
polymers

Article

Investigation of Impact Strength and Hardness of
UHMW Polyethylene Composites Reinforced with
Nano-Hydroxyapatite Particles Fabricated by Friction
Stir Processing

Imran Khan 1 , Ghulam Hussain 2,*, Khalid A Al-Ghamdi 3 and Rehan Umer 4

1 Department of Mechanical Engineering, University of Engineering and Technology,
Peshawar 25120, Pakistan; engrimran@uetpeshawar.edu.pk

2 Faculty of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology,
Topi 23640, Pakistan

3 Department of Industrial Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
kaaalghamdi@kau.edu.sa

4 Department of Aerospace Engineering, Khalifa University of Science and Technology,
Abu Dhabi 127788, UAE; rehan.umer@ku.ac.ae

* Correspondence: gh_ghumman@hotmail.com; Tel.: +93-828-1026

Received: 17 April 2019; Accepted: 23 May 2019; Published: 12 June 2019
����������
�������

Abstract: The impact strength and surface properties of polymeric materials are of critical importance
in various engineering applications. Friction stir processing (FSP) is a novel method for the fabrication
of composite materials with superior mechanical properties. The main objective of this study is to
investigate the impact strength and Rockwell hardness of UHMW polyethylene composites reinforced
with nano-hydroxyapatite particles fabricated through FSP. The spindle speed (ω), tool traverse speed
(f ), volume fraction (v) of strengthening material and shoulder temperature (T) were key processing
parameters. The analysis of variance (ANOVA) indicated that the selected processing parameters
were significant. Microscopic investigations unveiled that high levels of (v, f ) and low levels of
(T, ω) caused agglomeration of the reinforcing particles and induced voids and channels, which
consequently reduced the impact strength and hardness of the manufactured composite. However,
medium conditions of processing parameters exhibited better distribution of particles with minimum
defects, and hence resulted in better mechanical properties. Finally, the models to predict the impact
strength and hardness are proposed and verified. Sets of process parameters favorable to maximize
the impact strength and Rockwell hardness were worked out, which were believed to increase the
impact strength, Rockwell hardness number, and ultimate tensile strength by 27.3%, 5.7%, and
11.2%, respectively.

Keywords: friction stir processing (FSP); polymer composites; impact strength; Rockwell hardness;
nano-particles

1. Introduction

Polymer matrix composites have been widely used in various industries such as aerospace,
automotive, and marine industries. The mechanical properties, including impact and hardness, are
critically important for these applications. These properties are strongly dependent on the composition
of the material and the fabrication process. Polymers alone usually do not fulfill high strength
requirements for many of these applications. Hence, numerous research studies have focused on the
modification of polymeric matrices without altering their bulk properties.
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The ultra-high molecular weight polyethylene (UHMWPE) is an exceptional class of polyethylene
(PE) with an average molecular weight 10 times that of conventional high density polyethylene (HDPE)
resins. The applications include conveyor bands, sprockets, cradles, cores of golf balls, ski and snow
board surfaces, and noise reducing materials. UHMWPE has also found applications in automotive
sector such as truck and dump truck bed liners [1]. Adding to that, UHMWPE has many uses in the
biomedical engineering applications, especially in joint replacement and implants [1,2]. These implants
are utilized in medical apparatuses for orthopedics applications. To date, millions of successful
implants have been carried out for hip, shoulder articulating surfaces, and knees [2].

Nano-hydroxyapatite (nHA) has been employed in the biomedical industry for its excellent
biocompatibility and bioactivity. When mixed with polymer matrix such as UHMWPE, the resulting
composites offer enhanced mechanical and surface properties, along with features of biocompatibility,
bioactivity, and anti-bacterial characteristics [3–5].

Friction stir processing (FSP) is an emerging technique employed for the production of composites
with improved mechanical properties. Initially, Mishra et al. [6] investigated FSP as an adaptation of
the friction stir welding (FSW) technique. FSW is a solid-state joining process for metals and was first
employed for joining aluminum-based alloys [6]. Various studies have been carried out on the FSW of
metals [7,8]. FSP is not considered as a solid-state method for polymeric materials, due to the different
melting temperatures of different materials. Conventional FSP tools will create defects such as voids
and channels, hence the melting of the polymer material in the nugget zone (NZ) (or stir zone (SZ))
must be performed [9]. The melting in the NZ can be performed by using a specialized tool, commonly
known as a ‘shoe-shaped shoulder FSP tool [10].

Recently, there has been an increased interest in FSP and FSW of polymeric materials [11–14].
In most of these studies, the tensile behavior of the weld zone is investigated. Only a single
study was performed focusing on the effects of FSW parameters on impact strength of polymers by
Abdel-Gwad et al [15]. Abdel-Gwad et al showed that the impact and tensile strength of the friction
stir welded polymeric material (in this case, HDPE) increased with an increase in spindle speed, right
up to a certain limit, then lowered with further rise in the spindle speed. Moreover, the tensile strength
and impact strength of the friction stir welded polymeric sheet increased with a decrease in the traverse
speed, except at the lowest traverse speed. It was also observed that high traverse speeds may lead to
milling action instead of joining, and higher spindle speeds may lead to an outpouring of melted sheet,
thus reducing the impact and tensile strengths of the composite.

In another study, Azarsa and Mostafapour [12] fabricated polymer-metal nanocomposites via
the FSP method, where they observed the agglomeration of nano material at high traverse speeds.
Moreover, low shoulder temperatures resulted in several voids and channels, whereas material
burning/degradation occurred at high shoulder temperatures. Similarly, Azarsa and Mostafapour [16]
studied the effects of FSW parameters on the flexural strength of HDPE sheets and reported that
the flexural strength enhanced with rise in spindle speed, and lowered with rise in tool traverse
speed. On the other hand, the flexural strength of HDPE sheets increased with an increase in shoulder
temperature up to 110 ◦C, then decreased with further increase in the shoulder temperature (up to
150 ◦C). Various defects were formed, such as surface cracks and voids, mostly at low spindle speed
and low shoulder temperatures, eventually reducing the flexural strength. They also concluded that at
higher rotational speeds, considerable material degradation can happen.

To the best of our knowledge, no one investigated the effects of FSP parameters on impact
strength of a particle’s reinforced polymer composite. In light of the above views, the main focus of
this research is to study the impact strength and hardness behavior of UHMWPE/nHA composites
fabricated through the friction stir processing technique. Microscopic and macroscopic analysis reveal
the dispersion of strengthening material and various defects. The impact strength and surface hardness
of the composites are quantified, and the results are co-related to the microscopic analysis. Empirical
models for mechanical properties are developed and verified through experiments. The composite at
an optimum set of parameters with reasonably improved mechanical properties and minimum defects
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are also manufactured, which can prove to be a better candidate material for biomedical and other
industrial applications.

2. Materials and Methods

2.1. Materials

UHMWPE (Ningjin Hongbao Chemical Company Ltd., Shandong, China) and nano Hydroxyapatite
(nHA) powder (Xi’an Lyphar Biotech Company Ltd., Xian, China) were used as the matrix and
the reinforcement material, respectively. The UHMWPE sheets were cut into rectangular sheets of
200 mm × 165 mm with a thickness of 5 mm. The properties of the parent sheets are given in Table 1.
The particle size of nHA powder used in this research was 60 nm (average), having a needle-like shape and
96% purity.

Table 1. Properties of the Base Material.

Property Value and Units Symbol

Ultimate tensile strength 18.6 MPa UTS
Tensile modulus 160 MPa E
Strain at failure 8.3 mm/mm e failure

Impact strength (u-notched) 23 KJ/m2 I-S
Rockwell hardness 94 HRE RH

Melting temperature range 130–138 ◦C MP
Nature semi crystalline -
Density 0.958 Kg/m3 -

Size 500 mm × 500 mm × 5 mm -

The FSW/FSP tools are not considered suitable for processing polymers as compared to metals [17].
For attaining desired mechanical properties, a novel tooling setup has been employed here. In this
particular setup, the step of closing the upper surface of the polymer sheet to avoid the outpouring
of strengthening particles is eliminated, which eventually decreases the production cost and time.
The tooling employed in this study is shown in Figure 1.
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2.2. Experimental Setup

In this tooling setup, a thrust bearing was installed, allowing the tool pin to rotate relative to
the stationary shoulder, as shown in Figure 1. Moreover, 5 mm diameter holes were drilled on the
upper surface of the shoulder, as this helped in reducing the time delay for achieving the desired
shoulder temperature. A quick response time (average 4 s relative to the shoulder without holes) was
achieved. The lower surface of the tool was well finished and coated with PTFE to avoid any sticking
that might occur between the aluminum hot shoulder and melted surface of the polymer. The tool pin
and stationary shoulder were made from hot-worked steel and 7075 aluminum, respectively. To control
the shoulder temperature and to provide external heating, a closed-loop heating system was utilized.
A cartridge heater (length of 80 mm and power of 400 Watt) was also employed to heat the shoulder.

Before commencing the process, a channel of specific dimensions was formed in the polymer
sheet to adjust the strengthening material, followed by compression of the powder in the channel.
The volume percentage (v) of the strengthening material can be calculated by the formula given
in Equation (1), i.e., “the sectional area (Ac) of the channel divided by the total processed area (At)
multiplied by 100”. The volume percentage (v) of strengthening material was altered by varying the
dimensions of the channel. The dimension of the channel for v of 5, 10, and 15% were (160 × 1 × 2),
(160 × 2 × 2), and (160 × 3 × 2) mm3, respectively.

v =
Ac
At
× 100 (1)

Before setting-up the range of processing parameters, it was noticed that the tool shoulder
temperature (T) of more than 100 ◦C was found to be very high, and was closer to the melting
temperature of UHMWPE [13,18]. The room temperature (which in this case was 30 ◦C) was selected
as the lower limit, and 65 and 100 ◦C were the other two levels of T. The maximum limit of volume
percentage (v) of the reinforcing material in the literature [13,19] was found to be 15%, beyond this
range, agglomeration and ineffective mixing were observed. The v of 5%, 10%, and 15% were chosen as
appropriate levels of v. We also observed material burning at high spindle speeds (ω), e.g., at 2000 rpm.
Any spindle speeds lower than 350 rpm may result in ineffective mixing of two materials. Hence,
based on our experimentation and literature review, 660, 1200, and 1700 rpm were set as the levels of
ω [13,19]. Higher tool traverse speed (f ) means that there is less time for mixing the materials. Hence,
machining action might happen at high f rather than mixing (when the tool moves quickly it will carry
material with itself instead of stirring it just like machining of any material). Therefore, 30, 48, and
85 mm/min were selected as the levels for f. Table 2 shows the levels of the processing parameters.

Table 2. Processing parameters and their respective levels.

Parameters Symbols Units
Levels

−1 0 +1

Spindle Speed ω rpm 660 1200 1700
Traverse Speed f mm/min 30 48 85

Volume Fraction v % 5 10 15
Shoulder Temperature T ◦C 30 65 100

To ensure that the tool shoulder exerts enough pressure on the polymer sheet, and to prevent
outpouring of melted polymer, a tool-offset depth of 0.2 mm was used in the plunging step of the
process (FSP). Moreover, we define the dwell time as the time required to heat the polymer sheet to
produce a puddle of semi-molten material. We noticed that a dwell time higher than 15 s resulted
in excessive heating action of the tool pin, resulting in burning of the polymer chains in the nugget
zone [20]. Hence, a dwell time of 15 s was employed in the composite manufacturing.
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2.3. Design of Experiments

Design Expert-10 statistical software package was employed to formulate the experimental test
plan. Response surface method (RSM) with I-optimal design was chosen, as I-optimal design reduces
the average variance of prediction over the design space, and RSM takes into account the combined
effect of parameters along with their sole effects, and requires a lower number of tests [21]. Table 3 shows
the test plan that is comprised of twenty-three experiments, including four repeats. The composite
fabrication was performed based on this test plan. The friction stirred sheets were allowed to cool
down at ambient conditions, while still placed in the fixture to avoid any deformation or shape change.

Table 3. Experimental test plan.

Exp. No. ω f v T

1 660 30 15 65
2 1700 30 5 30
3 660 48 5 65
4 1700 85 15 100
5 660 85 15 30
6 1700 30 10 100
7 660 48 15 100
8 1700 85 10 30
9 660 30 10 100

10 1700 48 15 30
11 1200 48 5 65
12 660 30 5 100
13 660 85 10 100
14 1700 85 5 100
15 1200 48 5 65
16 1700 48 10 65
17 660 85 5 30
18 660 48 10 30
19 1200 48 10 100
20 1700 85 15 100
21 1200 30 15 30
22 1700 48 10 65
23 1200 48 10 100

2.4. Mechanical Testing

To eliminate any irregularities from the surface of the friction stirred sheet, face-milling of 0.5 mm
was completed on both sides of the sheet. Due to face-milling, the impact strength (I-S) and Rockwell
hardness (RH) were affected as −1% to 1.8% and −1.9% to 2.1%, respectively, which are in acceptable
ranges. Samples for microscopic analysis, impact, and hardness tests were cut from the processed
sheets. The Charpy impact test was performed to determine the I-S of the composite. An impact test
was performed according to ISO 179-1/1eB on Shimadzu Charpy impact tester (Shimadzu, Kyoto,
Japan). Three tests were performed for each processing condition, and an average value was taken.
Rockwell hardness tests were performed using XHR-150 plastic Rockwell hardness tester (shanghai
Jinwei Instrument Manufacturing Co. Ltd, Shanghai, China) following ASTM D785 standard. Rockwell
E scale was selected to measure the hardness of the composite region of the friction stirred sheets.
Hardness values were measured on five different points on the composite material, and an average
value was taken. A microscopic analysis was performed by TESCAN scanning electron microscope
(TESCAN, Brno, Czech Republic).
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3. Results

3.1. Mechanical Properties of the Composite

The average values from the impact and hardness tests of the composite and parent material are
presented in Table 4. The units of I-S and RH are KJ/m2 and hardness Rockwell E-Scale value (HRE).
The highest value of the above-mentioned properties have been highlighted in Table 4. The experiments
at low (v, ω, and f ) and high T (experiment #12) showed a 44% increase in I-S, which is the highest I-S
in all the experiments. Moreover, experiment #11 (low v with medium level of T, f, and ω) exhibited a
26.5% increase in the I-S. It can be observed that most of the experimental results exhibited an increased
I-S, confirming the effectiveness of the process. On the other hand, it can also be observed that the
experiment at high T and v and low ω (experiment #7) showed that the highest RH was 101 HRE.
Experiment #11 (low v with medium level of T, f, and ω) showed a 3% increase in the RH.

Table 4. Mechanical properties of the friction stir processed composite.

Exp. No.
I-S Relative I-S RH Relative RH

KJ/m2 % HRE %

1 21.50 93.48 89.10 94.79
2 28.46 123.75 97.60 103.83
3 25.61 111.34 92.30 98.19
4 8.50 36.96 100.40 106.81
5 11.00 47.83 95.00 101.06
6 32.00 139.13 90.00 95.74
7 22.00 95.65 101.00 107.45
8 30.32 131.85 94.80 100.85
9 29.84 129.75 96.00 102.13

10 20.00 86.96 95.80 101.91
11 29.10 126.52 96.80 102.98
12 33.12 144.00 93.00 98.94
13 21.06 91.55 90.33 96.10
14 31.00 134.78 97.60 103.83
15 29.10 126.52 97.50 103.72
16 14.93 64.92 90.60 96.38
17 8.00 34.78 72.00 76.60
18 12.50 54.35 77.00 81.91
19 25.54 111.03 94.10 100.11
20 8.00 34.78 97.20 103.40
21 29.50 128.26 96.00 102.13
22 14.93 64.92 92.00 97.87
23 25.54 111.03 97.10 103.30

Base
Material 23.00 100.00 94.00 100.00

3.2. Analysis of Variance

Analysis of variance (ANOVA) was performed to find out the process parameters which are
significant at a 95% confidence level, and the effect on mechanical properties (I-S and RH) of the
composite. Table 5 lists the ANOVA results, which proves that the selected processing parameters
were significant, either as stand-alone parameters (f in case of I-S) or through interaction with other
parameters. The order of significance for I-S was v > f > T > ω and RH was ω > T > v > f.
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Table 5. Analysis of variance (ANOVA) Results.

Source
RH I-S

p-Value Significance (Yes/No) p-Value Significance (Yes/No)

Model Quadr. *
(0.01) Y 2FI

(0.01) Y

ω 0.01 Y 0.19 N
f 0.43 N 0.05 Y
v 0.05 Y 0.01 Y
T 0.01 Y 0.13 N
ωf 0.38 N 0.52 N
ωv 0.02 Y 0.07 N
ωT 0.01 Y 0.01 Y
fv 0.02 Y 0.39 N
fT 0.84 N 0.70 N
vT 0.15 N 0.02 Y
ω2 0.06 N - -
f2 0.78 N - -
v2 0.02 Y - -
T2 0.72 N - -

* Quadratic model.

3.3. Effects of FSP Parameters on Impact Strength of the Composite

Figure 2 represents the significant interactions and stand-alone parameters for composites impact
strength (I-S). Figure 2a represents the effects of f, which is a stand-alone parameter in this case.
The results show that it does not interact with other parameters. The I-S decreases with an increase in f,
which differs from the findings by Abdel-Gwad et al [15]. This might be due to less time available for
the tool to mix the materials effectively. Figure 2b shows that an increase in T causes an increase in I-S
at low v, and the same is true for low ω, which is obvious from Figure 2c. However, I-S was negligibly
effected by T at high v and it slightly decreased at high ω, when T was increased at those conditions.
Abdel-Gwad et al [15] observed the same effect at which I-S increased with an increase in ω up to
1200 rpm, then decreased with a further increase in ω. The previous studies did not investigate the
effect of T, as the tool used in that study was not hot-shoe FSP tool. Moreover, Figure 2b shows that by
increasing v the I-S decreases significantly at high T. The effect of ω is shown in Figure 2c. It can be
observed that I-S increases when ω is increased at low T. However, contradictory results were observed
at high T.
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3.4. Effects of FSP Parameters on Hardness of the Composite

Figure 3 shows the effect of significant interactions on RH of the fabricated composite. Figure 3b,c
shows that RH increases with an increase in v, regardless of f. The same is true for low ω. However, RH
first decreases and then increases as v is increased at high ω. From Figure 3a, it can be observed that
RH increases significantly as T is increased at low ω. However, RH decreased slightly with an increase
in T at high ω. Figure 3c shows that at high v, RH increases with an increase in f. However, f effects
RH negligibly at low v. Moreover, Figure 3a,b shows that RH increases with an increase in ω at low T
and low v. However, at high T and high v, RH first increases, and then decreases as ω is increased.

Polymers 2019, 11, 1041 8 of 14 

 

3.4. Effects of FSP Parameters on Hardness of the Composite 

Figure 3 shows the effect of significant interactions on RH of the fabricated composite. Figure 
3b, c shows that RH increases with an increase in v, regardless of f. The same is true for low ω. 
However, RH first decreases and then increases as v is increased at high ω. From Figure 3a, it can be 
observed that RH increases significantly as T is increased at low ω. However, RH decreased slightly 
with an increase in T at high ω. Figure 3c shows that at high v, RH increases with an increase in f. 
However, f effects RH negligibly at low v. Moreover, Figure 3a, b shows that RH increases with an 
increase in ω at low T and low v. However, at high T and high v, RH first increases, and then decreases 
as ω is increased. 

 
(a) (b) (c) 

Figure 3. Significant interaction for composite’s RH (a) ωT, (b) vω, and (c) vf. 

3.5. Empirical Models and Validation 

Empirical models are equations of hyper-surfaces which state the relation between the output 
responses and the chosen processing parameters, and therefore can be employed to predict the 
responses. The statistical software, Design Expert, predicted the empirical relations for impact 
strength (I-S) and Rockwell hardness (RH), which are presented in Equations (2) and (3), respectively. Ln (I − S)  =  0.559 +  1.442E − 03 𝜔 −  2.764E − 03 𝑓 +  0.154 𝑣 +  0.033 𝑇 +  3.834E − 06 𝜔𝑓 −  6.519E − 05 𝜔𝑣 −  1.274E − 05 𝜔𝑇 − 5.963E − 04 𝑓𝑣 −  3.395E − 05 𝑓𝑇 −  1.327E − 03 𝑣𝑇 

(2) 

Ln (RH) = 4.014 +  7.467E − 04 𝜔 − 2.312E − 03 𝑓 −  0.032 𝑣 +  6.105E − 03 𝑇 +  8.282E − 07 𝜔𝑓 −  1.377E − 05 𝜔𝑣 −  2.343E − 06 𝜔𝑇 +  3.011E − 04 𝑓𝑣 −  2.799E − 06 𝑓𝑇 − 1.223E − 04 𝑣𝑇 − 1.828E− 07 𝜔  −  9.642E − 06 𝑓  +  2.203E − 03 𝑣  −  7.008E − 06 𝑇  

(3) 

The R2 value for each model was above 80% which indicates that the data points follow the 
model curves, and can be utilized for the prediction of output responses over the entire design space. 
Moreover, the above models were used to predict the output responses for sets of processing 
parameters. These results, along with experimental results, were compared for additional validation 
of the proposed model curve (s). Table 6 lists these conditions which include three sets of processing 
parameters. These conditions were not included in the test plan. Table 6 confirms that the 
experimental values are in close agreement with the values predicted by the models; the prediction 
error ranges from −4.82% to 0.8%. This affirms that the models are reasonably correct. 
  

Figure 3. Significant interaction for composite’s RH (a) ωT, (b) vω, and (c) vf.

3.5. Empirical Models and Validation

Empirical models are equations of hyper-surfaces which state the relation between the output
responses and the chosen processing parameters, and therefore can be employed to predict the
responses. The statistical software, Design Expert, predicted the empirical relations for impact strength
(I-S) and Rockwell hardness (RH), which are presented in Equations (2) and (3), respectively.

Ln(I− S) = 0.559 + 1.442E− 03 ω − 2.764E− 03 f + 0.154 v + 0.033 T

+ 3.834E− 06 ω f − 6.519E− 05 ωv − 1.274E− 05 ωT

−5.963E− 04 f v − 3.395E− 05 f T − 1.327E− 03 vT

(2)

Ln (RH) = 4.014 + 7.467E− 04 ω − 2.312E− 03 f − 0.032 v + 6.105E− 03 T

+ 8.282E− 07 ω f − 1.377E− 05 ωv − 2.343E− 06 ωT

+ 3.011E− 04 f v − 2.799E− 06 f T − 1.223E− 04 vT − 1.828E

−07 ω2
− 9.642E− 06 f 2 + 2.203E− 03 v2

− 7.008E− 06 T2

(3)

The R2 value for each model was above 80% which indicates that the data points follow the
model curves, and can be utilized for the prediction of output responses over the entire design
space. Moreover, the above models were used to predict the output responses for sets of processing
parameters. These results, along with experimental results, were compared for additional validation of
the proposed model curve (s). Table 6 lists these conditions which include three sets of processing
parameters. These conditions were not included in the test plan. Table 6 confirms that the experimental
values are in close agreement with the values predicted by the models; the prediction error ranges
from −4.82% to 0.8%. This affirms that the models are reasonably correct.
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Table 6. Comparison between the experimental and predicted responses values.

S. No.
Process Parameters I-S (KJ/m2) HR (HRE)

ω f v T Pred 1 Exp 2 % Error Pred Exp % Error

1 1200 48 5 45 21.53 21.8 −1.25 94.39 94.2 0.02
2 660 85 7.5 30 10.14 10.05 0.8 74.6 78.2 −4.82
3 660 85 13 45 12.26 12.51 −2.03 89.02 92 −3.3

1 Predicted and 2 Expected.

3.6. Microscopic and Macroscopic Analysis

Various defects occurred at the conditions which resulted in minimum heat generation and poor
mixing, such as high f, low T, low ω, and high v or a combination of these parameters. Low T means
less external heating to melt the polymer chains. Hence, causing poor mixing and various surface
defects as observable from Figure 4a and also discussed by Azarsa and Mustafapur [12]. High f means
that there is less time for the two materials to mix, and hence results in voids and channels (due to
machining action) as observable from Figure 4b,c, and discussed by Azarsa and Mustafapur [12] and
Abdel-Gwad et al [15]. High v means large amount of strengthening material inside the polymer
matrix which resulted in agglomeration of the nano particles, and poor mixing as observable from
Figure 4b,c. Low ω means ineffective mixing and less frictional heat generation between the tool
surface and material to be processed. Hence, resulting in large and small channels (as a result of poor
bonding between the processed material and the parent material) as observable from Figure 4a,b.
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Figure 5a,c shows SEM images, confirming agglomeration of the nano powder at high v and high
f. The size of the agglomerated particles is approximately 0.2–2.5 µm. Whereas, the nano powder has
an approximate size of 70–95 nm. Figure 5b,d shows SEM images of the composite, when fabricated at
low ω and high f, resulting in surface cracks.
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High f, low T, low ω, and high v or a combination of these parameters resulted in various defects
such as voids, channels, surface cracks, agglomeration, and poor surface finish. These defects, in turn,
caused reduction of the I-S and RH as discussed in Sections 3.3 and 3.4, respectively. Hence, these
parameters are not recommended for the fabrication of the composite.

Moreover, material burning has been observed in experiments with combinations such as high
T and high ω, high T and low f, high ω and low f, as noticeable from Figure 6 (change of blue
color into brown). The combinations of processing parameters which generate high heat, resulted
in material burning/degradation, as discussed by Azarsa and Mostafapour [12,16]. This material
burning might affect the bulk properties of the composite, i.e., biocompatibility and bioactivity, etc.
Hence, these combinations of process parameters must be avoided in the fabrication of the composite.
On the contrary, the combinations which resulted in material burning showed high impact strength,
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as discussed in Section 3.3. This might be due to the high stirring action of the FSP tool (high T
with low f or high ω results in relatively more stirring time and high frictional heat), resulting in the
strengthening of the composite, but at the same time, affects its biocompatibility.
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(T and ω) and low f ).

The experiments at medium conditions of three processing parameters, such as high T with
medium levels of ω, f and v, and low v with medium levels of ω, f and T resulted in improved
surface finish, and is observable from Figure 7. It was observed that these processing parameters are
suitable for better material mixing, and therefore resulted in an improved surface finish. Moreover,
material burning did not occur at these conditions. Better particle distribution can be seen at these
combinations, as shown in Figure 7a. Due to an improved distribution of strengthening particles and
minimum defects, the experiments at these processing parameters show an enhancement in mechanical
properties, as observable from Table 4.
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3.7. Optimum Conditions

From the above discussion, it is clear that the following conditions should be avoided in the
fabrication of UHMWPE/nHA composite in order to increase the hardness and I-S of the composite,
and to avoid material degradation, voids, and agglomeration:

ω = (600 & 1700) rpm, v = 15%, f = (30 & 85) mm/min, T = (30 & 100) ◦C
Table 7 presents optimum set of process parameters which were suggested by using the software.

This combination showed a 27.2% increase in impact strength, and a 5.7% increase in hardness through
mechanical tests. Similarly, the ultimate tensile strength (UTS) and % elongation were also measured
to be 20.7 MPa and 8.17 mm/mm, respectively, i.e., 11.2% increase in UTS with negligible change in %
elongation as compared to parent material. Moreover, material degradation did not occur at these
conditions. Hence, this set of parameters is suggested for the fabrication of composites through FSP.

Table 7. Optimum conditions to maximize impact strength and Rockwell hardness.

Scenario

Processing Parameters Mechanical
Properties

Desirability
ω f v T I-S

(KJ/m2)
RH

(HRE)

1 (generic) 1200 48 5 75 29.2 99.35 0.89
2 (from test plan) 1200 48 5 65 26.5 97.80 0.8

The optimum conditions proposed in the above table were validated by conducting experiments
at the proposed conditions. The results from these experiments were in good agreement with those
reported in the above table. Hence, the proposed parameter conditions can serve as reliable guidelines
for the improved impact strength and Rockwell hardness of UHMWPE/nHA composite fabricated
through FSP techniques.

4. Conclusions

In this study, friction stir processing of UHMWPE/nHA polymer nanocomposite was successfully
performed. The fabrication was completed by varying a number of processing parameters which
included spindle speed (ω), volume fraction of nHA (v), tool traverse speed (f ), and shoulder
temperature (T). The microstructural analysis was performed to further investigate and verify the
results. The significant conclusions from this investigation are as follows; all processing parameters
were found significant (either as stand-alone parameters or in interaction with the other parameters)
for impact strength (I-S) and Rockwell hardness (RH). Various defects were observed at low ω
(660 rpm), low T (30 ◦C), and high v (15%), which include voids, surface cracks, channels, and
agglomeration. These defects reduced the I-S and RH of the fabricated composite. Material burning
was observed at processing conditions of low f (30 mm/min) and low v of nHA particles (5%) with high
ω (1700 rpm) and high T (100 ◦C). Material burning/degradation can affect the inherent properties,
such as biocompatibility of the material, hence these conditions must be avoided in the fabrication of
the composite. High nHA content (15%) and high T (100 ◦C) resulted in high RH, i.e., 7.5% harder
than the parent material. Low f (30 mm/min) with low v of nHA content (5%) and high T (100 ◦C)
resulted in a 44% increase in I-S as compared to the parent material. The following conditions should
be avoided in the fabrication of UHMWPE/nHA composite in order to increase the I-S and RH of the
composite, and to avoid material degradation, voids, and agglomeration:

ω = (600 & 1700) rpm, v = 15%, f = (30 & 85) mm/min, T = (30 & 100) ◦C
The range of processing parameters, i.e., ω of 1200 rpm, f of 48 mm/min, T of 65 ◦C with 5–10%

v resulted in higher I-S and RH. The following optimum conditions were proposed to fabricate the
polymer composite based on UHMWPE matrix via FSP technique, which is believed to increase the
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I-S, RH, and ultimate tensile strength by 27.3%, 5.7%, and 11.2%, respectively, with respect to the
parent material:

T = 75 ◦C, v = 5%, f = 48 mm/min and ω = 1200 rpm.
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