Supplementary

Electrochemomechanical behavior of polypyrrole-coated nanofiber scaffolds in cell culture medium

Madis Harjo¹, Janno Torop¹, Martin J ärvek ülg², Tarmo Tamm¹ and Rudolf Kiefer^{3,*}

¹Intelligent Materials and Systems Lab, Faculty of Science and Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia

²Institute of Physics, Faculty of Science and Technology, University of Tartu, W. Ostwaldi Str 1, 50411 Tartu, Estonia

³Conducting polymers in composites and applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

*Corresponding author. Tel: +886 905605515. E-mail: rudolf.kiefer@tdtu.edu.vn (Rudolf Kiefer)

Figure S1. Square wave potential waves at 0.65 V to-0.6 V in CCM solution of CFS (blue) and CFS-PPyTF samples (black) at 0.01 Hz showing in a: the stress σ and in b: the current density time cycles of two subsequent cycles (3rd and 4th) against the time t.

Figure S2. Square wave potential steps at applied frequencies 0.0025 Hz to 0.1 Hz in CCM solution at applied voltage 0.65 to -0.6 V of CFS samples (blue, \Box) and CFS-PPyTF samples (black, \bigstar) showing a: the stress difference $\Delta\sigma$ against applied frequencies f (logarithmic scale) and in b: the stress difference $\Delta\sigma$ against charge density at reduction Q_{red}. The dashed line are shown only for orientation and representing the linear fit (y = a + b*x, with adj. R square (R²) of 0.97 for CFS-PPyTF and 0.99 for CFS).

Table S1. Strain ε and stress di	fferences $\Delta \sigma$ of CFS and	CFS-PPyTF at potenti	al range 0.65 V
to -0.6 V in mean values with s	tandard deviations		

Samples	0.0025 Hz	0.005 Hz	0.01 Hz	0.025 Hz	0.05 Hz	0.1 Hz
CFS,	0.27 ± 0.02	$0.23 \pm$	0.2 ± 0.01	0.13 ±	0.1 ± 0.01	-
ε[%]		0.02		0.01		
CFS,	0.55 ± 0.05	$0.45 \pm$	0.38 ± 0.04	$0.24 \pm$	$0.12 \pm$	-
$\Delta \sigma$ [kPa]		0.04		0.02	0.01	
CFS-PPyTF,	0.88 ± 0.07	$0.64 \pm$	0.5 ± 0.05	0.38±0.04	0.3 ± 0.02	$0.17 \pm$
ε[%]		0.05				0.02
CFS-PPyTF,	114.4 ± 8.9	82.5 ± 7.6	67.3 ± 6.5	50.5 ± 5.5	37.2 ± 3.8	$24.8 \pm$
$\Delta \sigma$ [kPa]						2.3