymer materials based on renewable raw materials
has been intensified with the aim of reusing waste materials in sustainable processes. The synthesis
of a lignin, styrene, and butyl acrylate based composite was carried out by a mass polymerization
process. A series of four composites were prepared by varying the amount of lignin in 5, 10, 15, and
20 wt.% keeping the content of butyl acrylate constant (14 wt.%). FTIR and SEM revealed that the
–OH functional groups of lignin reacted with styrene, which was observed by the incorporation of
lignin in the copolymer. Additionally, DSC analysis showed that the increment in lignin loading
in the composite had a positive influence on thermal stability. Likewise, Shore D hardness assays
exhibited an increase from 25 to 69 when 5 and 20 wt.% lignin was used respectively. In this same
sense, the contact angle (water) measurement showed that the LEBA15 and LEBA20 composites
presented hydrophobic properties (whit contact angle above 90◦) despite having the highest amount
of lignin, demonstrating that the interaction of the polymer chains with the –OH groups of lignin was
the main mechanism in the composites interaction.
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1. Introduction

Lignin, in conjunction with cellulose, is one of the most abundant biopolymers in nature. Lignin
is obtained as a by-product from the wood pulp during the paper fabrication [1–3]. Due to its chemical
structure, based in coniferyl, coumaryl, and sinapyl monomers randomly distributed and crosslinked,
lignin has limited use in industrial scale processes [4,5]. Lignin is a natural polymer based in coniferyl,
coumaryl, and sinapyl monomers, randomly distributed and crosslinked. It is an amorphous material
and hydrophobic branched which has recently been used for industrial applications, in a variety of
alternatives [6,7].

During the last decades, a large number of studies have been presented on the potential use of lignin
at the industrial level for the production of various materials, mainly as binder and dispersant [8,9],
although lignin is a large source of aromatic compounds. The research work at the laboratory level
aims to use it for the development of high-value polymers [10–14] or for the production of biofuel; in
both cases, the purpose is to reduce the emission of volatile organic compounds (VOC) and greenhouse
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gases, as CO2 [15–19]. Kasko et al. presented a review on the strategies to use lignin [20], where most of
the research focuses on the methods developed for the synthesis of polymers from this biopolymer and
its derivatives [20–22], giving a great value to the environmental benefit that entails the use of lignin as
a raw material [23,24]. Other studies have focused on the application of lignin as a nanofiller [25] or in
storage energy [26].

On the other hand, the study of the synthesis of compounds and nanocomposites through the
grafting of lignin with acrylic monomers has been deepened [27,28], which have served as the basis
for studying the compatibility and reinforcement effect of lignin blend whit different monomers [29],
as well as the analysis of the compatibility of mixtures of lignin with epoxy resins [30,31]. The
research on the preparation of lignin with various polymeric materials with different applications
has been studied from the viewpoint of matrix reinforcement with fibers or particles of different
morphology [32–34]. The nature of the matrix varies from a synthetic polymer to a natural one,
depending on the application [35–37]. It has been found that both the polymeric matrix and the
reinforcement play an important role in the determination of the physicochemical properties of the
composite materials in general [16,38–41]. Fatehi, et al. reported the modification of a polymer of
lignin-g-styrene and its application for wastewater treatment and water purification, by introducing a
sulfonate group in the polymer matrix that modifies the anionic charge [42].

Under this context, we present the synthesis of a new compound based on lignin, styrene, and
butyl acrylate, obtained by a bulk free radical polymerization. In the mechanism suggested in Scheme 1,
styrene is added to the –OH groups of lignin through a free radical reaction. To understand the
relationship between the lignin amount and the composite properties, the thermal properties, the
contact angle, and the copolymer molecular weight, with and without lignin, were studied. The
purpose was to deepen in the composite behavior to be able to visualize some potential applications;
for example, as an adsorbent material to remove water pollutants, for synthetic wood, or for the
absorption of hydrocarbons spills in water.
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2. Experimental

2.1. Materials

Lignin Kraft (98%, Sigma Aldrich, St. Louis, MO, USA) was dried in an oven for 24 h at 110 ◦C
to remove moisture, the main characteristics of lignin are Mw 28,000 g mol−1 and Mn 5000 g mol−1.
Styrene monomer (98% DEQ, México), butyl acrylate (97% Sigma Aldrich), and benzoyl peroxide (99%
Sigma Aldrich). All reagents were used without further purification.

2.2. Composite Synthesis

The composite synthesis was performed by bulk free radical polymerization, mixing the defined
amount of styrene (S), butyl acrylate (BA) and lignin, keeping the reagents total amount of 4.0 g.
Benzoyl peroxide (C14H10O4) was fed at 1 wt.% with respect to the total amount of the reaction mixture.
A total of five experiments was performed. Table 1 shows the relationship between lignin and styrene
used. The polymerization time for all the experiments was 2 h, at 90 ◦C, and maintaining a stirring
speed of 1200 rpm. At the end of the established time, the materials were cooled rapidly in an ice bath
(quenching). The products resulting from the experiments were identified as EBA for the material
without lignin and LEBA for the materials containing lignin.

Table 1. Lignin and styrene quantity present in composites, with butyl acrylate (BA) constant in
14 wt.%.

Composite Lignin [wt.%] Styrene [wt.%] BA/St ratio

EBA 0 86 0.16
LEBA5 5 81 0.17

LEBA10 10 76 0.18
LEBA15 15 71 0.20
LEBA20 20 66 0.21

2.3. Residual Styrene Analysis by HPLC

To determine the reaction time effect on the incorporation of styrene in the composites, the amount
of the residual monomer was analyzed. From the experiment LEBA15, 4.0 g of sample was taken at 5, 10,
15, 30, 45, 60, 75, 90, 135, and 180 min of reaction, the sample was dispersed in methanol under stirring;
then the composite was separated from the composite via centrifugation and the unreacted styrene
was dissolved in methanol. Finally, the resulted solution was analyzed using a high-resolution liquid
chromatograph (HPLC) (YL9100, Young Lin, Anyang, Korea), which has a UV detector (YL9160PDA,
Young Lin), a column of 30 cm × 4 mm × 5 µm (SUPELCOSIL LC-18-DB, SUPELCO, Sigma Aldrich),
and as the mobile phase a methanol:water (65:35) solution. The samples were run at a flow rate of
1 mL min−1 with a volume of 25 µL of injection.

2.4. Gel Permeation Chromatography Analysis

In order to study the effect of the nitrogen atmosphere in the polymerization process, the synthesis
of the copolymer EBA under nitrogen and air was achieved. The obtained copolymers were analyzed
by gel permeation chromatography (GPC) (YL900GPC, Young Lin) using HPLC grade tetrahydrofuran
as the mobile phase. The equipment has an autosampler (YL9150), a 5 µm column of 300 × 7.5 mm
(MIXED-C PLgel), and a refractive index detector (YL9170). The analyses were determined under the
following conditions: Flow rate of 1.0 mL min-1 for 15 min, furnace temperature in the column of
25 ◦C, and injection volume of 25 µL.
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2.5. Infrared Spectroscopy Analysis

The composite functional groups were identified using an infrared spectrometer (FTIR380, Nicolet,
Thermo Fisher, Waltham, MA, USA) using the KBr pellet method, and scan of 4000 to 650 cm−1 with a
resolution of 4 cm−1, and 32 scans were performed per sample.

2.6. Differential Scanning Calorimetry Analysis

The composite thermal behavior was determined by using a differential scanning calorimeter
(DSC 8000, Perkin–Elmer, Waltham, MA, USA). The measurements were carried out with 10 mg of
sample, in the range of 20 to 350 ◦C, at a heating rate of 10 ◦C min-1, under nitrogen atmosphere.

2.7. X-ray Diffraction Analysis

The room temperature XRD was performed in a powder X-ray diffractometer (EMPYREAN,
PANalytical, Malvern, UK) using Cu-Kα1 wavelength of 1.5406 Å, 40 KV, and 40 mA. The measurement
was made within the 2-theta scale from 5◦ to 45◦ with a step size of 0.025◦.

2.8. Nuclear Magnetic Resonance Analysis

The composite structure was also analyzed by proton nuclear magnetic resonance (1H-NMR)
(600 MHz NMR, Varian, Palo Alto, CA, USA). The measurements were made at room temperature
using DMSO-d6 as the solvent.

2.9. Morphological Analysis

The morphology was determined in a scanning electron microscope (SEM) model JSM-6510LV
brand JEOL (Tokyo, Japan) with an acceleration voltage of 20.0 kV and a spot-size of 60 and
working distance of 15 mm. The samples previously were coated with gold/palladium by an
electrodeposition method.

2.10. Determination of Hardness Shore D

The measured of hardness of the composites with a Shore “D” durometer PRECISION Shore Model
D, was used in cubic specimens of 2 cm edge material, the measurements were taken at 10 measuring
points at each sample, and the mean values and standard deviations were calculated in accordance to
ASTM standard D2240.

2.11. Contact Angle Determination

The analysis of the hydrophilic nature of the composites, a RameHart Instruments Model 200
contact angle meter (Succasunna, NJ, USA) was used, using deionized water as test fluid, the reported
value in this work was the average contact angle of at least three droplets deposited at different
positions of the sample surface.

3. Results and Discussion

The butyl acrylate (BA) monomer was included to impart slight flexibility and to prevent obtaining
a brittle composite [43]. Figure 1 shows the conversion of styrene in composite LEBA15 as a function
of time. As noted, after 1.3 h the residual styrene was less than 0.04%; after this time, the conversion
reached a steady state, so the composite synthesis can be stopped. This method of synthesis has
advantages over other reports that involve the incorporation of lignin in polymeric matrices, which
require the use of solvents or a pre-treatment to lignin [42,44,45] or are necessary longer synthesis
time [29,46].

After this time, the conversion reaches a steady state, so the synthesis of the composite can
be stopped at 1.5 h of reaction. Short reaction time implies energy savings when the compound is
developed at an industrial level.
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3.1. GPC Analysis

A GPC analysis was performed in the copolymer EBA to determine weight average molar mass
(Mw), number average molar mass (Mn) and polydispersity (I = Mw/Mn). In this experiment, the
synthesis of EBA was realized under nitrogen (N2) and air atmospheres to study the influence of the
atmosphere in the composite polymerization. The results are reported in Table 2; as observed, the high
polydispersity indicates that there was wide molecular weight distribution. In bulk polymerization, the
viscosity of the medium increases gradually along the polymerization time; so, the radical propagation
is slow, consequently, the termination of the chains occurs faster than the growth, generating high
polydispersity [47–49]. A slight increase in the molecular weight and polydispersity was obtained
in the copolymer synthesized under N2 [48], which implies that the functionality of the initiator is
not seriously affected by the presence of oxygen in the air atmosphere, so it is not necessary to use an
inert atmosphere.

Table 2. Gel permeation chromatography (GPC) results for EBA copolymer with air atmosphere
and N2.

Atmosphere Mn Mw I

Air 15,404 83,986 5.45
Nitrogen 18,339 87,678 4.78

3.2. FTIR Analysis

The FTIR spectra of EBA copolymer, lignin, and LEBA15 composite are shown in Figure 2. For
EBA, the main signals are observed at 3100 cm−1, corresponding to the stretching vibration of the C–H
bond in the aromatic ring of styrene monomer unit; at 2934 and 2846 cm−1, assigned to asymmetric
and symmetric stretching vibrations, respectively, of the C–H bond of the methylene groups of the
polymeric backbone. And at 1731 cm−1, the corresponding stretching vibration of the C=O group
of the acrylate functionality, which appeared very weak due to the small content in the copolymer
(14 wt.%).
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Figure 2. Infrared spectra of (a) EBA, (b) Lignin, and (c) LEBA15.

The spectrum of lignin exhibited the structural complexity of this biopolymer. The wideband
between 3500 and 3100 cm−1 was attributed to the stretching vibration of –OH groups; the bands at
2934 and 2846 cm−1 were associated with the stretching vibrations of C-H of methylene group, while
the band at 1701 cm−1 was ascribed to the stretching vibration of C=O of ester groups. The band at
1608 cm−1 was attributed to the stretching vibration of C=C bonds in the aromatic ring [50–52]. Finally,
the signals between 828 and 614 cm−1, are due to deformations outside the plane of the aromatic CH
bonds, similar to reported by other authors [50,53].

In the spectra for LEBA15, the band corresponding of the –OH groups from the lignin not be
solved, the intensity decreases because these groups probably react with short chains of monomers,
causing the formation of the composite. The formation of bonds in the alcoholic and phenolic groups
of lignin has already been reported by Dick et al. [54] in their work about chemical modification and
grafting induced by lignin plasma in polyacid lactic acid. In this sense, Fuxiang et al., in various
research works, shows that the decrease in the intensity of the band of –OH groups of lignin is the
main mechanism of interaction for the incorporation of this with the polymer matrix of interest [29,55];
in this same sense, in this research, a decrease in the intensity of band of the –OH groups of lignin was
observed and it is associated with its possible interaction with the acrylate groups of the copolymer
(Scheme 1) for the formation of the composites, which is demonstrated by the decrease in the intensity
of the band between 1740–1710 cm−1 typical of the acrylate for the LEBA15 composite (Figure 3).
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3.3. DSC Analysis

The lignin, copolymer EBA, and LEBA composites were characterized by DSC to determine the
glass transition temperature (Tg) (Figure 4). As seen, the Tg of the composites was slightly lower
than the Tg of the pure copolymer and there seems to be no trend with respect to the lignin content.
It is believed that the presence of lignin into the copolymer affected the mobility of the polymer
chains [56,57], due to the intermolecular hydrogen bond between hydroxyl functional groups of lignin
and the carbonyl groups of the copolymer [58].
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However, in the composites LEBA15 and LEBA20 the relationship between S and BA was increased,
causing the polymeric chains of these composites to be a little more flexible due to the increase in the
BA [59].

3.4. X-ray Diffraction Anlysis

Figure 5 shows the diffraction patterns for the composites, is observed that lignin and EBA did not
exhibit any signal of sharp diffraction peaks, indicated that are amorphous materials. At low amount
of lignin, the amorphous phase of the composite prevails. However, increasing the amount of lignin
appeared peak at 26◦ on 2 theta for LEBA10 to LEBA20 on the XRD diffraction, because the interaction
sites between the lignin and the copolymer are increased, this causes increased probability that the
chains fit between gaps of lignin, which makes some structures form ordered aggregation.
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However, the composite LEBA20 showed diffraction peaks at higher values of 2 theta, several
authors which have already reported this kind of diffractograms to attribute the origin of this additional
peak to a scattering signal related to the lateral groups of the same size and almost regularly spaced,
this agrees with the fact that LEBA20 has the highest BA/St ratio [60], the main amorphous signal
located around 20◦ results from the contribution of both the lignin and the copolymer chains, the
disappearance or decrease in intensity of this signals for the intermediate BA/St ratio indicates a
loss of this characteristic length, which may suggest that the grafted chains are rather composed of
random copolymers.

3.5. 1H-NMR Analysis

By means of the 1H NMR characterization of the LEBA 15% composite, a direct comparison was
achieved with the 1H NMR spectrum of Lignin, where we were able to assign different characteristic
signals of the material (Figure 6).
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Due to their complex structure, lignins present equally complex spectra; however, they maintain a
characteristic pattern. The most common functional groups present in lignins are the methoxy group
(Ar–O–CH3), various types of ethers (R–O–R, Ar–O–R, Ar–O–Ar), aldehydes (R–H–C=O), phenols
(Ar–OH) and aliphatic alcohols (R–OH), among several others. Figure 5 shows the spectrum of the
LEBA15 composite. Two signals appear in the spectrum, one in 2.4 ppm and another in 3.35 ppm, the
first corresponds to the DMSO signal used as the solvent and the second to the trace of water contained
in the DMSO. In the area close to 10 ppm, a small group of signals is observed, which has been related
to protons in benzaldehyde groups [61]; a more prominent set of signals between 6 and 9 ppm was
attributed to protons of aromatic OH groups in syringyl (S) and guaiacyl (G) units; at 3.75 ppm appears
a multiplet attached to the protons of methoxy groups related to S and G units; the signals between 0.6
and 1.25 ppm correspond to the protons of the aliphatic groups. Two doublets are also observed at 5.25
and 5.8 ppm, which are characteristic of protons in unsaturated groups (C=C). Unlike Lignin, which
does not have double bonds in its structure. Once it is coupled with styrene and butyl acrylate, it can
be observed in 5.25 ppm a doublet with a coupling constant of J = 15.5 Hz, in 5.80 another doublet with
a coupling constant of J = 9.5 Hz which means the presence of two isomers of configuration (E) and (Z),
this may be due to the conformational arrangement of the functional groups that lignin presents within
its macrocyclic polymer structure. On this type of signals, the literature indicates that they usually
occur in arrangements of type β-O-4 [62], remnants of the biopolymerization of monolignols [63].

This set of signals is in agreement with spectra reported in the literature for lignins [61]. With
respect to the copolymer, the signals of the repeating units of styrene and butyl acrylate appear to be
masked by those of lignin since in most cases the protons are coincident. However, we can mention the
multiplet (two double of doubles) at 6.75 ppm observed in polystyrenes and the set of signals between
7.25 and 7.5 ppm attributed to the aromatic ring protons; however, aromatic groups in lignin also occur
in this area. As for the repeating units of butyl acrylate, they are not clearly observed, probably due to
the low content of this monomer in the composite.
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3.6. Morphological Analysis

Figure 7 portrays the morphology for lignin, LEBA5, LEBA15, and LEBA20. The image of the
pure lignin (a) showed an irregular distribution of particles in the form of spheres of size varying from
30 to 150 µm.
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With the increase of the lignin, the composite surface became smoother (Figure 6b,c,d), suggesting
that there was a link between the functional groups of lignin and the copolymer. Similar behavior
was reported by Yang et al., they report the preparation of lignin pristine (LP) reinforced polymethyl
methacrylate (PMMA) composites, obtained by combining solvent-free radical polymerization,
obtaining making the particles totally embedding into the PMMA chain and can be ascribed to
excellent bonding effect of LP whit PMMA, this represents increment in the mechanical properties of
composites, by not presenting empty spaces between the lignin and the polymeric matrix [64].

3.7. Determination of Hardness

Specimens were prepared from the composites in order to evaluate hardness Shore D, according
to ASTM D 2240, the measurements were made by triplicate. As illustrated in Figure 8, the results
indicated that the composites with 5 and 10 wt.% lignin had lower hardness than the pure copolymer
EBA. However, for the composites with higher contents of lignin an increasing in hardness was
observed. Yang et al. present the Shore D hardness values of PMMA material sheets incorporating
various contents of LP, with the increase of LP loading from 0 to 4.5 wt.%, the Shore D hardness rise
from 75.0 to 79.0 [64].
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These results are agreement with the SEM images and DSC supporting the hypothesis that lignin
is embedded within the polymer chains forming a material with smooth surface, the incorporation of
this biopolymer favored the mechanical properties of LEBA composites, opening the possibility of the
application of this material; for example, in the removal of hydrocarbons from water since for this
application [43].

3.8. Contact Angle

Figure 9 shows the results of the determination of the contact angle for the EBA copolymer and
the LEBA composites.
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The contact angle for EBA (97.5◦) showed a hydrophobic nature that agrees with that reported
in the literature for polymeric materials based on styrene [65,66]; On the other hand, the composites
LEBA5 and LEBA10 showed a more hydrophilic character that could be associated with the presence
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of lignin due to its hydrophilic nature [65]. In contrast, for LEBA15 and LEBA20 the hydrophobic
character was accentuated, despite containing higher loads of lignin. This behavior can be attributed
to a higher BA/styrene ratio [67]. According to this, the interaction of –OH groups of lignin with the
copolymer during free radical polymerization increased (Scheme 2), occupying a higher proportion of
this groups, which caused the decrement in the hydrophilic character associated with lignin [65].
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In this sense, some research in the synthesis of lignin-based materials, reported that the increase
of lignin in the polymer matrix influences the increment of the hydrophilic character (Table 3), because
lignin acts as a filler [68]. On the other hand, under the synthesis conditions proposed in this research
it was shown that the increase in the amount of lignin (LEBA15 and LEBA20) had no significant effect
on the hydrophobic character of the styrene-butyl acrylate system.

Table 3. Effect of lignin in water contact angle for different polymer matrices.

Polymer Type lignin Application Water Contact Angle, ◦

Polyurethane (PU) [68] Lignin waste (5.0 to
20.0 wt.%) Removal oil in water 123.0◦ for PU to 90.0◦ for PU

whit 20 wt.% of lignin

Polypropylene (PP) [69] Kraft lignin acid (5.0 wt.%) Adhesion properties 107.2◦ for PP and 92.46◦ for PP
whit Kraft lignin (acid)

Polystyrene (PS) [70]
Alkali lignin (6.5 wt.%)

modified whit trimethyl
quaternary ammonium salt

Antibacterial activity 55.9◦ for PS and 10.5◦ for PS
whit lignin

4. Conclusions

A novel composite was synthetized with lignin and styrene-butyl acrylate copolymer. Under the
conditions of the composite formation, the results indicated that the –OH groups of lignin were the
main site of bonding with the copolymer chains, this was evidenced by the reduction of the hydroxyl
groups signals in infrared spectroscopy. Gel permeation chromatography showed that the atmosphere
of nitrogen in the reaction medium did not contribute significantly to the inhibition of the free radicals
during copolymerization. In addition, electron microscopy showed that the lignin was incorporated
with the copolymer, losing its granular morphology and producing a smooth surface, which was
related to FTIR observations. Respecting surface characterization, it was found that lignin loading
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modified the composites hardness and the hydrophilic-lipophilic character. The more hydrophobic
character of LEBA15 and LEBA20 composites supported the assumption of the chemical interaction
between the OH groups of lignin and the copolymer chains during free radical polymerization.

According to the properties observed, it is possible to suggest applications for the composites; for
example, based on the lipophilic nature, the composites could be used as adsorbent materials for the
removal of hydrocarbon spills from water.
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