Supplementary

Electrochemomechanical behavior of polypyrrole-coated nanofiber scaffolds in cell culture medium

Madis Harjo ${ }^{1}$, Janno Torop ${ }^{1}$, Martin Järvekülg ${ }^{2}$, Tarmo Tamm ${ }^{1}$ and Rudolf Kiefer ${ }^{3}{ }^{3}{ }^{*}$
${ }^{1}$ Intelligent Materials and Systems Lab, Faculty of Science and Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
${ }^{2}$ Institute of Physics, Faculty of Science and Technology, University of Tartu, W. Ostwaldi Str 1, 50411 Tartu, Estonia
${ }^{3}$ Conducting polymers in composites and applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
*Corresponding author. Tel: +886 905605515. E-mail: rudolf.kiefer@tdtu.edu.vn (Rudolf Kiefer)

Figure S1. Square wave potential waves at 0.65 V to- 0.6 V in CCM solution of CFS (blue) and CFS-PPyTF samples (black) at 0.01 Hz showing in a: the stress σ and in b: the current density time cycles of two subsequent cycles ($3^{\text {rd }}$ and $4^{\text {th }}$) against the time t.

Figure S2. Square wave potential steps at applied frequencies 0.0025 Hz to 0.1 Hz in CCM solution at applied voltage 0.65 to -0.6 V of CFS samples (blue, \square) and CFS-PPyTF samples (black, \star) showing a: the stress difference $\Delta \sigma$ against applied frequencies f (logarithmic scale) and in b : the stress difference $\Delta \sigma$ against charge density at reduction $\mathrm{Q}_{\mathrm{red}}$. The dashed line are shown only for orientation and representing the linear fit ($y=a+b * x$, with adj. R square (R^{2}) of 0.97 for CFS-PPyTF and 0.99 for CFS).

Table S1. Strain ε and stress differences $\Delta \sigma$ of CFS and CFS-PPyTF at potential range 0.65 V to -0.6 V in mean values with standard deviations

Samples	0.0025 Hz	0.005 Hz	0.01 Hz	0.025 Hz	0.05 Hz	0.1 Hz
CFS,	0.27 ± 0.02	$0.23 \pm$	0.2 ± 0.01	$0.13 \pm$	0.1 ± 0.01	-
$\varepsilon[\%]$		0.02		0.01		
CFS,	0.55 ± 0.05	$0.45 \pm$	0.38 ± 0.04	$0.24 \pm$	$0.12 \pm$	-
$\Delta \sigma[\mathrm{kPa}]$		0.04		0.02	0.01	
CFS-PPyTF,	0.88 ± 0.07	$0.64 \pm$	0.5 ± 0.05	0.38 ± 0.04	0.3 ± 0.02	$0.17 \pm$
$\varepsilon[\%]$		0.05				0.02
CFS-PPyTF,	114.4 ± 8.9	82.5 ± 7.6	67.3 ± 6.5	50.5 ± 5.5	37.2 ± 3.8	$24.8 \pm$
$\Delta \sigma[\mathrm{kPa}]$						2.3

