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Abstract: The impact of various amounts of konjac glucomannan on the structural and
physicochemical properties of gluten proteins/dough at different periods of frozen storage is evaluated
in the present study. As frozen storage time was prolonged, the molecular weight and the free
sulfhydryl content of gluten proteins and the tensile properties of frozen dough all decreased.
The addition of konjac glucomannan reduced the variations in the structural and rheological
properties of gluten proteins/dough. Frozen dough with 2.5% added konjac glucomannan showed the
highest water binding capacity and retarded the migration of water. Scanning electron microscopy
and differential scanning calorimetry results also revealed that adding konjac glucomannan reduced
the cracks and holes in the dough and enhanced its thermal stability. The correlations between
mechanical characteristics and structure parameters further indicated that konjac glucomannan could
not only stabilize the structures of gluten proteins but also bind free water to form more stable
complexes, thereby retaining the rheological and tensile properties of the frozen dough.
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1. Introduction

Frozen dough is increasingly used in making baked food and more Chinese cuisine, such as
sweet dumpling balls, steamed buns, and dumplings [1], because of its advantages in many
perspectives, such as saving time and retail expenses, prolonging the shelf-life of dough and facilitating
standardization and large-scale production [2,3]. In recent years, freezing technology has been
intensively studied and rapidly developed for preserving dough. However, there are several problems
in producing baking food from frozen dough. For instance, the frozen dough often has poor gas
retention, shrunk bread volume, loss of flavor, disintegrated crumb structure, and deterioration
in the texture of final products. The overall quality of frozen dough declined gradually in frozen
storage [4], which is closely related to the formation and change of the three-dimensional viscoelastic
dough network. It depends on the intermolecular crosslinking of wheat gluten proteins and a variety
of factors that can affect the crosslinking. For example, Virginia and Tzia [5] suggested that the
water redistribution in frozen dough became uneven during freeze-thaw cycles, which was likely to
degrade the quality of dough. Temperature fluctuations during storage and transportation could also
decrease the dough’s quality by recrystallization [6]. Therefore, controlling the freezing rate and the
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temperature stability is essential to protect the structure and properties of the gluten network and the
dough’s quality.

Besides optimizing the freezing rate and avoiding temperature change, additives, especially
hydrocolloids, are a practical way to increase the rheological and thermophysical properties of frozen
dough [7]. Hydrocolloids can protect the structure and rheological properties of frozen dough
during freeze-thaw cycles. It can combine with gluten and bound water to form a complex, thereby
reducing the migration of moisture [8]. Hydrocolloids can also decrease water activity because they
compete with proteins and starches to bind water. In addition, Xuan et al. [9] demonstrated that
hydroxypropyl methylcellulose could avoid the recrystallization of water to stabilize the microstructure
and conformation of the gluten network. To protect the structure and properties of frozen dough,
the utilization of hydrocolloids is an effective way to stabilize the quality of frozen dough and its final
foods [10].

Konjac glucomannan (KGM), as a high molecular weight polysaccharide, is extracted from
the tuberous roots of konjac. As a neutral polysaccharide, KGM is composed of a linear chain
of β-1,4-linked D-glucose, and D-mannose residues at a molar ratio of 1:1.6 [11]. Due to its good
rheological properties, KGM is often used as an additive and thickener to improve textural, sensory,
rheological, and microstructural properties of dough products and many other materials [12–14].
As far as hydrocolloids incorporated in frozen dough was concerned, previous studies have reported
carboxymethyl cellulose (CMC), κ-carrageenan, arabic gum, locust bean gum, etc. to improve the
quality of frozen dough. However, to the best of our knowledge, there is little information on the
application of KGM in frozen dough, the effects of KGM on the microstructural and physicochemical
properties of gluten proteins in frozen dough, or its protective mechanism on dough quality.

Therefore, the objective of this study was the impact of KGM on the structural and physicochemical
variation of gluten proteins to probe into the relationship between KGM and gluten proteins in frozen
dough and to explore the mechanism of protective effect of KGM for frozen dough. In particular,
correlations between mechanical characteristics and structure parameters were also determined to gain
more insights about the protective effect of KGM for frozen dough. This study will provide further
evidence for exploring the interactions between hydrocolloids and gluten proteins and, thus, benefit
the production and application of frozen dough.

2. Materials and Methods

2.1. Materials

Wheat flour made by 14.38% protein, 72.19% starch, 0.45% ash, and 12.83% moisture (dry basis)
was supplied by the Henan Wudeli Flour Group Corp, Henan, China. Protein, starch, ash, and moisture
content analyses of wheat flour were performed according to American Association of Cereal Chemists
(AACC) [15]. Konjac glucomannan (KGM)≥98% purity was provided by the Hefei Bomei Biotechnology
Corp, China. All other reagents and chemicals were of analytical purity. Deionized distilled water was
used for all experiments.

2.2. Dough Preparation

Three grams of KGM was mixed with 100 mL of deionized distilled water. The mixture was
swollen for 30 min to form a transparent homogeneous solution. A total of 50 g of wheat flour in a
KGM (0.0%, 0.5%, 1.0%, 1.5%, 2.0%, and 2.5% of wheat flour dry basis) solution and deionized distilled
water were mixed and kneaded for 5 min, while the sample without KGM was used as the control
group. The total amount of deionized distilled water was 55% of the wheat flour at a dry basis. Dough
was covered with plastic wrap in food packaging and fermented for approximately 1 hour until its
size was doubled. The dough was quickly frozen in liquid nitrogen and stored at −18 ◦C for 15, 30,
45, and 60 days, and dough pieces were thawed at 25 ◦C. Then, dough was washed in a 2.0% sodium
chloride solution to prepare gluten proteins and was lyophilized for further analyses.
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2.3. Molecular Weight (Mw) Analysis of Gluten Proteins

Size-exclusion high performance liquid chromatography (SE-HPLC) measurement was carried on
a Shimadzu LC-20AT HPLC system equipped with a RF-20A UV-vis Detector (Tokyo, Japan) according
to the method of Chaudhary et al. [16]. Gluten proteins with different proportions of KGM, added for
different frozen periods, were extracted by adding 50 mg of the freeze-dried gluten protein samples
to 1 mL of an acetic acid solution (500 mM). The insoluble part that accounted for about 20% of the
total gluten protein samples was removed by centrifugation for 10 min at 5000 r/min. The soluble part
of gluten protein sample was filtered through a 0.22 µm PVDF membrane filter and then subjected
to SE-HPLC analysis. A 20 µL gluten protein sample was injected into a size-exclusion column
(Biosep-SEC-S4000, Phenomenex, 300 × 7.8 mm, Torrance, CA, USA). The samples were eluted with an
acetic acid solution (500 mM) at a flow rate of 0.8 mL/min and were detected at 280 nm. A calibration
curve with r2 > 0.9 was obtained by plotting the peak area of the ribonuclease (Mw 1.37 × 105 Da),
ovalbumin (Mw 4.43 × 105 Da), γ-globulin (Mw 1.50 × 105 Da), and bovine thyroglobulin (Mw 6.70 ×
105 Da), all of which were obtained from Sigma Chemical Co. (St. Louis, MO, USA).

2.4. Free Sulfhydryl Content Analysis of Gluten Proteins

The free sulfhydryl group (SHF) content of gluten proteins with different proportions of KGM at
different frozen storage times was determined by following the method described by Beveridge et
al. [17]. Freeze-dried wheat gluten (5 mg) was dissolved in 5 mL of a urea solution (8 mol/L, 1.04%
Tris, 1 mM EDTA, 0.69% Gly, 1.5% SDS, 8 M Urea, pH 8.0) and was centrifuged at 3000 r/min for
10 min. Then, 1 mL of the suspension was mixed with 2 mL of a Tris-Gly solution (1.04% Tris, 1 mM
EDTA, 0.69% Gly, 1.5% SDS) and 200 µL of DTNB reagent (4 mg/mL), and the mixture was shaken
for 30 min at room temperature. The absorbance of each supernatant was 412 nm. To measure the
total sulfhydryl equivalent groups (SHeq), 2 mL of a Tris-Gly solution and 0.02 mL β-mercaptoethanol
were continuously added to 1 mL of supernatant after being centrifuged and shaken for 1 h at room
temperature. Then, 10 mL of 12% trichloroacetic acid was added to precipitate the gluten proteins.
The sediment was washed with 12% trichloroacetic acid and centrifuged three times at 3000 r/min for
10 min. The gluten protein sediment was re-dissolved in 10 mL of a Tris-Gly solution and 0.04 mL of
DTNB reagent. The absorbance was recorded at 412 nm. The SHF and SHeq values were calculated
using the following equation [17]:

SHF (µmoL/g) = 73.53 × A412 × D/C, (1)

where 73.53 = 106/(1.36 × 104) and 1.36 × 104 are molar absorption coefficients of DTNB, A412 is
the absorbance of the sample at 412 nm, D is the dilution factor of the sample, and C is the sample
concentration (mg/mL). In addition, the disulfide bond (SS) content was calculated from SHF and
SHeq [17], as follows:

SS = (SHeq − SHF)/2. (2)

2.5. Secondary Structure Analysis of Gluten Proteins

The study on secondary structure of gluten proteins with different proportions of KGM at
different frozen storage times was operated with Fourier transform infrared (FTIR) spectroscopy.
FTIR spectra were recorded over the wavelength range of 4000 cm−1 to 400 cm−1 using a Nicolet
IS50 FTIR spectrometer (Thermo Nicolet Corp, Madison, WI, USA) equipped with a single-reflection
diamond attenuated total reflection (ATR) crystal and a mercury-cadmium-telluride (MCT) detector. A
total of 1.0 mg of gluten protein sample was mixed with 150 mg KBr powder and compressed into
discs at a force of 5 KN for 30 s. FTIR spectra were recorded with 64 scans and a 4 cm−1 resolution
against the background. The secondary structure of the samples was analyzed by the OMNIC software
package (version 8.0, Thermo Nicolet Corp, Madison, WI, USA) and Origin software (version 9.1).
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2.6. Water Fluidity Analysis of Dough

Adding different amounts of KGM at different frozen storage times (thawed at 25 ◦C), the water
fluidity of dough was measured by low-frequency nuclear magnetic resonance (LF-NMR) to analyze
T2, according to Xuan et al. [9]. The NMR probe (10 mm diameter) was filled with 2.0–3.0 g of
dough and hermetically sealed with a plastic wrap. Transverse relaxation curves were calculated by
a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The resonance frequency was set at 22 Hz,
magnetic strength was at 0.5 T, coil diameter was at 60 mm, magnetic temperature was at 32 ◦C, and the
lengths of the 90◦ and 180◦ pulses were at 14 ms and 35 ms, respectively. For the measurements,
a recycle delay of 1 s was adopted and 8 scans were accumulated to increase the signal-to-noise ratio
(SNR). A T2 distribution curve was calculated by the following equation [9]:

M(t) =

∫
∞

0
F(T) exp (−

t
T
)dT, (3)

where M is a sum of exponential decays of signal amplitude as a function of time (t) and F(T) is the
number density of protons as a function of relaxation time (T).

The CONTIN algorithm from Provencher software (Newmai, SuZhou, China) was used to
transform the transverse relaxation curves with an inverse Laplace transformation to continuous
distributions of T2 values.

2.7. Thermal Stability Analysis of Gluten Proteins

The thermal transition patterns of freeze-dried samples were analyzed by a DSC system (DSC-60
Plus, Shimadzu, Corp, Kyoto, Japan) with a computerized data station (TA-60 WS), according to
Yang et al. [18]. Gluten proteins were freeze-dried and ground through a 120-mesh sieve. The sample,
measuring 3.0–5.0 mg, was sealed into an aluminum pan (S201-52943, Shimadzu, Japan) and equilibrated
at 30 ◦C for 5 min, followed by being heated (up to 250 ◦C) with constant nitrogen-purging at a constant
rate of 5 ◦C/min. A sealed empty aluminum pan was used as a reference. The enthalpy change (∆H)
and peak temperature (Tp) of gluten proteins with different amounts of KGM at different frozen storage
times were determined by the TA-60 Analysis software (version 2.21, Shimadzu Corp, Japan).

2.8. Microstructure of Dough

The microstructures of various dough samples were observed by scanning electron microscopy
(SEM) based on the method of Huang et al. [19]. Freeze-dried dough samples were coated by gold
particles in a sputter coater. Images were taken by a SU-1510 scan electron microscope (Hitachi Corp,
Mito, Japan) with a 5 KV acceleration voltage at a magnification of 500×.

2.9. Rheological Properties of Dough

Rheological property experiments were operated in a controlled-stress HAAKE MARS-III
rheometer (Thermo Scientific Corp, Waltham, Germany), according to the method of Wu et al. [20].
The frozen dough was thawed at room temperature in a 20 mm diameter steel plate, gapped by 1 mm.
A thin film of methyl silicone oil was gently applied at the edge of the steel plate to prevent moisture
loss. A frequency sweep was conducted from 0.1 to 100 rad/s for each sample, using a constant strain
of 1.0% at 25 ◦C. The storage modulus (G′) and loss modulus (G”) were recorded and the loss factor
(tanδ) was reported as G”/G′.

2.10. Tensile Tests of Dough

Dough stored for different frozen periods and thawed at 25 ◦C was studied using samples with
dimensions of 30 × 30 × 30 mm. The tensile test was operated by TA.XT. Plus texture analyzer with a
Kieffer extensibility rig. Strips of dough (Φ1 mm × 50 mm) were mounted in tensile grips at a 5.0 mm/s
pre-test speed, 2.0 mm/s test speed, 5.0 mm/s post-test speed, with 5.0 s test time, 0.05 N trigger force,
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and 75.0 mm distance. The Rk
max (maximum resistance), Ek (extensibility), and Ak (extension area,

estimated by calculating Rk
max
× Ek) and stretch ratio were calculated by Rk

max (maximum resistance)
and Ek (extensibility).

2.11. Statistical Analysis

Statistical data analysis of three independent replicates were performed and the data are expressed
as the mean ± standard deviation values. The results were calculated and graphs were obtained using
Origin software (version 9.1), followed by one-way analysis of variance (ANOVA) at a significance
level of 0.05.

3. Results and Discussion

3.1. Structural Properties of Gluten Proteins

3.1.1. Mw Analysis of Gluten Proteins

Figure 1 shows that gluten proteins were divided into four fractions, which was consistent with
the result of Manu et al. [21]. According to Manu et al. [21], Peaks 1–4 represented high-molecular
weight glutenin polymers (Peak 1, Mw = 3.70 × 105 Da–6.88 × 105 Da ), low-molecular weight glutenin
polymers (Peak 2, Mw = 9.10 × 105 Da–3.70 × 105 Da), gliadins (Peak 3, Mw = 1.60 × 104 Da–9.10 ×
104 Da), and other low-molecular weight peptides or phenolic compounds (Peak 4, Mw < 1.0 × 104

Da), respectively. The Mw and relative percentage of different fractions were calculated and shown in
Table 1. With longer frozen storage times, the retention times of Peak 1 and Peak 2 (Figure 1) for the
frozen samples were negatively delayed and the areas decreased, compared with those of the fresh
sample, which indicated that the Mw represented by Peak 1 and Peak 2 decreased. For samples with
2.5% KGM after being frozen 60 days, the Peak 1 and Peak 2 areas decreased from 29.24% and 51.83%
to 23.24% and 44.39%, respectively. The protein loss might be caused by the depolymerization of gluten
polymeric proteins as a result of ice recrystallization and water redistribution in frozen storage [4].
Zhao et al. [22] further demonstrated that molecular weight ranging from 3.0 × 105 Da–4.0 × 108 Da
decreased while frozen storage time increased under freeze-thaw conditions and the molecular weight
of gluten decreased due to the breakage of intermolecular disulfide bonds between gluten polymers.

However, there was a small change in the retention time of Peak 3 and its area increased
slightly. Peak 4 increased more than Peak 3, indicating that monomeric proteins are evidence of the
depolymerization of gluten polymeric proteins during frozen storage. The damage to gluten polymers
increased for the sample stored for 60 days, surpassing that of other samples.

Added with KGM, Peak 1 and Peak 2 increased from 23.35% and 48.59% to 29.24% and 51.83% for
fresh dough, respectively (Table 1). For each sample with different frozen storage times, Peak 1 and
Peak 2 also increased, indicating that dough samples with KGM were resistant to the depolymerization
effect. Large and medium glutenin polymers were found to make the greatest contribution to dough
properties. Their amount and properties were found to be closely related to the dough strength and
loaf volume [23]. Moreover, adding KGM to wheat flour can primarily affect the textural properties of
hardness and springiness with a reinforcing gluten network [24]. From this perspective, KGM could
inhibit gluten protein depolymerization and maintain the network structure stability.
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Figure 1. Size-exclusion HPLC chromatogram of gluten proteins in frozen dough with different
proportions of KGM added. 15 days frozen storage (A), 30 days frozen storage (B), 45 days frozen
storage (C), and 60 days frozen storage (D).

Table 1. Effect of different proportions of KGM added to the molecular weight of frozen dough.

Storage Time (d) KGM (%)
Protein Molecular Weight

Mw (Da) Peak 1 Area (%) Peak 2 Area (%) Peak 3 Area (%) Peak 4 Area (%)

0

0 1.98 × 105 23.35 ± 0.27 f 48.59 ± 0.37 f 18.52 ± 0.11 a 9.54 ± 0.03 a

0.5 2.10 × 105 25.23 ± 0.09 e 49.56 ± 0.11 e 18.12 ± 0.13 b 7.09 ± 0.04 b

1.0 2.16 × 105 26.13 ± 0.11 d 50.73 ± 0.12 cd 17.62 ± 0.31 c 5.52 ± 0.04 c

1.5 2.18 × 105 27.62 ± 0.08 c 51.08 ± 0.45 bc 17.22 ± 0.04 d 4.08 ± 0.04 d

2.0 2.20 × 105 29.13 ± 0.16 ab 51.20 ± 0.22 b 17.03 ± 0.16 de 2.64 ± 0.03 e

2.5 2.25 × 105 29.24 ± 0.14 a 51.83 ± 0.31 a 16.63 ± 0.03 f 2.30 ± 0.06 f

15

0 1.87 × 105 22.12 ± 0.11 e 45.36 ± 0.06 d 18.94 ± 0.10 d 13.58 ± 0.03 c

0.5 2.05 × 105 22.61 ± 0.17 d 45.61 ± 0.09 c 18.66 ± 0.10 a 12.84 ± 0.15 a

1.0 2.10 × 105 23.17 ± 0.09 d 46.57 ± 0.15 c 18.47 ± 0.06 b 11.79 ± 0.10 b

1.5 2.13 × 105 23.52 ± 0.06 c 47.69 ± 0.13 c 18.36 ± 0.15 b 10.43 ± 0.04 d

2.0 2.16 × 105 24.63 ± 0.03 b 48.70 ± 0.10 b 17.95 ± 0.02 c 8.72 ± 0.06 e

2.5 2.22 × 105 25.39 ± 0.01 a 49.26 ± 0.16 a 17.75 ± 0.06 c 7.60 ± 0.07 f

30

0 1.65 × 105 21.14 ± 0.10 e 44.71 ± 0.13 d 19.29 ± 0.08 e 14.86 ± 0.07 a

0.5 2.00 × 105 21.53 ± 0.04 d 45.07 ± 0.10 a 19.16 ± 0.10 d 14.24 ± 0.04 b

1.0 2.06 × 105 21.83 ± 0.13 c 45.20 ± 0.12 b 18.89 ± 0.17 c 14.08 ± 0.05 c

1.5 2.10 × 105 22.17 ± 0.08 c 45.98 ± 0.09 b 18.89 ± 0.14 b 12.96 ± 0.06 d

2.0 2.11 × 105 23.40 ± 0.07 b 46.74 ± 0.17 c 18.62 ± 0.08 b 11.78 ± 0.09 e

2.5 2.14 × 105 24.94 ± 0.14 a 47.46 ± 0.17 c 18.35 ± 0.05 a 9.26 ± 0.02 f

45

0 1.51 × 105 21.09 ± 0.08 d 41.14 ± 0.01 e 19.93 ± 0.12 f 17.84 ± 0.17 a

0.5 1.84 × 105 21.46 ± 0.04 d 41.36 ± 0.06 d 19.63 ± 0.10 e 16.95 ± 0.01 b

1.0 2.01 × 105 21.17 ± 0.12 c 43.62 ± 0.11 c 19.01 ± 0.04 d 16.22 ± 0.13 c

1.5 2.07 × 105 22.76 ± 0.09 b 44.60 ± 0.16 c 18.99 ± 0.06 c 13.65 ± 0.10 d

2.0 2.08 × 105 22.93 ± 0.05 b 46.56 ± 0.01 b 18.65 ± 0.10 b 11.86 ± 0.01 e

2.5 2.11 × 105 24.58 ± 0.12 a 46.75 ± 0.15 a 18.33 ± 0.12 a 11.34 ± 0.05 f

60

0 1.39 × 105 20.54 ± 0.11 e 41.05 ± 0.10 f 20.06 ± 0.10 f 18.35 ± 0.16 a

0.5 1.75 × 105 20.83 ± 0.05 d 41.80 ± 0.14 e 19.78 ± 0.15 e 17.59 ± 0.10 b

1.0 2.00 × 105 21.46 ± 0.12 c 42.36 ± 0.14 d 19.37 ± 0.19 d 16.81 ± 0.12 c

1.5 2.06 × 105 21.62 ± 0.05 c 42.97 ± 0.19 c 19.03 ± 0.12 c 16.38 ± 0.04 d

2.0 2.06 × 105 22.15 ± 0.42 b 43.50 ± 0.15 b 18.98 ± 0.14 b 15.37 ± 0.10 e

2.5 2.08 × 105 23.24 ± 0.11 a 44.39 ± 0.25 a 18.29 ± 0.18 a 14.08 ± 0.09 f

Data are expressed as the mean value (n = 3) ± standard deviation. Means at the same storage time with different
superscript letters in the same column indicate a significant difference (p < 0.05).
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3.1.2. Secondary Structural Contents of Gluten Proteins

The secondary structure of gluten proteins with different proportions of KGM for different frozen
storage time was studied using the FTIR and spectra, as exhibited in Figure S1.

The amide I (1600–1700 cm−1) band was used to analyze the secondary structure of gluten
proteins due to its high sensitivity and strong intensity, which was attributed to intermolecular
α-helices (1650–1660 cm−1), β-sheet (1612–1640 cm−1), β-turn (1662–1670 cm−1), and random coil
(1642–1648 cm−1) structures [25]. Quantitative estimations of different structure fractions of gluten
proteins are shown in Figure 2. The β-sheet was significantly influenced by the different proportions of
KGM. As the amount of KGM increased, the β-sheet increased from 40.45% to 45.37%. As the frozen
storage time increased, the β-sheet decreased from 40.45% to 39.22%. At the same time, the β-turn
content increased with KGM addition. Although β-sheets and β-turns interconvert during this process,
β-turn increased with the increased frozen storage time, because the depolymerization and structure of
gluten proteins were destroyed by ice crystals. This result was in accordance with the results of the
rheological analysis and changes of the free sulfhydryl group. A significant decrease was observed
in α-helices and the β-turn during frozen storage, while the β-sheet and random coils decreased.
In summary, the freeze-thaw cycle stability and water retention of frozen dough or flour products are
of vital importance to its quality and, thus, frozen dough requires a much stronger gluten network
than ordinary dough.Polymers 2018, 10, x FOR PEER REVIEW  8 of 18 
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Figure 2. Secondary structure changes of gluten proteins with different proportions of KGM added
during frozen storage.

3.1.3. Free Sulfhydryl Content of Gluten Proteins

Disulfide bonds play an important role in maintaining the structural stability of gluten. Glutenin
is a polymer class linked by intra/intermolecular disulfide bonds, while gliadin is a mixture composed
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of single chains with largely intramolecular disulfide bonds [26]. Changes of the free sulfhydryl are an
important indicator of modifications to disulfide bonds. As shown in Figure 3, the free sulfhydryl
increased in all of the frozen samples, along with disulfide bond breakage caused by ice crystallization.
This result is in accordance with the SE-HPLC results and is related to the depolymerization of gluten
polymeric proteins, since smaller glutenin molecules are connected by inter-disulfide bonds to form
polymeric proteins. Therefore, the breakage of inter-disulfide bonds would directly decrease the
polymeric protein content [27]. Additionally, ice crystal formation and water migration were regarded
as the main contributors to this phenomenon.
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Figure 3. Free sulfhydryl content (E) of gluten proteins with different proportions of KGM added
during frozen storage.

Figure 3 shows that the free sulfhydryl increased as the freeze time increased. The free sulfhydryl
of fresh samples was 7.81 µmol/g; while with a frozen time up to 60 days, the free sulfhydryl of
fresh samples increased to 9.65 µmol/g, because ice crystals destroyed the gluten structure during
the freeze-thaw process. Zhao et al. [22] found that high molecular weight gluten proteins were
depolymerized, mainly between 105 Da–109 Da, due to internal gluten proteins disulfide bond
rupture. Freeze-thaw cycles lead to the depolymerization of gluten proteins, which mainly center at
approximately 3 × 105 Da–4 × 108 Da. Additionally, dead yeast releases glutathione, which acts as a
kind of reductant that can directly or indirectly break disulfide bonds between gluten proteins and
prevent CO2 retention, which has impact on the three-dimensional network structure of gluten and the
rheological properties of dough [27].

With KGM, the sulfhydryl decreased for every group. In fresh samples, sulfhydryl decreased
from 7.81 µmol/g to 4.65 µmol/g and the sulfhydryl transformed into a disulfide bond. When the
frozen storage time was extended to 60 days, the sulfhydryl decreased from 9.65 µmol/g to 5.68 µmol/g.
This decrease was larger than that in fresh group because KGM has good water adsorption ability.
Although the freeze-thaw cycle process may produce many ice crystals and the water distribution will
change, the damage to dough can be avoided by adding KGM. Since glutenin is a polymeric protein
formed by the polymerization of multiple subunits through disulfide bonds outside the chain, it can
contribute to the strength and elasticity of dough [28]. Disulfide bonds were protected by KGM and
have influence on dough’s quality, as the result of the T2 relaxation time showed.
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3.2. Interactions Between KGM and Gluten Proteins

3.2.1. T2 distributions of Frozen Dough

The water binding capacity and fluidity plays an important role in food, since they have direct
effects on the rheological properties and stability of the final products [29]. Freezing is a popular
method to process and store food and the distribution of water is often changed during this process,
giving rise to a series of physical and chemical changes that are all related to the properties of dough,
such as protein degeneration and enzymatic activities. Freezing is also deemed to be an irreplaceable
determinant of food rheology. Therefore, it is necessary to study the change of water in food during
frozen processes. The T2 relaxation time is an important parameter of LF-NMR technology, which can
reveal the fluidity of water in complex food systems. The T2 distribution curve is shown in Figure 4.
The values T21, T22, and T23 represent bound water, immobilized water, and free water, respectively [30],
while the peak area proportions of water in frozen dough with different additive amounts of KGM
were calculated and are recorded in Table 2.
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Figure 4. T2 distribution curve of dough with different proportions of KGM added during frozen storage.

The T21 and T22 values significantly increased with the increase of KGM. KGM can combine with
significant amounts of water through hydrogen bonding, molecular dipoles, and macromolecules,
which are hard to move. It was reported that KGM has high water absorbency, near 105.4 g/g
(water/KGM) [31]. After the addition of KGM, intra-granular water in gluten is absorbed by KGM in a
certain spatial structure and reduces water fluidity [32].

With the addition of 2.5% KGM, T21 increased from 9.20% to 10.09% after a frozen storage time of
60 days; T22 increased from 77.65% to 80.96%, and T23 decreased from 13.15% to 8.95%. At the same
frozen storage time and adding the same amount of KGM, the increase in the amplitude of T22 was
larger than that of T21, which demonstrated that immobilized water was the principal water component
of dough and that the combination of gluten and water led to increased tightness. In general, it could
be inferred as KGM weakened the influence of frozen storage treatment on water mobility and it had a
positive effect on dough quality during storage, which led to the status of water shifting from T23 to T22

and T21 in frozen storage. As the frozen storage time increases, ice formation will destroy the structure
of the gluten network, increase free water, and significantly decrease the amount of immobilized water.
For example, for dough samples without KGM and a freeze time from 0 to 60 days, the T21 increased
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from 0.37% to 1.98%, while T22 decreased from 80.05% to 77.65% and T23 increased from 9.19% to
13.15%.

Moreover, reduction of the T22 area reflects decreased water availability in the gluten system,
which reduces gluten strength. The gluten homogeneous structure state was broken for water migration
during frozen storage. By contrast, after the addition of KGM, the mechanical properties of dough
samples were superior to those of control group samples, suggesting that KGM showed better beneficial
effects for inhibiting the change of freezable water and made the water distribution more uniform.
This phenomenon can be explained by thermal stability analysis and is consistent with the resultant
free sulfhydryl content.

Table 2. Effect of different proportions of KGM added on T2 distribution and the thermal parameter of
frozen dough.

Storage Time (d) KGM (%)
T2 Distribution Area (%) Thermal Parameter

T21 T22 T23 Tp (◦C) ∆H/(J/g)

0

0 10.76 ± 0.12 d 80.05 ± 0.56 c 9.19 ± 0.12 a 54.74 ± 2.35 d 114.45 ± 6.54 f

0.5 11.04 ± 0.16 c 81.89 ± 0.35 b 6.47 ± 0.16 b 62.70 ± 1.56 c 123.49 ± 3.31 e

1.0 11.18 ± 0.43 c 81.99 ± 0.45 b 5.83 ± 0.09 c 67.30 ± 1.30 b 129.07 ± 1.33 d

1.5 11.29 ± 0.48 bc 82.80 ± 0.79 b 4.91 ± 0.18 d 67.43 ± 2.13 bc 153.92 ± 4.21 bc

2.0 11.74 ± 0.08 b 84.61 ± 0.35 a 3.65 ± 0.23 e 69.54 ± 1.16 b 156.22 ± 1.64 b

2.5 12.05 ± 0.14 a 85.55 ± 1.79 a 2.40 ± 0.44 f 72.75 ± 1.25 a 160.32 ± 2.35 a

15

0 10.17 ± 0.02 a 78.32 ± 0.06 a 11.51 ± 0.03 a 56.65 ± 1.25 f 112.10 ± 3.56 f

0.5 10.23 ± 0.03 b 81.03 ± 0.43 b 8.74 ± 0.01 b 63.58 ± 2.21 de 119.04 ± 2.54 de

1.0 10.50 ± 0.08 c 81.24 ± 0.03 b 8.26 ± 0.03 c 67.94 ± 2.58 cd 120.47 ± 1.58 cd

1.5 10.68 ± 0.12 cd 81.84 ± 0.06 c 7.48 ± 0.21 d 68.16 ± 2.34 bc 125.93 ± 4.23 bc

2.0 10.73 ± 0.21 cd 82.22 ± 0.43 cd 7.05 ± 0.37 e 69.98 ± 1.24 b 128.70 ± 2.58 ab

2.5 10.91 ± 0.10 cd 82.37 ± 0.21 de 6.72 ± 0.09 f 73.53 ± 1.99 a 130.86 ± 4.54 a

30

0 9.62 ± 0.32 a 78.13 ± 0.21 a 12.25 ± 0.25 a 58.42 ± 2.34 e 106.64 ± 3.45 e

0.5 9.82 ± 0.05 b 80.98 ± 0.21 b 9.20 ± 0.41 b 65.72 ± 2.58 cd 110.24 ± 4.12 cd

1.0 10.36 ± 0.11 c 81.01 ± 0.31 bc 8.63 ± 0.65 cd 70.80 ± 3.16 bc 111.85 ± 3.87 cd

1.5 10.42 ± 0.21 cd 81.54 ± 0.33 bc 8.04 ± 0.22 cd 71.05 ± 2.87 ab 116.41 ± 2.56 c

2.0 10.53 ± 0.11 cd 81.77 ± 0.12 cd 7.70 ± 0.10 e 74.23 ± 3.01 ab 122.04 ± 2.88 ab

2.5 10.83 ± 0.21 cd 81.78 ± 0.44 cde 7.39 ± 0.43 f 76.77 ± 1.58 a 125.93 ± 3.66 a

45

0 9.43 ± 0.28 a 77.96 ± 0.31 a 12.61 ± 0.36 a 59.66 ± 1.05 e 91.40 ± 3.54 ef

0.5 9.63 ± 0.13 b 80.41 ± 0.06 b 9.96 ± 0.22 b 67.38 ± 2.71 cd 94.56 ± 3.68 e

1.0 9.88 ± 0.25 bc 80.96 ± 0.45 c 9.16 ± 0.37 cd 71.21 ± 2.11 cd 104.91 ± 3.44 d

1.5 10.06 ± 0.38 bc 81.12 ± 0.43 d 8.82 ± 0.06 cd 73.48 ± 3.25 bc 110.36 ± 3.25 c

2.0 10.14 ± 0.09 bc 81.32 ± 0.22 de 8.54 ± 0.23 ef 76.02 ± 3.66 ab 116.78 ± 2.58 ab

2.5 10.60 ± 0.23 bcd 81.54 ± 0.56 ef 7.86 ± 0.41 e 79.43 ± 3.54 a 117.23 ± 3.42 a

60

0 9.20 ± 0.01 a 77.65 ± 0.41 a 13.15 ± 0.24 a 62.62 ± 1.22 f 82.78 ± 2.53 ef

0.5 9.46 ± 0.26 b 79.20 ± 0.26 b 11.34 ± 0.21 b 69.02 ± 3.47 de 85.14 ± 2.68 de

1.0 9.50 ± 0.33 bc 80.42 ± 0.22 bc 10.08 ± 0.44 c 73.99 ± 2.55 cd 87.10 ± 2.54 d

1.5 9.91 ± 0.02 bc 80.54 ± 0.11 bc 9.55 ± 0.09 d 75.43 ± 3.68 bc 93.96 ± 3.65 bc

2.0 9.94 ± 0.12 bc 80.88 ± 0.03 d 9.18 ± 0.15 ef 76.28 ± 3.87 ab 98.75 ± 3.87 ab

2.5 10.09 ± 0.26 bc 80.96 ± 0.09 d 8.95 ± 0.22 ef 80.23 ± 2.44 a 104.91 ± 4.57 a

Data are expressed as the mean value (n = 3) ± standard deviation. Means at the same storage time with different
superscript letters in the same column indicate a significant difference (p < 0.05).

3.2.2. Thermal Stability of Frozen Dough

Ice crystals formed in frozen storage can destroy the gluten structure and have a direct impact
on the properties and function of protein. Gluten degeneration is associated with enthalpy changes.
DSC can provide information, such as the effects of molecular interactions on protein denaturation
and processing conditions on protein functional properties. According to the endothermic processes
displayed in the DSC thermogram, information about the structural stability and thermal effects on
protein configuration changes can be determined. Space alterations during thermal denaturation and
protein conformation changes may occur, such as chain stretches and folds, which can cause chemical
group restructuring and thermal deformation due to protein physiological activity changes [33].

According to the DSC spectra (Figure S2), the temperature and peak area corresponding to the
peak point can be used to determine the temperature variability enthalpy of this transformation.
The effect of the protein denaturation temperature on thermal stability and enthalpy changes of
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hydrophobic or hydrophilic protein molecules represent the energy of this reaction and the peak width
explains the collaborative degeneration of molecules. If a change occurs in a very narrow temperature
range, it indicates that the reaction is strongly collaborative. As seen from Table 2, the denaturation
temperature (Tp) of fresh dough samples reached its peak value at a frozen storage time of 60 days.
Without KGM, these values were 54.74 ◦C and 62.62 ◦C, respectively. For each group, Tp increased
with longer frozen storage time, in general agreement with data reported by Wang et al. [34]. The Tp

of the control group and dough with KGM increased by 7.88 ◦C and 10.48 ◦C, respectively, after 60
days in frozen storage. High Tp values are expected in proteins with a high proportion of hydrophobic
residues involved in the denaturation mechanism [2]. Therefore, the high Tp values obtained in this
study were probably due to the high hydrophobicity of the gluten fractions.

With different proportions of KGM, for all samples, the enthalpy (∆H) decreased with the frozen
storage time, suggesting that gluten proteins underwent progressive denaturation during freezing
and subsequent frozen storage involving a disruption of the ordered structure. The disrupted ordered
structures of gluten proteins can be interpreted as deterioration, which could weaken the properties of
the final baked products [2]. This result was in accordance with the Mw, disulfide bond, and secondary
structure changes of gluten proteins and these thermal stability results can explain the deterioration of
the rheological and tensile properties.

3.2.3. Microstructure of Frozen Dough

The effect of the proportion of KGM added on the microstructure of frozen dough is shown in
Figure 5. Significant differences in the microstructure among different dough samples were observed
in these images. Figure 5A shows that the control group has the tightest and most uniform network.
However, this continuous and uniform gluten network (Figure 5B–F) was destroyed by freezing.
The gluten system appeared to be less continuous, more disrupted, and more separated from the
starch granules. The most obvious sample is shown in Figure 5E, where more holes in the dough were
apparent with no KGM addition and the frozen storage time was up to 60 days. This phenomenon
was in agreement with trends observed by Luo et al. [35]. These image results were consistent with
the results from the examination of the secondary structure and thermal properties obtained in this
study, which implied the formation of a weaker gluten network with an increasing frozen storage
time. This led to a deterioration of final products’ quality, due to conformational changes in gluten.
Figure 5B–F shows dough with KGM from 0.5% to 2.5% after 60 days of frozen storage. With 0.5%
KGM, the gluten network increases slowly in aggregation. Granules are embedded in the gluten
network of dough with KGM, especially dough with a high proportion of KGM. When KGM is added,
smaller ice crystals formed during freezing, with less destruction of gluten. Since water was distributed
more uniformly with high KGM, according to the results of LF-NMR, the association of starch and
gluten protein was closer, improving the quality of the frozen dough.

3.3. Rheological and Tensile Properties of Frozen Dough

3.3.1. Rheological Properties of Frozen Dough

Analyses of the rheological and tensile properties of frozen dough with different proportions
of KGM were conducted by using a dynamic rheometer and texture analyzer. Figure 6 shows the
tanδ values for various frozen dough, calculated by the loss modulus (G”) and storage modulus (G′)
(Figure S3) and used to describe the content and degree of high polymer polymerization in a dough
system [36]. Similar trends were observed for each dough sample and samples with tanδ values less
than 1 exhibited weak gel dynamic rheological properties. As the proportion of KGM added increased,
tanδ decreased, tanδ decreased, and a higher content and polymerization degree were found. This result
was inconsistent with Angioloni et al. [37], who reported the assessment of dough viscoelastic behavior
with no yeast or additives, namely, that tanδ increased with storage time.
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Figure 6. Effect of different proportions of KGM added on tanδ of frozen dough. 0 days frozen storage
(A), 15 days frozen storage (B), 30 days frozen storage (C), 45 days frozen storage (D), 60 days frozen
storage (E).

With the increased addition of KGM, tanδ decreased, indicating that KGM could protect gluten
proteins and prohibit mechanical damage to the gluten network caused by freezing. Ribotta et al. [38]
showed that gum guar could avoid the effect of frozen dough storage on the dynamic rheological
parameters and improve the volume and texture of bread obtained from non-frozen and frozen dough.
KGM and gum guar are polysaccharides used in in the baking industry, primarily to enhance the
quality of the finished product. After 60 days with the addition of 2.5% KGM, samples had the lowest
tanδ value in the control group without KGM addition, demonstrating that KGM has thickening,
gelatinization, and other good properties and, as a result, that KGM solutions will become sols with
the characteristics of pseudoplastic fluids [39]. It can thus be concluded that KGM slows the speed of
deterioration of frozen dough.
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From Figure 6A–E, the tanδ value of dough samples with 2.5% KGM added with freezing was the
lowest among samples, with a storage time of up to 60 days. Samples without KGM showed values
greater than 0.8, while the tanδ value of fresh samples was approximately 0.6. With longer freeze times,
tanδ increased. This phenomenon was mainly caused by ice crystals in the dough, which destroyed
the gluten structure during freeze-thaw cycles [40,41]. When the temperature increased, ice crystals
were dissolved and dispersed through the gap between gluten proteins in the dough system, leading
to increased gluten mobility. When the temperature dropped, ice crystals grew more frequently and
their size increased, followed by recrystallization. In addition, the recrystallization degree directly
depended on the temperature fluctuation. A greater temperature fluctuation [42] was correlated with
the degree of recrystallization, which encouraged an increase in the size of ice crystal particles and
rapidly decreased their quantity. In addition, ice crystal growth induced water redistribution, leading
to reduced gluten cross-linking and the destruction of the frozen food structure. The thawed portion
lost elasticity and influenced the final quality of flour products. Indeed, other authors have shown
other effects of freezing, such as modification of starch properties and changes in proteins, which also
influence the rheological properties of frozen dough [28].

3.3.2. Tensile Properties of Frozen Dough

The tensile maximum resistance (Rk
max), extensibility (Ek), extension area (Ak), and stretch ratio

are the four main parameters that were significantly influenced by the proportion of KGM and frozen
storage time and are exhibited in Figure 7. In fresh dough samples, when the storage time was
extended to 60 days, the maximum resistance, extensibility, and extension area decreased by 37.24%,
5.84%, and 25.22%, respectively, and the stretch ratio slightly decreased. While three variables were
increased at each storage time with KGM, especially at 0 day, when the storage time reached 60 days,
three variables increased relatively less than those in fresh samples, and this phenomenon was affected
by the structural components of the dough and protein and may have also been drastically altered
by the recrystallization process. Yi and Kerr [43] showed that the bread quality from frozen dough
depended on the rate of freezing, temperature, and length of time stored. Faster freezing and lower
storage temperatures promote less damage to the gluten network, which could help retain the elastic
properties of the dough. Longer frozen storage periods damaged both the gluten structure and yeast
viability. This result was in accordance with the mechanical analyses. As a polysaccharide, KGM has
good intrinsic viscosity and forms a gel with physical agglomeration. With 2.5% KGM, the dough’s
tensile maximum resistance, extensibility, and extension area reached 64.22%, 21.43%, and 114.15%,
respectively. Thus, the polysaccharide could not only restrain the reduction of the viscoelasticity of
frozen dough, but also protect its structure [2,44].

3.4. Correlations Between Mechanical Characteristics and Structure Parameters

To further reveal the interaction mechanism of KGM and the gluten network in frozen dough,
the study measured the relations between the mechanical characteristics and structure parameters.
First, we tested how the structural parameters (SHF, SS, β-sheet, T22, T23, ∆H, and Tp) related with the
results of the mechanical properties (maximum resistance, extensibility, extension area, stretch ratio),
which were obtained by experimental analyses. The correlation coefficients between the mechanical
characteristics and structural parameters are shown in Table 3 (r2 > 0.6). Based on the mechanical
characteristics, the parameters of maximum resistance, extensibility, extension area, and stretch ratio
were linearly correlated with all of the structure parameters. Disulfide bonds play an important role in
the formation of the three-dimensional structure of protein molecules. The SHF content was reduced
with the increasing amount of KGM added, while SS increased, improving the rheological and tensile
properties of frozen dough. The free water also showed greater liquidity, which may cause dough
elasticity to decrease, thus affecting rheological and tensile properties.
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Figure 7. Tensile properties of frozen dough with different proportions of KGM added for 0 days
frozen storage (A); 15 days frozen storage (B); 30 days frozen storage (C); 45 days frozen storage (D);
and 60 days frozen storage (E).

Table 3. The correlations between tensile characteristics and structure parameters.

Mw SHF SS β-Sheet T22 T23 4H Tp

Rk
max (g) 0.899 ** −0.986 ** 0.996 ** 0.990 ** 0.925 ** −0.951 ** 0.960 ** 0.962 **

Ek (mm) 0.785 ** −0.913 ** 0.970 ** 0.951 ** 0.825 ** −0.862 ** 0.895 ** 0.973 **
Ak (g.mm) 0.855 ** −0.966 ** 0.990 ** 0.980 ** 0.883 ** −0.919 ** 0.923 ** 0.923 **

Stretch ratio 0.659 ** −0.914 ** 0.947 ** 0.917 * 0.784 ** −0.812 ** 0.811 ** 0.854 **

** Correlation is significant at a level of 0.01 (2-tailed); * Correlation is significant at a level of 0.05 (2-tailed).

All of the tensile properties, including the maximum resistance, extensibility, extension area,
and stretch ratio, were linearly correlated with the structural parameters. It confirmed that KGM
could improve the quality of frozen dough by converting free sulfhydryl bonds to disulfide bonds
and increasing the β-sheet. The main factors, which can maintain the structural stability of gluten
proteins, are hydrogen bonds, disulfide bonds, hydrophobic interaction, and covalent bonds. Disulfide
bonds play an important role in maintaining the secondary structure. Moreover, enthalpy changes
reflected the hydrophobicity and hydrophilicity of gluten protein molecules and the aggregation
of protein molecules. Table 3 shows that the tensile properties had a close relationship with the
enthalpy changes and Tp. Therefore, KGM improved the formation of disulfide bonds and the β-sheet
and enhanced the thermal stability of the system, leading to greater stability and crosslinking of the
gluten network. Bound water also affected the tensile properties remarkably. Damages caused to
gluten proteins by ice crystals may be the main reason for the deterioration of frozen dough or flour
products. Kim et al. [2] found that ice crystals weakened the gluten network and extended the wake
time of dough. Wang et al. [21] discovered that glutenin macropolymer depolymerization occurred
during the frozen storage and led to major variations of free sulfhydryl. Comprehensive analysis and
judgment showed that the primary reason for the degradation of the frozen dough quality was ice
crystal formation and recrystallization, while control of ice crystal formation and recrystallization can
maintain and enhance the quality of dough. During the formation of a gluten network, the addition of
KGM could increase the content of weakly bound water and reduce the content of free water. Therefore,
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with the addition of KGM, the quality of frozen dough properties was improved and approached or
reached the level of traditional flour products.

4. Conclusions

The protective effect of various amounts of KGM on the structural and physicochemical variations
of gluten proteins/dough at different periods of frozen storage is evaluated in the present study.
With the increase of frozen time, the Mw and the free sulfhydryl content of gluten proteins and the
Rk

max, Ek, and Ak of frozen dough decreased, whereas the β-sheet and random coil contents of gluten
proteins and the tanδ of frozen dough increased, with or without KGM addition. The addition of
KGM could alleviate the variations of structural properties of gluten proteins and the alterations of
rheological and tensile properties of frozen dough. Additionally, KGM interacted with gluten proteins
and bound water in their structures, as indicated in the T2 distribution, SEM, and DSC results and
the frozen dough with 2.5% KGM added showed the strongest water binding capacity, showed the
fewest cracks and holes caused by ice crystals, and had the highest thermal stability. The correlations
between mechanical characteristics and structure parameters further indicated that KGM could not
only stabilize the structures of gluten proteins, but also bound free water to form a more stable complex
and avoid the recrystallization of water, thereby protecting the variations in the rheological and tensile
properties of frozen dough. Therefore, it can be inferred that the addition of KGM in frozen dough
may make the final products obtain acceptable texture and sensory characteristics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/5/794/s1,
Figure S1: FTIR spectra of gluten samples with different proportions of KGM added on frozen dough, Figure S2:
DSC thermograms of gluten samples with different proportions of KGM added on frozen dough, Figure S3:
Rheological properties of frozen dough with different KGM added. G′ (A) and G” (B) for frozen dough without
KGM added; G′ (C) and G” (D) for frozen dough with 0.5% KGM added; G′ (E) and G” (F) for frozen dough with
1.0% KGM added; G′ (G) and G” (H) for frozen dough with 1.5% KGM added; G′ (I) and G” (J) for frozen dough
with 2.0% KGM added; G′ (K) and G” (L) for frozen dough with 2.5% KGM added.
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