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Abstract: A novel water-compatible molecularly imprinted resin was prepared in a green solvent
deep eutectic solvent (DES). Resorcinol and melamine, as functional monomers with an abundant
hydrophilic group, such as –OH, –NH2 and –NH–, were introduced into the molecularly imprinted
resin (MIR). Three DESs (choline chloride-ethylene glycol, tetramethylammonium bromide-ethylene
glycol and tetramethylammonium chloride-ethylene glycol) were used to synthesize the molecularly
imprinted resin and the resulting deep eutectic solvent-based molecularly imprinted resins were
characterized by particle size analysis, elemental analysis, scanning electron microscopy, Fourier
transform infrared spectroscopy and thermogravimetric analysis. The resulting deep eutectic
solvent-based molecularly imprinted resins were then applied to the adsorption of quinolones
(ofloxacin) in water. The adsorption process of deep eutectic solvent-based molecularly imprinted
resin followed the static adsorption model, Langmuir isotherm (R2

≥ 0.9618) and kinetic model
pseudo-second-order (R2 > 0.9814). The highest theory adsorption ability of the three kinds of
deep eutectic solvent-based molecularly imprinted resins was more than 23.79 mg/g. The choline
chloride-ethylene glycol-based MIR was applied to solid-phase extraction for the determination
and purification of quinolones (e.g., ciprofloxacin and ofloxacin). The detection limit of deep
eutectic solvent-based molecularly imprinted resin-solid-phase extraction method was less than
0.018 mg/L. The recoveries of the deep eutectic solvent-based molecularly imprinted resin-solid-phase
extraction method at three spiked levels were 88.7–94.5%, with a relative standard deviation of ≤4.8%.
The novel deep eutectic solvent-based molecularly imprinted resin-solid-phase extraction method is
a simple, selective and accurate pre-treatment method and can be used to determine the quinolones
in environmental water.
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1. Introduction

Recently, molecularly imprinted polymers (MIPs) have been adopted as a kind of tailor-made
receptor with specific molecular recognition sites in terms of the size, shape and functional groups.
The main principles of the molecularly imprinted technique (MIT) are based on incorporating
functional monomers with a template molecule to form a pre-complex via covalent or non-covalent
bonds [1–4]. Subsequent removal of the template results in the specific recognition cavities that act as
molecular recognitions sites to achieve specific binding of the target molecule. With the advantages of
specific recognition ability, good stability and uncomplicated synthesis process, MIPs have attracted
considerable attention in many fields such as purification and separation [2–9], chemo-sensing [10,11]
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catalysis [12–14] and drug delivery. Currently, most MIPs are based on non-covalent mechanisms
and were synthesized in non-polar or less polar solvents by the interaction of hydrogen bonding
between the functional monomer and template molecule; they are normally only compatible with
non-aqueous solutions. On the other hand, water is the most used matrix in environmental and
biological samples. The poor compatibility and molecule-recognition ability of MIPs in the aqueous
phase considerably limit the application of MIPs [15]. Furthermore, the large amounts of organic
solvents used in the synthesis of MIP are not in accordance with the idea of green and sustainable
chemistry. Hence, the development of aqueous-compatible imprinted polymers and the utilization of
eco-friendly solvents in the preparation process are imperative.

Exploration of hydrophilic imprinted polymers with excellent molecular recognition ability
in aqueous environments attracts considerable attention. The existence of hydrophobic groups on
MIPs is considered the main reason for its incompatibility with aqueous environments. Therefore,
the use of the hydrophilic monomers was considered to be an effective solution to avoid hydrophobic
groups [16]. Hydrophilic resins are prepared with a range of hydrophilic monomers that can be
combined with the molecular imprinting technique to produce the molecularly imprinted resin (MIR).
Resorcinol-formaldehyde resin is a common hydrophilic resin that contains abundant –OH groups and
exhibits excellent separation performance on metal ions [17–19]. Melamine-formaldehyde resin has
adequate primary/secondary amino groups and good thermal stability [20,21]. Therefore, a combination
of the advantages of melamine and resorcinol, in preparing the hydrophilic resin can result in enough
hydrophilic groups binding with the target molecules [22]. On the other hand, conventional hydrophilic
solvents (such as methanol, ethanol, etc.) can affect the formation of hydrogen bonds between the
template and functional monomer during MIR synthesis.

Abbott et al. [23] proposed a class of liquids called deep eutectic solvents (DES) to overcome the
disadvantages of conventional aqueous media. DES are generally composed of a hydrogen-bond
acceptor (HBA) and hydrogen-bond donor (HBD), which are capable of self-association by
hydrogen-bond interaction. A comparison with organic solvents revealed DESs to be more eco-friendly
because of their low toxicity and negligible vapor pressure. In addition, the excellent thermal
stability, non-flammability and solubility of DESs can be applied to chemical synthesis, extraction
and separation [24,25]. In this protocol, the hydrophilic DES was selected as the solvent medium to
prepare the DES-based MIR (DES-MIR). This process not only provided the aqueous environment for
the preparation of the MIR but it also enhanced the affinity of MIR toward the template molecule.
Generally, the hydrogen-bond is the main interaction between the template molecule and functional
monomers during the imprinting process. On the other hand, the hydrogen-bond interaction is
ruptured easily in conventional aqueous media because of the competition for functional monomers
between the template molecule and solvent molecules [26]. DESs, as solvent media, provided an extra
ionic interaction that is theoretically stronger than a hydrogen-bond. This characteristic makes it more
resistant to the interference of conventional solvent molecules during the process of imprinting and
recognition toward analytes.

In this study, a new water-compatible MIR was synthesized in DES solvent media with hydrophilic
resorcinol and melamine monomers and formaldehyde cross-linker, which introduced abundant
hydrophilic groups into the resin structure. Three types of hydrophilic DESs (choline chloride-ethylene
glycol, tetramethylammonium bromide-ethylene glycol and tetramethylammonium chloride-ethylene
glycol) were used as green media to enhance the affinity of the MIR to the target in aqueous media.
The resulting DES-MIR was applied as adsorbent in solid-phase extraction (SPE) to recognize the
quinolones (e.g., ciprofloxacin and ofloxacin) in wastewater. Quinolones are widely used as therapeutic
and prophylactic antimicrobial agents in animal husbandry and aquaculture (seafood industry),
which is reported by other research groups [24,27]. The widespread use of quinolones in seafood
industry has resulted in the potential risk of its residues in water and the development of resistant
bacterial strains. The DES-MIR showed excellent compatibility with water and specific molecule
recognition ability with higher recoveries than common MIR.
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2. Experimental

2.1. Chemicals and Chromatography Instruments

Choline chloride (ChCl, 98%), tetramethylammonium chloride (TMAC, 99%) tetramethylammonium
bromide (TMAB, 99%) and ethylene glycol (EG, 98%) were purchased from Sigma-Aldrich Co, Ltd. (St Louis,
MO, United Stated). Ofloxacin (OFL, 99%), ciprofloxacin (CIP, 99%) and melamine monomer (98%) were
supplied by Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Resorcinol (99%), formaldehyde solution
(37%), trifluoroacetic acid (TFA, 99%), methanol (MeOH), acetic acid (HAc), ethyl acetate (EtOAc) and
acetonitrile (ACN) were acquired from Duksan Pure Chemical Co., Ltd. (Ansan, Korea). Ultrapure water
was used in all experiments. The details of high-performance liquid chromatography (HPLC) instruments
and conditions were added to the Supplementary Materials.

2.2. Synthesis of Hydrophilic DES and DES-Based MIR

The three hydrophilic DESs were prepared using the same synthetic method reported
elsewhere [26]. The two components, HBA and HBD, were mixed into a stand-up flask with
stirring at 300 rpm and 80 ◦C for 2 h. The HBA and HBD component mixtures transformed into a
homogeneous liquid with no observed solid. Table 1 lists the components of the DESs (DES-1: ChCl-EG;
DES-2: TMAB-EG; DES-3: TMAC-EG).

Table 1. The details of synthesized hydrophilic deep eutectic solvents (DESs).

Abbreviation HBA HBD Mole Ratio Aspect

DES1

ChCl
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DES-MIR was synthesized by suspension polymerization and prepared using a slight modification
of the methodology reported elsewhere [22]. The details of the DES-MIR synthesis step were added to
the supplementary materials. The non-imprinted DES-based resin (DES-NIR) and common molecular
imprinted resin (MIR, without DES) were synthesized in an identical manner to DES-MIR, except for
the addition of the template and DES. Table 2 lists the components of the materials.

2.3. Characterization of DES and DES-MIR

The functional groups details in DES, DES-MIR and MIR were characterized by Fourier transform
infrared spectroscopy (FTIR, Vertex 80 V, Bruker, Billerica, MA, USA) using the KBr pellet technique
between 4000–400 cm−1 at a scan rate of 20 scans/min. The morphology of the materials was examined
by scanning electron microscopy (SEM, Hitachi S-4200, Hitachi, Toronto, ON, Canada). The particle
size distributions of DES-MIR and MIR were analyzed using a Mastersizer 2000 instrument (Malvern
Panalytical, Malvern, UK). The elemental content was determined using an elemental analyzer,
EA1112 (Thermo Fisher, Waltham, MA, USA). Thermogravimetric analyses (TGA) were carried on a
thermo-microbalance (TG 209 F3, Netzsch, Selb, Germany).
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Table 2. Synthesis scheme of DES-MIR.

Materials #1: Monomer1

(mmol)
Crosslinking

(mmol) Solvent2 (mL) #2: Monomer2

(mmol)
Crosslinking

(mmol) Solvent2 (mL)
Template
(mmol)

MIR 30 60 MeOH
10 10 30 MeOH

20 0.25

DES1-MIR 30 60 DES1

6
10 30 DES1

6
0.25

DES2-MIR 30 60 DES2

6
10 30 DES2

6
0.25

DES3-MIR 30 60 DES3

6
10 30 DES3

6
0.25

NIR 30 60 MeOH
10 10 30 MeOH

10 -

DES1-NIR 30 60 DES1

6
10 30 DES1

6
-

DES2-NIR 30 60 DES2

6
10 30 DES2

6
-

DES3-NIR 30 60 DES3

6
10 30 DES3

6
-

#1: bottle #1; #2: bottle #2; Monomer1: resorcinol; Monomer2: melamine; Crosslinking: formaldehyde; Solvent2:
MeOH, DES1, DES2 and DES3; Template: OFL.

2.4. Adsorption Behavior of OFL on the Hydrophilic Resin

In the static adsorption experiment, 10 mg of hydrophilic resin (DES-1-MIR, DES-2-MIR,
DES-3-MIR and MIR, respectively) was added in a round bottom flask containing 5 mL of MeOH
solutions with 10–200 µg/mL OFL at 25 ◦C for 2 h and separated by centrifugation at 4000 rpm for
10 min.

A dynamic adsorption test was conducted in parallel as the following descriptions. A 10 mg
hydrophilic resin (DES1-MIR, DES2-MIR, DES3-MIR or MIR) was used as an adsorbent to evaluate the
performance in 5 mL of the 100 µg/mL OFL solutions with mechanically shaking for different times
(5–200 min, respectively). The residual concentration of the OFL was analyzed by HPLC.

The equilibrium adsorption quantity (Qe) and temporal adsorption quantity (Qt) were calculated
using the following equations:

Qe =
(C0 − Ce) ×V

W
(1)

Qt =
(C0 − Ct) ×V

W
(2)

where V is the volume of the solution and W is the mass of the polymer powder. C0, Ce and Ct are the
initial, equilibrium and temporal concentration, respectively.

2.5. DES-MIR-Based SPE for Environmental Water

The sample (wastewater) was collected from a local seafood market in Incheon. The wastewater
sample was concentrated to dryness at 50 ◦C and then reconstituted with 1 mL of MeOH for further SPE
procedures. First, a 200 mg sample of the different resin particles were packed in an empty SPE cartridge
and the frits were placed at the lower and upper ends to avoid polymers loss. The particle-packed
cartridge was pretreated with 2 mL of MeOH and water prior to extraction. Subsequently, 1 mL of the
sample solution was loaded into the SPE cartridge, washed and eluted with 2 mL of water and 4 mL
of ACN-ammonia (95:5, v/v). Subsequently, the eluent was evaporated to dryness under a gentle N2

stream and was reconstituted with 0.1 mL of the mobile phase for HPLC analysis.

3. Results and Discussion

3.1. Synthesis of DES and DES-Based Hydrophilic MIR

First, one of the three types of HBAs, (ChCl, TMAC and TMAB) and one HBD (EG) was combined
to prepare three different hydrophilic DESs. In this experiment, the structures of DES1, DES2 and
DES3 were characterized by FTIR spectroscopy, as shown in Figure 1a. FTIR spectroscopy revealed a
peak for the hydroxyl stretching vibration at 3330 cm−1, which was attributed to the existence of EG.
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This shows that all the DESs can provide a sufficient number of hydrophilic structure groups in the
synthesis of the DES-MIR process.
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Three types of DES-MIRs (DES1-MIR, DES2-MIR and DES3-MIR) were prepared with the dual
functionality of the resorcinol and melamine monomers incorporated into the MIR. To enhance the
hydrogen-bond ability between the template and functional monomer during MIR synthesis, three
types of DESs were introduced to the polymerization process as the reaction media. Figure 2 presents
a schematic diagram of DES-MIR formation.Polymers 2019, 11, x 6 of 13 
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3.2. Characterization of DES-MIR

The FTIR spectra of the synthesized DES-MIRs in Figure 1b revealed some mutual hydrophilic
groups on the polymer surface, such as –OH and –NH–. A comparison with MIR, showed that
DES1-MIR, DES2-MIR and DES3-MIR had a strong FTIR peak at 3330 cm−1, which was assigned to
the –OH stretching vibration. This confirmed that DES1, DES2 and DES3 had been entrapped into
the MIR. Furthermore, the two medium-intensity peaks at 1330 cm−1 and 795 cm−1 were assigned to
the C-N stretching in the triazine ring and the –N–H out-of-plane bending in melamine, respectively,
which indicate the presence of melamine within the DES-MIR [22]. The N, Br and Cl contents of
the materials also confirmed the successful impregnation of DES, which means the DESs had been
combined with MIR, as listed in Table S1.

TGA was performed to confirm the successful entrapment of DES with MIR (Figure 3). The results
revealed a steep weight loss for all the adsorbents (MIR, DES1-MIR, DES2-MIR and DES3-MIR due to
the loss of moisture within 100 ◦C. As the temperature was increased to 350 ◦C, DES1-MIR, DES2-MIR
and DES3-MIR began to degrade from 91.9 to 36.4%, 93.9 to 35.5% and 97.7 to 63.1%, respectively.
On the other hand, the mass of MIR with this temperature range did not show an obvious decrease
(97.5 to 85.4%). These performances can be attributed to the existence of DES on the surface of the MIR
due to the interactions between DES and functional monomers.Polymers 2019, 11, x 7 of 13 
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Figure 3. Thermogravimetric (TGA) curves of the MIR and DES-MIR (DES1-MIR, DES2-MIR and
DES3-MIR).

The morphology of DES1-MIR, DES2-MIR, DES3-MIR and MIR was analyzed by SEM (Figure 4).
The conventional MIR was a microsphere with a smooth surface and the DES-based MIR had a
relatively rough surface. SEM images of these DES1-MIR, DES2-MIR and DES3-MIR materials revealed
a similar surface morphology: a rough and porous structure. This rough surface may provide more
specific recognition sites for the target.
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Figure 5 shows the particle size distribution of MIR, DES1-MIR, DES2-MIR and DES3-MIR.
Compared to the conventional MIR (particle size D(0.5): 51.798 µm), the DES1-MIR (particle size D(0.5):
22.584 µm), DES2-MIR(particle size D(0.5): 31.706 µm) and DES3-MIR (particle size D(0.5): 31.847 µm)
had smaller particles. Because of the weak dispersion of the monomer agent (resorcinol and melamine)
in the traditional solution, the hydrophilic resin would aggregate, resulting in a larger particle size.
DESs as a green solvent can enhance the particle dispersion effect, resulting in smaller particles, which
could enhance the adsorption efficiency and increase the affinity toward the target analytes in the
aqueous solution.
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3.3. Hydrophilic Performance of DES-MIR

To assess the hydrophilic behavior of the synthesized DES-MIR, the dispersion stability of different
commercial sorbents, such as silica and HLB, was compared with MIR and DES-MIR. Typically, all the
sorbents were dispersed ultrasonically in water with a concentration of 10 mg/mL. Figure 6 presents
images of these sorbents. As observed with silica, HLB, MIR, DES1-MIR, DES2-MIR and DES3-MIR
could initially be dispersed homogeneously in water. After 30 min, most of the silica, HLB and partial
MIR settled to the bottom of the bottle. In contrast, DES1-MIR, DES2-MIR and DES3-MIR still exhibited
excellent dispersion ability in water due to the existence of DESs. This shows that DES, as the reaction
media, plays an important role in enhancing the compatibility with water.Polymers 2019, 11, x 9 of 13 
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3.4. Static Adsorption and Dynamic Adsorption

To assess the static adsorption performance of OFL over DES-MIRs, three types of adsorption
isotherms models, such as Langmuir, Freundlich and Scatchard, were fitted to the isotherm adsorption
data. The equations of the three models are as follows and the corresponding linear plots and Figure 7
and Table 3 show the isotherm parameters for the different models. Compared with Freundlich and
Scatchard models, the Langmuir isotherm showed better correlation (R2

≥ 0.9618) on different DES-MIR
adsorbents. The maximum adsorption capacities of the resin adsorbents were estimated from the
Langmuir plots. All the DES-MIRs showed higher Qmax values (>23.79 mg/g) than the conventional
MIR (Qmax = 15.33 mg/g). This difference in adsorption capacity between the DES-MIR and MIR
must be due to the adsorption functionality introduced by the DESs within the MIR. Furthermore,
the different DESs also showed different adsorption capacities. In this case, DES1 had the highest
adsorption capacity (Qmax = 32.92 mg/g) because of its better dispersive capacity than DES2 and DES3.
Consequently, all further adsorption studies were carried out using DES1.

Figure 7 shows the dynamic adsorption behavior of DES1-MIR and MIR. A comparison with
the pristine MIR revealed the DES-impregnated MIR (DES1-MIR) to have rapid mass transform
efficiency and reach adsorption equilibrium after 100 min. The adsorption data of OFL were fitted
using pseudo-first-order and pseudo-second-order kinetic models onto DES1-MIR and MIR. The
adsorbents showed better compliance with the pseudo-second-order kinetic model (R2

≥ 0.9814) than
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with the pseudo-first-order model (R2
≥ 0.8689). Table 4 lists the corresponding kinetic constants and

correlation coefficients.
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Table 3. Isotherm model parameters for MIR, DES1-MIR, DES2-MIR and DES3-MIR on OFL adsorption.

Isotherm Model Parameter MIR NIR DES1-MIR DES2-MIR DES3-MIR

Langmuir
R2 0.9786 0.9923 0.9618 0.9824 0.9840

Qmax 15.33 6.85 32.92 26.39 23.79
K 0.027 0.058 0.047 0.047 0.042

Freundlich
R2 0.9736 0.9373 0.9236 0.9663 0.9569
K 1.31 1.34 3.63 3.30 2.60

1/n 0.45 0.31 0.44 0.41 0.43

Scatchard
R2 0.8334 0.9781 0.5652 0.8215 0.8245

Qmax 0.60 0.38 3.55 1.50 1.03
K −0.044 −0.056 −0.13 −0.061 −0.044

Table 4. Parameters of OFL adsorption towards DES1-MIR and MIR from two kinetic models.

Kinetic Model Parameters DES1-MIR MIR

Pseudo-first-order
R2 0.9911 0.8689
Qe 27.31 4.21
K1 0.020 0.018

Pseudo-second-order
R2 0.9814 0.9972
Qe 34.22 7.14
K2 0.00034 0.0084

3.5. Validation of the DES1-MIR-SPE in HPLC

The range of linearity, limits of detection (LOD), limits of quantification (LOQ) and recovery of
the DES1-MIR-based SPE method were assessed, as listed in Table S2. The calibration curves of the
quinolones (OFL and CIP) were constructed with five spiked levels within the range of 0.1–100 µg/mL
with good coefficients (R2

≥ 0.9989). The LOD and LOQ of OFL and CIP were 0.012 µg/mL &
0.040 µg/mL and 0.018 µg/mL & 0.060 µg/mL, respectively. The intra-day and inter-day precision in this
method were obtained by spiking the wastewater samples at three levels (1, 10 and 100). The recoveries
of OFL and CIP ranged from 91.7 to 94.5% and 88.7 to 94.4% with the RSDs less than 3.3 and 4.6,
respectively. This shows that DES1-MIR-SPE is a sensitive and accurate analysis method (Table S3).
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Furthermore, a comparison of present method with previously reported method was indicated in Table
S4. The results revealed DES1-MIR-SPE method has the excellent analysis performance to analyze OFL
and CIP in wastewater samples with good recoveries.

3.6. Application of DES-MIR in SPE for the Determination of Quinolones in Wastewater

The feasibility of the DES1-MIR-based SPE method was assessed by the purification and extraction
OFL and CIP in a wastewater sample. Different types of environmental water samples were obtained
and analyzed using the DES1-MIR-SPE method, as listed in Table S5. One of the samples obtained from
a local seafood market was found to contain a trace amount of OFL (0.91 µg/mL) and CIP (1.32 µg/mL).
Furthermore, the chromatograms obtained after DES1-MIR-SPE, DES2-MIR-SPE, DES3-MIR-SPE and
MIR-SPE indicated that the interferences were all eliminated efficiently (Figure 7). On the other
hand, the DES1-MIR-SPE method showed the highest recoveries of OFL (93.4%) and CIP (91.8%).
These results show that the DES1-MIR-based SPE method will be promising for the routine monitoring
of trace OFL and CIP in wastewater samples.

4. Conclusions

A novel water-compatible molecular imprinted resin was synthesized using DES as a green
reaction solvent, resorcinol and melamine, as a double functional hydrophilic monomer and OFL as
a template. Three types of DESs were selected to access the adsorption behavior. DES1 showed the
best performance. Furthermore, DES1-MIR showed the special molecular recognition to the structural
analogues of the template (OFL and CIP) in the aqueous matrices. The eco-friendly DES1-MIR was
applied successfully as an SPE adsorbent for the extraction of OFL and CIP from wastewater and
showed excellent recoveries and purification efficiency.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/5/871/s1,
Table S1: Properties of the adsorbents, Table S2: Calibration equation, linear ranges, LOD and LOQ for the OFL
and CIP with DES1-MIR-SPE method, Table S3: Intra-day and inter-day precision, accuracy and recovery of OLF
and CIP at three different concentrations, Table S4: Comparison of the present method with previously reported
methods, Table S5: Extraction and determination of OLF and CIP in real water sample from local environment
with DES1-MIR-SPE method (n = 3).
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