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Abstract: Control of the phase structure evolution in flowing immiscible polymer blends during their
mixing and processing is fundamental for tailoring of their performance. This review summarizes
present state of understanding and predictability of the phase structure evolution in flowing immiscible
polymer blends with dispersed structure. Results of the studies of the droplet breakup in flow,
important for determination of the droplet breakup frequency and of the size distribution of the
daughter droplets, are reviewed. Theories of the flow-induced coalescence providing equations for
collision efficiency are discussed. Approximate analytic expressions reliably describing dependence
of the collision efficiency on system parameters are presented. Available theories describing the
competition between the droplet breakup and coalescence in flow are summarized and approximations
used in their derivation are discussed. Problems with applicability of available theories on prediction
of the droplet size evolution during mixing and processing of immiscible polymer blends, which
have not been broadly discussed so far, are addressed.
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1. Introduction

End-use properties of immiscible polymer blends are strongly affected by their phase structure,
which is formed during their preparation and processing. Most polymer blends are prepared by
melt mixing. Therefore, a reliable description of the phase structure evolution in immiscible polymer
blends during their melt mixing is a necessary condition for tailoring their properties. However,
description of the phase structure evolution is not an easy task; it can hardly lead to correct quantitative
prediction of the blend morphology at the end of mixing. Flow field in mixing devices is complex
and position-dependent even for the steady flow of homogeneous materials. At the present state
of the art, it is impossible to combine a realistic description of this flow field with a description of
microrheological events controlling the phase structure evolution. Therefore, real flow fields in mixing
devices have to be replaced by simplified models.

An important group of polymer blends are blends with droplets in matrix morphology (e.g.,
plastics with impact strength enhanced by the addition of elastomers). For this type of blends,
micro-rheological events controlling the size of dispersed droplets are qualitatively understood. It is
commonly accepted that the size of dispersed droplets in flow is controlled by the competition between
their breakup and coalescence [1–4]. Steady phase structure, i.e., time-independent droplet size
distribution, is achieved after long enough steady flow of the blend when the blend components
degradation is avoided. It relates to long enough mixing of a blend with properly stabilized components
in batch mixers. Steady droplet size is usually not achieved during mixing in extruders and time
evolution of the droplet size must be considered in this case.

Polymers 2019, 11, 761; doi:10.3390/polym11050761 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-1882-2024
http://dx.doi.org/10.3390/polym11050761
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/11/5/761?type=check_update&version=2


Polymers 2019, 11, 761 2 of 31

For a discrete model of a system (droplet volume is a product of an integer and elementary volume
V1), the following Equation describes change in the number of droplets of volume kV1, nk with time
t [2]:

dnk
dt

=
1
2

∑
i+ j=k

C(i, j)nin j − F(k)nk −
∑
j=1

C(k, j)nkn j +
∑

j=k+1

ω(k, j)n f ( j)F( j)n j, (1)

where C(i, j) is coagulation kernel, F(i) is overall breakup frequency, nf(i) is number of fragments
formed at breakup of a droplet of volume iV1, and ω(i, j) is the probability that a fragment formed
by the breakup of a droplet of volume jV1 will have volume iV1. Generally, C(i, j) should reflect
the effect of further droplets on coalescence and terms describing simultaneous collisions of larger
number of droplets should be added to Equation (1). Integro-differential equation, analogical to
Equation (1), substitutes the set of equations for individual nk if continuous changes in droplet volumes
are assumed. The left-hand side of Equation (1) is equal to zero for the steady state because the droplet
size distribution is time-independent.

Functions C, F, nf, and ω are needed for solution of the set of Equation (1) or the relating
integro-differential equation. Description of the breakup and coalescence of viscoelastic droplets in a
viscoelastic matrix in complex flow fields is an extremely difficult task. Therefore, various approximate
approaches to the description of the droplet breakup, coalescence and competition between them
have been developed. Theoretical and experimental results of the studies of these events have been
summarized in a number of reviews [1–9].

The aim of this paper is to present theories of the droplet breakup, coalescence, and the competition
between them which can be utilized for understanding and evaluation of the phase structure formation
in polymer blends. The further aim is a discussion of the plausibility of available approximate theories
for the prediction of the droplet size formed by mixing and processing of polymer blends.

2. Droplet Breakup

2.1. Critical Capillary Number

Deformation and breakup of droplets in flow have been an object of many theoretical and
experimental studies, which cannot be all cited here. Most conclusive results have been obtained
for Newtonian droplets in a Newtonian matrix in simple shear and extensional flows. Taylor [10]
showed that the droplet deformation was controlled by the competition between the flow stress and
the interfacial stress, equal to the Laplace pressure. For a spherical droplet, Laplace pressure is equal to
2σ/R, where σ is interfacial tension and R is droplet radius. Therefore, the droplet deformation can be
expressed as a function of dimensionless capillary number Ca which is for shear flow defined as:

Ca =
ηm

.
γR
σ

, (2)

where ηm is the viscosity of the matrix and
.
γ is the shear rate. For other flow fields, Ca can be defined

analogically to Equation (2), using the relevant component of the rate of deformation tensor. The most
important parameters characterizing the droplet breakup are the critical capillary number, Cac, i.e.,
the lowest Ca at which the breakup can occur, the breakup time tB, i.e., time necessary for droplet
deformation from spherical shape to breakup, and the number and size of the formed droplet fragments.
Generally, several types of the droplet breakup have been detected [3–5]. A decision, which of them is
most relevant for mixing, processing, or measurements of rheological properties of a certain system,
is not easy.

It has been found that Cac for Newtonian systems is a function of the ratio p of viscosities of the
dispersed phase, ηd, and matrix, ηm, only [10–13]. Results of theoretical [10–13] and experimental
studies [10,14–18] lead to the conclusion that the dependences of Cac on p for shear and extensional
flows differ substantially. For shear flow, Cac has a minimum for 0.1 < p < 1, it steeply increases with
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increasing p for p > 1, and goes to infinity at about p = 4. For p < 0.1, Cac somewhat increases with
decreasing p. In extensional flow, a minimum for Cac was observed at about p = 1. A very slight increase
in Cac with increasing or decreasing p was observed for p > 1 or p < 1, respectively. The minimum value
of Cac is substantially larger for shear than for extensional flow. The empirical equation, based on the
results of experimental studies [10,14–18], for Cac as a function of p was proposed for shear flow [19] is:

log Cac = −0.506− 0.0995 log p + 0.124(log p)2
−

0.115
log p− log4.08

. (3)

Two empirical equations can be found for extensional flows. Utracki and Shi proposed [6]:

log Cac = −0.64853− 0.02442 log p + 0.02221(log p)2
−

0.00056
log p− 0.00645

. (4a)

Peters et al. [20] used:
log Cac = 0.0331(log p− 0.5)2

− 0.699. (4b)

Equations (3) and (4) are frequently used in discussions of experimental data. It should be
mentioned that Equation (3) is plausible for p < 4 only. Equation (4a) has a singularity for log p =

0.00645 and, therefore, it is not applicable for p slightly above 1. Equation (4b), although less
frequently used than Equation (4a), does not contain a singularity and seems to be more convenient.
The dependence of Cac on p described by Equation (3) relates to the breakup to two principal daughter
droplets, possibly with odd numbers of small satellite droplets. For p << 1, the “tip streaming”
mechanism is operative, where very small droplets break off the pointed ends of deformed original
droplets [14,21]. Cac for tip streaming is independent of p and is equal to the minimum Cac for the
breakup of the main droplet.

For polymer blends, Cac is a function of parameters of elasticity of the droplets and matrix besides
p. Moreover, ηd and ηm are functions of the shear rate. Van Oene proposed to consider the effect of
elasticity of the blend components on the phase structure evolution by substitution of equilibrium
interfacial tension σ with its effective value σef, defined as [22]:

σe f =
1
6

R(N1,d −N1,m), (5)

where R is the droplet radius and N1,d and N1,m are the first-normal stress differences of the droplets
and matrix, respectively. A further concept of description of the effect of elasticity of the system
components on droplet breakup is based on studies of Sundararaj et al. [4,23,24]. The concept is
based on the assumption that the deforming forces can be expressed as ηm

.
γ + 2G’m, where G’m is the

storage modulus of the matrix. The deformation-resisting force is equal to σ/R + 2G’d, where G’d is the
storage modulus of the dispersed phase. The critical droplet radius for breakup, Rc, is given by the
dynamic equilibrium between the deforming and deformation-resisting forces. Therefore, Rc is given
by the equation:

Rc =
σ

ηm
.
γ− 2(G′d −G′m)

. (6)

The use of effective interfacial tension or the above concept of the dynamic equilibrium between
the deforming and deformation-resisting forces for viscoelastic systems leads to the same qualitative
conclusion: Cac increases with N1,d (G’d) but decreases with increasing N1,m (G’m) of the matrix with
respect to the related Newtonian system.

Results of experimental studies of the effect of elasticity of the blend components on droplet
breakup are summarized in [4]. Model studies have frequently been focused on blends containing
Boger fluids where viscosity of the components is independent of the shear rate. Results of substantial
part of experimental studies [23–34] are in qualitative agreement with the conclusions following from
the above theoretical considerations. They show that the matrix elasticity enhances droplet deformation,
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causing the droplet breakup at lower Ca. The elasticity of droplets hinders their deformation, causing
their breakup at higher Ca. On the other hand, there are some studies with results which are not in
agreement with the above statements. Milliken and Leal [35] found that viscoelastic droplets showed
greater deformation than Newtonian ones with equivalent p in a Newtonian matrix fluid under
two-dimensional elongational flow at given Ca. Utracki and Shi [6] reported that droplet elasticity
reduced its deformation for p < 0.5 but enhanced it for p > 0.5. Sibillo et al. [36] found that the breakup
of a Newtonian droplet was hindered by the matrix elasticity in shear flow for p = 2; 0.6 and 0.04.
This result is supported also by results of Flummerfelt [37] and Guido et al. [38]. Verhulst et al. [39]
found that matrix elasticity reduced steady deformation and promoted the orientation of a Newtonian
droplet in the shear flow. Generally, elasticity of droplets and matrix affects the shape of deformed
droplets and type of the breakup mechanism [4,23,32,40]. A discrepancy among experimental results
obtained so far indicates that interrelations between elastic properties and p can affect mechanism of
the droplet breakup and, possibly, also Cac.

It should be mentioned that the determination of p is not unambiguous for blends with other than
Newtonian and/or Boger fluid components. Viscosity of the blend components, which reflects their
structure in the flowing blend, should be considered. Therefore, their viscosity at a constant shear
stress, equal to the average shear stress in a blend, seems to be most convenient for the calculation of
p. The reason is that the stress is continuous at the interface of blend components in contrast to the
rate of deformation. So far, the effect of other droplets on a droplet breakup has been studied quite
rarely. Choi and Schowalter [41] extended Cox’s theory [12] to describe the droplet deformation in
moderately concentrated emulsions of Newtonian liquids. They found a larger deformation of droplets
due to an increase in viscosity of the emulsion above the viscosity of the matrix. Jansen et al. [42]
proposed to replace viscosity of the matrix by viscosity of the emulsion in the definition of p and Ca.
This mean-field concept satisfactorily explained experimental results but slightly overpredicted the
stress at which breakup occurred. The mean field concept is used also in other studies of the phase
structure evolution [43,44]. However, it should be mentioned that calculation of the blend viscosity
using equation for emulsions is not generally approved due to a strong effect of the slip at the interface
on the viscosity in many polymer blends [45].

2.2. Breakup Mechanisms

Besides Cac, the breakup mechanism and its quantitative characteristics, i.e., the breakup time and
number and size distribution of daughter droplets formed by the breakup, are necessary for solution
of Equation (1). Two droplet mechanisms: stepwise (repeated breakup of a droplet into two halves)
and transient (deformation of a droplet into a long slender filament followed by its breakup into a line
of small daughter droplets) are considered as the basic ones. It is assumed that the stepwise breakup
mechanism is operative for Ca not much larger than Cac and the transient one for Ca >> Cac [6]. Other
breakup mechanisms, shown in Figure 1 and briefly discussed below, were found experimentally.

The description of the stepwise mechanism of breakup of Newtonian droplets in a Newtonian
matrix is based on the theories of Taylor [10] and his followers [11–13]. Taylor [10] proposed that
breakup appears when the droplet deformation, D, achieves the value 0.5. D is defined as:

D =
L− B
L + B

, (7)

where L and B are the length and width of deformed droplets, respectively. D can be calculated from
the theories describing droplet deformation [10–13]. For a system without coalescence where breakup
into two halves without small satellite droplets is operative, steady droplet radii should lie in the
interval (Rc/21/3, Rc) where Rc for the shear flow is defined by:

Rc =
σCac

ηm
.
γ

. (8)
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It follows from Equation (8) that the dependence of steady droplet size on system parameters is
controlled by the related dependence of Cac.
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A further parameter that should be known is the breakup time of a droplet, tB. It is the time needed
for the deformation of a droplet from its initial spherical shape above the critical D and following
droplet breakup. Experimental determination of tB is somewhat more difficult than of Cac. Cox [12,46]
derived the following expression for time dependent D in steeply starting plane hyperbolic flow with
velocity v = (

.
γhx, −

.
γhy, 0):

D(t) = 2Cah
19p + 16
16p + 16

[
1− exp

{
−

20
19pCah

.
γht

}]
(9)

with:

Cah =
ηmR

.
γh
σ

. (10)

Using Taylor’s assumption that the droplet breakup appears at D = 0.5, the equation below follows
from Equation (9) for tB:

tB = −
19pCah

20
.
γh

ln
(
1−

1
4Cah

16p + 16
19p + 16

)
. (11)
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For uniaxial extensional flow with v = (−(
.
ε/2)x, −(

.
ε/2)y,

.
εz) [46]:

D(t) =
3Cae

2
19p + 16
16p + 16

[
1− exp

{
−

20
19pCae

.
εt

}]
(12)

with:

Cae =
ηmR

.
ε

σ
, (13)

tB = −
19pCae

20
.
ε

ln
(
1−

1
3Cae

16p + 16
19p + 16

)
. (14)

It follows from Equations (11) and (14) that tB for planar hyperbolic and uniaxial extensional flows
decreases with increasing related capillary number and deformation rate. These equations also define
Cac by the condition that argument of logarithm is 0 for Cah or Cae is equal to Cac.

In contrast to the plane hyperbolic and uniaxial extensional flows, D(t) is a periodic function of time
with damping amplitude for shear flow according to Cox first order perturbation theory [12]. Theories
considering the first order corrections to the spherical shape of droplets only fail to predict the droplet
breakup in shear flow for systems with 0.1 < p < 3.6, determined experimentally. The second-order
theory of Barthès–Biesel and Acrivos [13] yields to a breakup criterion but does not provide tB.

Experimental data summarized by Grace [14] for shear flow show that reduced breakup time,
defined as tBσ/(Rcηm), is proportional to p (see Figure 2) and decreases with Ca/Cac. It was also found
that the droplet draw ratio at breakup, LB/2R, increased with Ca/Cac and grew with decreasing p for p < 1.
The number of droplet fragments after its breakup increases with Ca/Cac. Experimentally-determined
dependence of the reduced breakup time for irrotational flows (extensional and plane hyperbolic) on p
is similar to that for shear flow [14].
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Cristini et al. [47] studied the droplet breakup in an impulsively started shear flow using a
combination of numerical simulations and experiment. They found that the reduce breakup time
scaled as:

tB
.
γ ∝

( R
Rc
− 1

)−1/2
(15a)
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for R/Rc > 1 (see Figure 3). Fortelný and Jůza [48] proposed the following equation for
.
γtB using

discussion in the Section VI in [47]:

.
γtB = (1 + p)

 k0

(R∗ − 1)1/2
+ k1(R∗ − 1)1/2

, (15b)

where R∗ is reduced droplet radius, i.e., the ratio R/Rc, and k0 and k1 are dimensionless parameters.
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The results of simulation and experimental studies show that the size of daughter droplets
increases with the radius of parents droplets, R0, till about R0/Rc = 1.4. After that, the radii of daughter
droplets are independent of R0 and scaled with Rc. Unfortunately, the graph of the dependence of the
radius of daughter droplet on R/Rc − 1 (Figure 7 in [47]) shows a certain variance and construction
of the dependence of the number of daughter droplets on R/Rc − 1 is not easy. It was also found
that the size of satellite droplets scaled with Rc. Three size classes of satellite droplets were found
experimentally: (1) 0.4 < R/Rc < 0.8, (2) 0.1 < R/Rc < 0.3, and (3) R/Rc < 0.1.

For R/Rc >> 1, divergence of tB
.
γ with R/Rc was found [47,49]. However, different powers of

R/Rc were found by Van Puyvelde et al. [49] and Cristini et al. [47]. For R/Rc >> 1, the droplets in
fact disintegrate by the Tomotika mechanism [50]. The description of the breakup is based on the
assumption that a droplet is almost affinely deformed into a long, slender filament under this condition.
When the radius of the filament decreases to the value for which the flow field stress and the interfacial
stress attain the same order of magnitude, small disturbances at the interface of the filament grow
and finally result in the breakup of the filament into a chain of small droplets (see the second row in
Figure 1). The growth of disturbances on a Newtonian thread in a quiescent Newtonian continuous
phase was described by Tomotika [50]. His theory was generalized by Palierne and Lequeux [51] to a
viscoelastic thread in a quiescent viscoelastic continuous phase.
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It was found that distortions with a wavelength λ greater than the initial circumference of the
cylinder would grow exponentially with time [1,2,6,50]:

α(t) = α0eqt, (16)

where α(t) is distortion amplitude at time t, α0 is an initial distortion amplitude, and q is the growth
rate. At the beginning, small amplitudes of all wavelengths are present. For a certain value of p, one
disturbance with dominant wavelength, λm, grows most rapidly and causes disintegration of the
cylinder. For the breakup time, tB, a Newtonian cylinder with initial radius R0 in quiescent Newtonian
matrix with viscosity ηm, the following equation was derived [50,51]:

tB =
2ηmR0

σΨ
ln

0.82R0

α0
, (17)

where σ is interfacial tension and Ψ(λ, p) is a decreasing function of p and can be determined from
equations in [50,51] or from graphs presented in [7]. α0 was estimated assuming that it is caused by
temperature fluctuations due to Brownian motion [52]. However, experimental data better match
the order of magnitude of larger α0, and α0 is mostly considered as an adjustable parameter [7].
Equation (17) shows that the breakup time increases with ηm, p, and R0, and decreases with σ.
Experimental studies confirmed that Tomotika’s theory describes Newtonian systems satisfactorily,
at least for small and moderate α [7]. The effect of the elastic properties of a thread and matrix is
discussed in [8]. An increase in relaxation times of the matrix and thread was found to enhance the rate
of growth instability. Experimental results for some systems with viscoelastic components agree quite
well with predictions of Tomotika’s theory [7]. For others, especially polymer solutions, differences
from sinusoidal disturbances were found [7].

The breakup of an extending liquid cylinder immersed in another flowing immiscible liquid was
analyzed in several papers [8,53,54]. The results are summarized in [7]. The cylinder is continuously
stretched in flowing matrix. It was shown [54] that the relevant parameter of stretching is the
orientation-dependent stretching rate

.
ε(=E:mm, i.e., the scalar product of the rate of strain tensor E and

of the dyadic product of the orientation vectors m). Due to the stretching of the thread, the wavelength
of a disturbance and the thread radius change as:

λ = λ0e
.
εt, (18)

R = R0e−
.
εt/2, (19)

where λ0 is the value of λ at t = 0. Evolution of α can be found by solution of the balance equation
of mass and motion of an elongated thread with Newtonian behavior and prescribed boundary
conditions [7]. The following equation was derived for the amplitude of a disturbance:

ln
α
α0

=

x∫
x0

 −x1/3
0 (1 + x2)

3x4/3R0ηmε/σ
Φ(x, p) +

p− 1
x

Φ(x, p) +
1
3x

dx, (20)

where x = 2πR/λ and x0 = 2πR0/λ0. The Φ(x, p) and Φ(x, p) functions are defined in [7] or [53].
According to Equation (20), α is damped at first, then it grows for a while, and finally continues to
be damped. During the first damping stage, the amplitude remains equal to α0 because it cannot
damp below its initial “noise” level. The second stage starts at time ts, relating to a local minimum
of Equation (20). The value of α at t > ts can be obtained by integration of Equation (20) from x
corresponding to ts with the condition α(ts) = α0. In the third stage, the amplitude damps again, but in
reality, it cannot decrease below α0. The breakup occurs when α(t) = R(t). A more detailed discussion
of the droplet breakup by Tomotika’s mechanism in flow can be found in [7]. The breakup time of the
elongated thread is a sum of ts and of time, tg, needed for the growth of α to its critical value. It should
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be mentioned that the time needed for deformation of a drop into an elongated thread should be added
to the breakup time of the thread if the whole time from the start of system deformation to the breakup
is considered. For this case, the following relation was proposed by Van Puyvelde et al. [49]:

tB ∝
.
γ
−1Ca2/3. (21)

A comparison of the results for an elongated thread immersed in a quiescent and a flowing
immiscible liquid leads to the conclusion that the breakup time increases and the size of fragments
decreases in stretching flow with respect to the quiescent state [7]. For flow with constant

.
ε (various

types of elongational flows), the ratio of the radius of formed droplets, Rf, to α0 decreases with
increasing p and ηm

.
εα0/σ. For values of ηm

.
εα0/σ not too large, the relation Rf ∝ (ηmηd)−0.45 is valid.

It should be mentioned that Rf can be smaller than Rc/21/3, i.e., the smallest size of droplets formed
by the breakup of a droplet into two halves. For steady, simple shear flow, the results are more
complicated [7,54]. Generally, the decrease in Rf with increasing

.
γ is less steep, and its dependence on

p is less pronounced than in extensional flows. Theoretically predicted trends matched experimental
results quite well. However, larger sizes of formed droplets were found than those predicted by theory.

The number of daughter droplets can be determined from the knowledge of their radius, Rd.
The following equation was proposed for by Van Puyvelde et al. [49] for radius of the thread, r0, at
Ca >> Cac:

r0 = R
( .
γt0

)−1/2
. (22)

Radius Rd of droplets formed by breakup of the fiber with radius r0 is determined for incompressible
liquids by the equation [55]:

Rd = r0
3

√
3π
2xm

= r0 f (p) (23)

where xm is the dominant wave number, which is a function of p. Equations (22) and (23) lead to the
following equation for the number of daughter droplets, nf, if volume of possible satellite droplets
is neglected:

n f =
1

2 f 3(p)
Rηm

.
γ

σ
=

Ca
2 f 3(p)

(24)

A further possible breakup mechanism is end pinching—two droplets (larger than that formed by
the Tomotika mechanism)—are formed at the ends of a finite elongated drop and tear off [5]. After that,
the “neck” either continues to breakup in the same way or relaxes in shape. The mechanism is typical
of the step changes in flow, e.g., flow cessation. The mechanism was detected experimentally [10,14,56]
and explained as a consequence of an interfacial tension-driven flow associated with curvature
variations along the surface of finite drop [5]. Experimental study and mathematical modeling show
that the breakup by this mechanism is suppressed for p >> 1, where relaxation of a highly deformed
drop to a spherical shape is possible, because high droplet viscosity damps internal flows. High
capillary numbers are necessary to cause a transient elongation because very elongated steady shapes
are possible for these systems. Formation of small satellite droplets and of still smaller subsatellite
droplets was found experimentally [5,9,14] (see the third row in Figure 1). End pinching appears for
moderate droplet deformation—not large enough for development of Tomotika’s mechanism. For
small droplet deformation, end pinching passes to stepwise mechanism, possibly with formation of
satellite droplets.

Tip streaming of small droplets from the sharp ends of deformed mother drop appears in systems
with p << 1 (see the fourth row in Figure 1). In this case, a number of daughter droplets, more
than order of magnitude smaller than mother drop, are formed. Other mechanisms were detected in
viscoelastic systems [4]. During parallel breakup, the droplet stretches into a thin sheet along the flow
direction and bursts into two or more daughter droplets and one or several satellite droplets (see the
fifth row in Figure 1). During surface erosion (the sixth row in Figure 1), thin ribbons tear off the drop
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surface; the ribbons further break up into a chain of small droplets. Surface erosion was observed
in systems with p >> 1. During vorticity alignment and breakup, the droplets are elongated in the
vorticity direction and subsequently break up (the seventh row in Figure 1).

It follows from the above that information about the breakup time and a number and size
distribution of the droplet fragments is still limited. Moreover, the breakup time and number of the
fragments are different for various breakup mechanisms. Therefore, recognition of a decisive breakup
mechanism is essential for construction of reliable expression for breakup frequency in Equation (1).
A necessary condition is an estimation of the ratio of average droplet radius to Rc for a given system.

3. Coalescence

Flow-induced coalescence is a consequence of droplet collisions brought on by the difference in
velocity. Its scheme is shown in Figure 4. While droplets approach each other, their hydrodynamic
interaction and molecular forces between them increase. Coalescence can be split into four steps [57]:

1. approach of the droplets;
2. drainage of the continuous phase trapped between the droplets, possibly deformed by the

axial force;
3. rupture of remainder of the continuous phase, usually by the formation of a “hole” on the thinnest

spot; and
4. evolution of a “neck” between droplets and formation of a coalesced droplet.

Usually, it is assumed [46,57] that the coalescence is controlled by the first two steps. The rupture
of the remainder of the continuous phase is assumed to be much faster than the other steps [57].
Possibility of the neck breakup during its evolution is mostly not considered.
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Generally, the rate of coalescence, J, can be calculated from the flux of a pair of droplets through
the collision surface; this flux is equal to the flux at r → ∞ through a cross-section Ac (upstream
interception area) [58–60]:

J = −nin j

∫
Ac

v0 · ndS, (25)

where ni and nj are the number of droplets with radii Ri and Rj, respectively, v0 is the flow velocity
unperturbed by the presence of the droplets, n is the outward unit normal to the spherical contact
surface, and dS is the surface element. If any interaction between droplet before touching is neglected
(Smoluchowski approximation), the following equations can be derived from Equation (25) using
geometrical considerations for shear flow [61]:

J0 =
4
3

(
Ri + R j

)3 .
γnin j (26)

and for uniaxial extensional flow [58]:

J0 =
8π

3
√

3

(
Ri + R j

)3 .
εnin j. (27)

Coalescence is characterized by the collision efficiency, Pc, defined as the ratio of real rate of
coalescence to the rate of coalescence calculated using Smoluchowski approximation, i.e.,

Pc = J/J0 (28)

Generally, two types of forces between colliding droplets exist: hydrodynamic interaction and
attractive molecular forces (van der Waals in typical polymer blends). Pc can be larger than 1 if strong
enough attractive forces between droplets exist. However, attractive molecular forces between droplets
are weak and short-range in most polymer blends. The hydrodynamic interaction, leading to a decrease
in Pc, prevails for them. Therefore, Pc can be interpreted as the probability that the collision of droplets,
in a geometrical sense (Smoluchowski approximation), is followed by their fusion.

Description of the drainage of matrix trapped between colliding droplets is key problem in the
calculation of Pc. This task is complicated. Radial and axial components of the driving force of
coalescence cause the droplet pair to rotate around their center of inertia and approach each other,
respectively. These components change rapidly during the coalescence even if the magnitude of the
driving force is almost constant. Magnitude of the axial component of the driving force affects the
shape and extent of deformed part of colliding droplets. On the other hand, these parameters affect
the rate of droplet approach and rotation. Therefore, the self-consistent problem should be solved
when describing the matrix drainage. As a consequence, only few of a very large number of papers
describing coalescence deal with calculation of Pc, i.e., consider the competition between the approach
and rotation of colliding droplets [62].

The following equation was derived for radius of the flattened part of a droplet, rf, [57]:

r f =
( RFc

2πσ

)1/2
, (29)

where Fc is the driving force of the coalescence given by the difference between velocities of colliding
droplets and their friction resistances. More recent studies have shown that dimple shapes, not
flattened areas, are typical of colliding droplets [62]. However, we believe that Equation (29) can
still serve for estimation of the extent of droplet deformation, which is essential for the choice of the
equations describing the matrix drainage between colliding droplets. It should be mentioned that Fc

and, therefore, rf change during a course of the coalescence due to droplet rotation. Only in the case
when the maximum rf is small, i.e., smaller or comparable with the critical distance, hc, for the breakup
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of remainder continuous phase trapped between the colliding droplets, coalescence of the spherical
droplets can be considered.

The equation describing approach of Newtonian spherical droplets in a Newtonian matrix for the
short inter-droplet distances was derived by Zhang and Davis [63]:

−
dh
dt

=
2Fch

3πηmR2g(m)
, (30)

where h is the distance between droplet surfaces and:

g(m) =
1 + 0.402m

1 + 1.711m + 0.46m2 (31)

and:

m =
ηm

ηd

( R
2h

)1/2
. (32)

In addition to the equation for matrix drainage between spherical droplets, equations for approach
of plane surface assuming that rf >> h were also derived for fully mobile (p << 1), partially mobile
(p ≈ 1), and immobile (p >> 1) interfaces [2,57,64]. Unfortunately, these equations do not converge
one to another with the change in p and boundaries of applicability of individual equations are not
established. Jeelani and Hartland [65] derived equation for the plane surface approach plausible for
finite p, which passes to the equation for immobile interface for p→∞:

−
dh
dt

=
8πσ2h3

3ηmR2Fc

(
1 + 3C

ηm

ηd

)
, (33)

where C is the ratio of the circulation length and droplet distance and is of the order of 1. Fortelný
and Jůza [66] assumed that C was an arbitrary function of the system parameters. C meets the
following conditions: Equation (33) passes to the equation for fully mobile interface for p→ 0 and
to the equation for immobile interface for p→∞. Following these assumptions, Equation (34) was
derived for arbitrarily mobile interface:

−
dh
dt

=
8πσ2h3

3ηmR2Fc

{
1 +

3a
p

[
1− exp

{
−

p
3a

( RFc

4πh2σ
− 1 + bp

)}]}
, (34)

where a and b are adjustable dimensionless parameters. It was found that using Equation (34) with
parameters a = 8 and b = 1 for calculation of Pc led to satisfactory agreement with both the theory of
Rother and Davis [60] and experimental data [66]. It should be mentioned that, for colliding droplets
with different radii R1 and R2, R in Equations (30)–(34) should be substituted by equivalent radius Req

defined as:
1

Req
=

1
2

(
1

R1
+

1
R2

)
⇒ Req = 2

R1R2

R1 + R2
. (35)

Generally, driving force of the coalescence depends on h. As Pc is mostly controlled by the droplet
motion at short inter-droplet distance and dependence of Fc on h is weak, contact force, calculated for
touching spheres in flow is frequently considered [59,60,67]. For the shear-flow-induced coalescence,
the driving force of the coalescence, Fs, is described by the equation [60,67]:

Fs =
1
2

K(p, Λ)πηm
.
γR2

eq sin2 θ sin 2ϕ, (36)

where Λ is the ratio of radii of smaller to larger droplets, θ is polar angle, ϕ is azimuth, and K can be
expressed as:

K(p, Λ) = 3
(1 + Λ)3

4Λ
D∗(p, Λ), (37)
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where the method of calculation of a dimensionless function D∗ and its values for selected set of p
and Λ can be found in [67]. For Λ = 1, the following equation for the dependence of K on p was
proposed [68]:

K(p) = K∞
2 + 3p

3(1 + p)
, (38)

where K∞ is 12.24 for touching spheres [69]. However, it should be mentioned, that values of K
calculated from Equations (37) and (38) somewhat differ. For uniaxial extension, the driving force of
the coalescence, Fe, is described by:

Fe = K(p, Λ)πηm
.
εR2

eq(1− 3 cos2 θ). (39)

Elmendorp and coworkers [46,70] recognized that Pc was controlled by the competition between
the approach and rotation of colliding droplets. The droplets fuse if they approach to the critical
distance hc sooner than they rotate to the angle where Fc changes sign and starts moving away of
the droplets. They assumed that the resistance against the approach of the droplets was the sum of
resistance against drainage between flattened parts of droplets and that between approaching hard
spheres, i.e., (

dh
dt

)−1

=

(
dh
dt

)−1

f
+

(
dh
dt

)−1

Sp
. (40)

Expression for the rate of approach of flattened droplets with mobile or immobile interface was
substituted for the first term on the right-hand side of Equation (40). Equation (30) with g(m) = 1
(limit for p→∞) was used for the second term on the right-hand side of Equation (40). By combining
Equation (40) with equations describing the time dependence of rotational angles, the equation
describing the dependence of h on rotational angles ϕ and θ was derived. Its solution determines
the limit value of initial angles ϕ0 and θ0 (at the inter-droplet distance h0 at assumed start of the
coalescence) for which h at ϕ = π/2 is smaller than hc. Equation (40) apparently overestimates the real
resistance against the approach of colliding droplets [69]. This leads to the conclusion that the theory
agrees with an experiment when the expression for mobile interface and hc = 50 nm (unrealistic large
value) are used.

The approach by Janssen and coworkers [7,43,64] is based on pre-averaging of both the driving
force of the coalescence and the time of droplet rotation. The approach of flattened droplets is
considered in this theory. It is assumed that the driving force of the coalescence of the droplet with the
same radius, R, in the shear flow is given by the equation:

Fc = 6πηm
.
γR2. (41)

The time of coalescence, tc, is determined by integration of equations for approach of flattened
droplets with mobile, partially mobile, or immobile interfaces from h0 to hc and from 0 to tc using
Equation (41) for Fc. Pc is calculated using the equation:

Pc = exp{−tc/ti}, (42)

where interaction time ti is defined as:
ti =

.
γ
−1. (43)

This theory has been quite frequently used to evaluate experimental results because it provides
explicit expressions for Pc. Unfortunately, the equation for the approaching of flattened droplets leads
to unphysical results for small Fc, where colliding droplets keep almost spherical shapes.

Wang et al. [59] derived the theory of coalescence in shear, uniaxial extensional and compressional
flows based on trajectory analysis. They assumed that the droplets maintain their spherical shape
through the whole approach. Changes in hydrodynamic interaction during the droplet approach and
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rotation are considered. Van der Waals forces between droplets are included directly in equations
describing droplet motion. Attractive molecular forces are included into the equation for the droplet
approach and hc = 0 is considered. Wang et al. calculated numerically the droplet trajectories and used
them for the determination of Ac in Equation (25). They showed that, neglecting inter-droplet van der
Waals forces, Pc is a decreasing function of p and an increasing function of the ratio, Λ, of the radius of
a smaller droplet to the radius of a lager one. On the other hand, Pc is independent of ηm, Req and the
deformation rate (

.
γ for shear and

.
ε for extensional flows).

Rother and Davis [60] generalized the theory of Wang et al. [59] for deformable droplets,
considering droplet deformation as a small but singular perturbation. Governing equations for flow in
the thin matrix film and in the droplet in the vicinity of near contact are solved, taking into account
radius of the droplet deformed part (cf. Equation (29)). For small capillary numbers, Ca, it was
found that Pc was identical to that predicted in [59] for spherical droplets in the system with the same
parameters. At a certain Ca, Pc starts decreasing steeply to a very low value. The dependence of Pc

on R is similar to that of Pc on Ca [60], i.e., a steep decrease in Pc appears at a certain RL. It should
be mentioned that Pc decreases with decreasing Λ for a polydisperse system. On the other hand, the
value of the average droplet radius 〈R〉 (〈R〉 = (R1 + R2)/2) equal to RL increases with decreasing Λ.

Fortelný and Jůza [71] derived a theory based on the assumption that the droplet approach could
be described by the equation for spherical droplets (Equation (30)) at small Fc and the equation for
deformed droplets (Equation (34) was chosen as the most reliable [66]) for large Fc. That of these
equations for dh/dt predicting slower droplet approach for a given Fc was always used. The equations
derived by Wang et al. [59] for the rate of the droplet rotation in shear flow with v0 = (−

.
γy, 0, 0)

dφ
dt

=
.
γ
[
(1− β/2) sin2 ϕ+ (β/2) cos2 ϕ

]
, (44)

dθ
dt

= −
.
γ(1− β) sinθ cosθ sinϕ cosϕ, (45)

and in extensional flow with v0 =
.
ε(–x, –y, 2z):

dθ
dt

= −3(1− β)
.
ε sinθ cosθ (46)

were used. The choice of v0 for shear flow corresponds to positive driving force of coalescence for
azimuth ϕ between 0 and π/2 [72]. β in Equations (44)–(46) is a function of p and Λ defined and
calculated in [59,60,67]. Generally, β depends on h, but its limit value for h → 0 is considered for
simplicity in calculations in [66,71–73]. Limit initial values of rotational angles, ϕ0 and θ0, for which
the droplet collision is followed by their fusion, are calculated by combination of the equations for
the rate of rotation (Equations (44) and (45) or Equation (46)) with relevant equations for the droplet
approach. The condition is that h < hc before achieving values of ϕ and θ, for which Fc changes sign.
The determined ϕ0 and θ0 are used for calculation of Pc from Equations (25) and (28) [66,71–73].

Dependences of Pc on system parameters, calculated according to the theory described in the
preceding paragraph, for coalescence of droplets with the same radii in systems with hc << R are very
similar to those calculated according to Rother’s and Davis’ theory [60]. For small Ca, Pc is a decreasing
function of p; it is independent of other system parameters. At a certain Ca, Pc starts decreasing
steeply to a negligible value. It should be mentioned that intersection of Pc calculated using Janssen’s
theory [7,43,64] with Pc for spherical droplets, calculated with combination of Equation (30) with
Equations (44) and (45), is very near to the value of R at which Pc calculated according to the theory
from the preceding paragraph starts falling [71]. Analysis of the result of the Rother and Davis, and
Fortelný and Jůza theories for coalescence of droplets with different radii showed that the dependences
of Pc on 〈R〉 for monodisperse and polydisperse systems differed substantially [74]. Pc gradually
decreases in a range of 〈R〉, the width of which increases with the polydispersity of the droplet radii.
The dependence of Pc on the average droplet size for blends containing droplets with the same droplet
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radii and for those with droplets with broad radii distribution (denoted as polydisperse) is shown in
Figure 5.
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Figure 5. Dependence of collision efficiency (Pc) on average effective droplet radius for monodisperse
(dash-dotted) and polydisperse (solid curve) systems.

All the above described results have been obtained for Newtonian droplets in a Newtonian matrix.
However, droplets and matrix in polymer blends are viscoelastic liquids. Attempts to develop theory
of flow-induced coalescence in viscoelastic systems have been rare so far. Yu and Zhou [75] modeled
shear flow-induced coalescence by the diffuse interface method. Their model of the interface is rigorous
but the study does not consider complete geometry of the coalescence. Therefore, the theory does
not provide Pc as a function of system parameters. Fortelný and Jůza [71] generalized their theory
described above to systems with a viscoelastic matrix. They assume that the relation between drag force,
F, and velocity of a particle, u, moving in the matrix can be utilized for coalescence, where the force
inducing the droplet approach is caused by the difference between unperturbed velocities of colliding
droplets and resistance to their approach is caused by their hydrodynamic interaction. The following
equation was derived [76,77] for motion of the particle with friction resistance, ζ, in viscoelastic matrix,
described by Maxwell model with relaxation time τm:

F = ζu− τm
dF
dt

. (47)

In analogy with Equation (44) and Stokes’ law for Newtonian systems, Fc was substituted with Fc

+ τmdFc/dt in Equations (30) and (34). In the first papers [66,71,73], modified equations for the droplet
approach were combined with the equations for rotations of the droplet pairs in a Newtonian matrix.

Later [72], the equations for the droplet pair rotation were modified considering the effect of the
matrix elasticity on the droplet rotation in the same way as on their approach. For a system with the
Newtonian matrix, the relative velocity of colliding droplets with the same radius R, v12(r), can be
expressed as [59,60]:

v12(r) = Ω × r + E · r−
[
A(s)

rr
r2 + β(s)

(
I−

rr
r2

)]
· E · r, (48)

where Ω is angular velocity tensor, E is rate of strain tensor, r is the vector from the center of droplet 1 to
the center of droplet 2, I is the unit second-order tensor, and s = r/R is the dimensionless center-to-center
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distance and functions A(s) and β(s) are defined in [59,60]. It follows from the analysis of the relations
between related radial components of v12 and Fs and Fe that they are proportional through effective
friction coefficient, ζ, expressed as:

ζ =
1
2

KπηmR. (49)

Axial components of the driving force of the coalescence were calculated from Equation (48)
using effective friction coefficient ζ. After that, Equation (47) was used for calculation of the relations
between circumferential velocity of droplets in a viscoelastic matrix and axial components of the force
causing their rotation. The limit of initial rotational angles ϕ0 and θ0 was determined and Pc was
calculated by the above described procedure used for Newtonian systems. It has been found that, at
least for relaxation times typical of commercial polymers and deformation rates for which substantial
coalescence in Newtonian systems is assumed, the character of Pc vs. R dependence is similar to that
of Newtonian systems. Matrix elasticity has a weak effect on the critical value of R where Pc starts
decreasing steeply in the both shear and extensional flows. For extensional-flow-induced coalescence,
a decrease in Pc with τm in the range of small R is predicted. The predicted decrease is stronger
when the effect of the matrix elasticity on the droplet rotation is considered. For shear flow-induced
coalescence, the theory neglecting the effect of τm on the droplet rotation predicts a slow decrease of
Pc with τm in the range of small R. On the other hand, an increase in Pc with τm in this range of R is
predicted by the theory considering the effect of the matrix elasticity on the droplet rotation. To the
best of our knowledge, no theory dealing with the effect of the droplet elasticity on their coalescence
has been proposed so far.

Flow-induced coalescence in polymer blends and model Newtonian emulsions has been frequently
directly (breakup of the droplet has been excluded by the choice of experimental conditions) and
indirectly (the droplet size distribution has been affected by the competition between the droplet
breakup and coalescence) experimentally studied. All related papers cannot be cited here. Only some of
the results plausible for verification of the conclusions, following from the above described theories, are
cited below. We believe that, in spite of the approximations and uncertainties in modeling the droplet
deformation during their collision [78–83] and neglecting the effect of diffuse interface [84], theories
of Rother and Davis [60,85] and those of Fortelný and Jůza [66,71–74] reliably reflect main features
of coalescence. Therefore, they should provide a plausible, at least semi-quantitative, description of
the coalescence. Pc independent of Req and of the deformation rate is predicted by the both groups
of theories for small Req where rf, given by Equation (29), is negligibly small. In this range of R,
a decrease of Pc with increasing p and decreasing Λ is predicted. A decrease in Pc with p follows
from experimental results in [86,87]. The statement that Pc decreases with decreasing Λ is supported
by detected strong growth of polydispersity in the droplet size after the start of coalescence [88–90].
Existence of critical Req, for which Pc at a given set of the system parameters falls to a negligible
value, also predicted by the both groups of theories, is confirmed by a great deal of experimental
results [86–93]. Experimentally determined dependence of critical Req on p [91] matches the arbitrarily
mobile interface (AMI) model (Equation (34) for approach of deformed droplets).

As mentioned above, Janssen’s theory of coalescence [7,43,64], most frequently used for the
evaluation of experimental data (e.g., [91,92,94–97]), provides critical R similar to that following from
the theory using a switch between equations for the approach of spherical and deformed droplets [71],
when the same equations for approach of deformed droplets are used. Therefore, Janssen’s theory
can be used for reliable estimation of critical R. From the above discussion of available theories of
the matrix drainage between deformed droplets it follows that the AMI model should be used to
describe the approach of deformed droplets. tc can be calculated by integration of Equation (34), where
Fc is substituted from Equation (41). Pc is obtained by the substitution of calculated tc and ti from
Equation (43) into Equation (42). For hc << h0, Pc calculated by the above procedure is given by [66]:
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Pc = exp

− 9Ca2R2

4
(
1 + 3a

p

)
 1

2h2
c
+

a
pCaR2 ln


1 + 3a

p −
3a
p exp

{
−

p
3a

(
3CaR2

2ah2
c
− 1 + bp

)}
1 + 3a

p −
3a
p exp

{
−

p
3a

(
3CaR2

2ah2
0
− 1 + bp

)}


. (50)

It should be mentioned that Equation (50) is not applicable in the region of small R, where it
underestimates value of Pc and neglects its dependence on p. Steep decrease of Pc in a narrow range
of R following from Equation (50) is predicted also by the trajectory analysis considering the droplet
deformation [60,85] and by the theory using switch between equations for approach of spherical
and deformed droplets [66,71,73] for a pair of droplets (Req should be used instead of R for droplets
with different radii). Similar dependence of Pc on average R can be assumed for systems with a
low polydispersity [74]. In contrast, it follows from the above mentioned theories that Pc gradually
decreases in a broad range of average R in systems highly polydisperse in the droplet size. In this case,
the frequently used split of the plot of the average R vs.

.
γ into regions, where breakup or coalescence

or both of or none of them appears [70,89,94–97], does not capture the situation in a system.
Some approximations, not always consistent and well approved, were used in [71–73]. Their effect

on Pc was analyzed [98]. It has been found that their removing affects magnitude of calculated Pc but
keeps qualitative dependence of Pc on system parameters. However, using a more correct description
of the droplet approach at medium distances leads to serious problems with the description of the
coalescence in viscoelastic matrixes.

Theories of Rother and Davis [60] and those of Fortelný and Jůza [66,71–74] provide only
numerical results for Pc even for monodisperse Newtonian droplets in a Newtonian matrix. Therefore,
approximate expressions for Pc(R) were proposed. Rother and Davis [85] suggested for Pc(R) in
shear flow:

Pc =

〈 Psph for R ≤ RL,RD

Psph
(RL,RD−RF)

2

(R−RF)
2 for R > RL,RD

(51)

where:

RL,RD = 0.420

p + 1.02 ln p + 14.9
p2

(
p + 1

p + 2/3

)2 Aσ3

(
.
γηm)

4

1/6

. (52)

They approximated numerical results for Psph [59] as [85]:

Psph = [0.7949 p + 0.1061 ln p + 1.8284]−1. (53)

RF was determined empirically by a numerical data fit for Pc vs. droplet radius. Another
approximation, without necessity to fit numerical data for determination of the equation parameters,
was proposed by Fortelný and Jůza [48]:

Pc(R) =
〈

Psph

PJM,Arb

for R ≤ RL,FJ

for R > RL,FJ
. (54)

RL,FJ is solution of the following equation:

Psph = PJM,Arb(RL,FJ). (55)

Psph is given by Equation (53) for the shear flow. Fitting of the results for the probability of
coalescence of spherical particles in the extensional flow [73] leads to the following approximate
expression [48]:

Psph,e =
[
2.17781p0.69604 + 0.77644

]−1
(56)
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All the above theories were derived assuming that the droplets are spherical till collision, and only
binary collisions, not affected by the presence of other droplets, are important. Moreover, the results
for Newtonian droplets in a Newtonian matrix can only be considered as conclusive. Applicability
of Equation (47) to description of the matrix drainage and of the droplet pair rotation for general
rheological model of viscoelastic matrix should be verified. To the best of our knowledge, the effect of
the droplet elasticity on the coalescence has not been studied so far. The effect of the droplet anisometry
in flow on Pc was studied by Patlazhan and Lindt [99] for systems with a small p. They used Janssen’s
approach (Equation (42)) to calculate ellipsoidal droplets oriented in the flow direction. In calculation
of tc for the mobile interface model, they replaced radii of colliding droplets with their local radii of
curvature at the point of contact in calculation of Req. In calculation of the interaction time ti, they
multiplied ti =

.
γ–1 for spherical droplets by the ratio of distance between the short axis and contact

point of ellipsoids to the distance between centers of ellipsoids in the direction perpendicular to flow.
They found that Pc for elliptical droplets was higher than that for the spherical droplets of the same
volume. In addition to the general limits of Janssen’s theory discussed above, the plausibility of
Patlazhan’s and Lindt’s modification should also be an object of further study. To the best of our
knowledge, the effect of other droplets on the coalescence of individual droplet pairs in a system with
a high content of the dispersed phase has not been reliably addressed so far.

4. Competition between the Droplet Breakup and Coalescence

Tokita [100] considered average droplet size in steady shear flow. He assumed that the droplets
were still monodisperse in size. In this case, Equation (1) reduces to:

Fn =
4
π

.
γPcφn, (57)

where n is number of spherical droplets in a volume unit and φ is volume fraction of the dispersed
phase. Tokita assumed Pc independent of R; this is valid for conditions under which Pc = PSph.
The following equation was derived for breakup frequency using the assumption that total breakup
energy consists of volume and interfacial energy of the droplet:

F =
ηap

.
γ

EDK + 3σ/R
, (58)

where ηap is the apparent viscosity of the blend and EDK is the volume energy. Substitution from
Equation (58) into Equation (57) and their solution leads to the following dependence of R on system
parameters:

R =
12σPcφ

πηap
.
γ− 4PcEDKφ

. (59)

Equation (59) predicts reasonable shape of the dependence of R on φ, but it leads to R = 0 in the
limit of φ→ 0. This is in contradiction with generally accepted theories of the droplet breakup.

Steady droplet size and monodisperse system in shear flow were considered also by Fortelný and
Kovář [101]. They assumed that F was a positive function of Ca for Ca > Cac which can be expanded
into Taylor series on the right of Cac:

F(Ca) =
(
∂+F
∂Ca+

)
Cac

(Ca−Cac) + .
1
2

(
∂+2F
∂Ca+2

)
Cac

(Ca−Cac)
2 + . . . (60)

This approach is general but it should be mentioned that derivatives in Equation (60) diverge
if F(Ca) ∝ (Ca−Cac)

a with a < 1. Substitution of Equation (60) into Equation (57) leads to the linear
dependence of R on φ if only the first term on the right of Equation (60) and Pc independent of R
are considered:



Polymers 2019, 11, 761 19 of 31

R = Rc +
4σPc

πηm fF
φ, (61)

where f F is a function of the rheological properties of the blend components, independent of R and φ.
Equation (61) reliably describes dependence of R on φ for some blends. Other blends show steeper
than linear growth of R with φ.

Elmendorp and Van der Vegt [46,70] proposed estimation of the range of possible droplet sizes in
steady shear flow. The smallest size of droplets that can burst is Rc, which can be determined using
the Taylor theory or empirical Equation (5) for Newtonian systems. The upper limit of the size of
coalescing droplets was determined from the condition that Pc decreases to a negligible value in their
model of coalescence. These conditions correspond to straight lines in the plot lnR vs. ln(ηm

.
γ/σ),

dividing it into four regions. Steady droplet radii lie either in the region relating to the dynamic
equilibrium between the droplet breakup and coalescence is established or in the region where both
breakup and coalescence are absent. From the regions where only breakup or only coalescence is
operating, the droplet radii must pass to any of the former regions. The same approach was applied by
Janssen [7,43,64], who calculated the maximum droplet size using his theory of coalescence.

Lyngaae–Jørgensen and Valenza [102] described a system where highly elongated drops burst
into a large number of small droplets. This model assumes that dynamic equilibrium between small
spherical and large ellipsoidal droplets is established in the steady state. A set of three equations for
the volume fraction of large particles and length of their long and short half-axis was derived.

Huneault et al. [103] developed a computational model for droplet size evolution during mixing
in a screw extruder. They considered that the blend components showed power law relations between
shear stress and shear rate. They assumed that the droplet deformation took place only within
the pressurized screw zones. Breakup into two fragments and coalescence of the droplets were
considered for Cac < Ca < 4Cac. The droplet fibrillation and disintegration was assumed for Ca > 4Cac.
The fiber breakup was considered either when blends entered a partially filled screw region or when
the fiber diameter decreased below 1 µm. Parameter CH, characterizing the coalescence in a blend,
was determined from the dependence of R on φ obtained during steady mixing in a batch mixer.
The authors proposed the following equation for R:

R = R0 + (1.5CHCact∗Bφ
8/3)

1/2
, (62)

where R0 is the droplet radius for φ = 0 and tB
∗ is the dimensionless breakup time which is a function of

p and is independent of Ca. The equation was derived by somewhat inconsistent procedure assuming
breakup frequency independent of R and using Utracki’s theory of the coalescence [104], which
is not consistent with commonly accepted theories of the shear-flow coalescence described in the
preceding section.

Equation (1) was solved in [105] for steady shear flow using the assumption that a droplet bursts
into two halves or with the same probability into two fragments having any volume. It was assumed
that F was proportional to (Ca − Cac)n, where n is a positive number, and that Pc decreases with a power
of the average droplet radius. Scaling rules derived assuming that functions C and F are homogeneous,
were used in solution of Equation (1). Algebraic equations were derived for the steady average droplet
radius and for the characteristic time needed for the system transition to the steady state.

Janssen and Meijer [43] studied the evolution of droplet size in an extruder using a two-zone
model. They assumed affine stretching of droplet and thread breakup in flow in the “strong” zone
and thread breakup at rest and coalescence in the “weak” zone. The strong zone was modeled by
extensional flow. The disturbance amplitude in the stretch thread described by Equation (20) was
considered. Simple shear flow with a low

.
γ was assumed in the weak zone. Janssen’s theory of

coalescence for droplets with partially mobile interface was used. The model of a cascade of ideal
mixers was used for the residence time distribution in the weak zone.
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Patlazhan and Lindt [99] solved Equation (1) using expression for droplet breakup constructed by
a combination of the results of Tomotika’s theory with the results for deformation of droplets in a system
with low p. Gaussian distribution of volumes of daughter droplets was assumed. Coalescence was
described by the modification of Janssen’s theory for ellipsoidal droplets mentioned in the preceding
section. Droplet size distribution function as a function of the initial droplet size distribution, of p and
of the average number of daughter droplets were calculated numerically.

Delamare and Vergnes [106] studied evolution of the droplet size distribution in a twin-screw
extruder. They modeled the droplet breakup mechanism similarly to Hunealt et al. [103]: only two Cac

instead of four Cac were considered as the boundary between regions of Ca in which breakup into
two fragments or droplet fibrillation proceeds. They assumed breakup time, tB, increasing with R for
Cac < Ca < 2 Cac and given by the Tomotika theory for fibers formed for Ca > 2 Cac. Coalescence was
described in the same way as in [43]. Average droplet diameters and local distribution of the droplet
sizes was calculated numerically as functions of parameters of blends and of the extrusion process.

Milner and Xi [107] considered a batch mixer containing two regions: high-shear having small
volume and low-shear with large volume. Ratio of residence times of a droplet in the high-shear
and low-shear regions equal to the ratio of their volumes was assumed. One breakup of a droplet
with R > Rc into two halves during its pass through the high shear region was considered. Only
shear-flow-induced coalescence was assumed in the low-shear region. Probability of coalescence Pc

was calculated by the Wang et al. theory [59] for spherical droplets. Proposed theory provides steady
droplet size distribution by a numerical solution of derived equations.

Lyu et al. [108] assumed breakup frequency independent of R for R/Rc > 1 in their study of the
effect of used theory of coalescence (Smoluchowski’s with Pc = 1, Wang’s et al. [59] for spherical droplets
and Janssen’s for partially mobile interface) on agreement between calculated and experimentally
determined droplet size evolution in steady shear flow. They found that none of the used coalescence
theories led to satisfactory agreement with the experimental data.

Potente and Bastian [109] derived algorithm for calculation of the droplet size evolution during
extrusion using the finite and boundary element methods for determination of the stress acts on the
droplets during their trajectories. They characterized the flow field in the screw elements by the ratio,
λr, of the magnitude of the strain rate tensor to the sum of magnitudes of the strain rate and vorticity
tensors. Cac was calculated by the equation with parameters determined from Grace’s experimental
results [14]. Effective interfacial tension, given by Equation (5), stepwise breakup mechanism, and
the breakup time increasing with R0.37 for Ca > Cac were considered for the description of the droplet
breakup. Coalescence was calculated using Janssen’s method [43].

Fortelný [110] tried to evaluate plausibility of various expressions for the breakup time tB (breakup
frequency F) used in previous theories by graphic solution of Equation (57) with respect to R. A schematic
graphic solution of Equation (57), used for this discussion, is shown in Figure 6. The dependence
of Pc on R following from theories of Rother and Davis [60] and Fortelný and Jůza [71,73], i.e., Pc

independent of R in the region of small R and its steep decrease after achieving certain limit value
of R, was considered. It was shown that the form of the curve F(R) had a fundamental effect on the
dependence of steady R on φ. Any function F(R) which does not meet the condition F(Rc) = 0, i.e.,
tB(Rc)→∞, obviously leads to the steady R independent of φ for a certain region of φ. This type of the
dependence has not been obtained experimentally so far. For functions F(R) with maximum at R > Rc,
Equation (57) has two solutions for a certain set of parameters.
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Figure 6. Equilibrium breakup (dash-dotted curves)—coalescence (dashed curves) as function of
breakup or fusion frequency on droplets radius. The figure is based on analysis in [110].

Peters et al. [20] derived constitutive equation for liquid mixture based on the Lee and Park model
of immiscible polymer blends [111]. The constitutive equation contains parameters related to the blend
structure. Stepwise breakup of small droplets, stretching large droplets into filaments and their static
and dynamic breakup and droplet coalescence were considered. A scheme for numerical calculation of
the morphology evolution, considering the above events, was proposed. Breakup time was empirically
determined by Grace [14] for the stepwise breakup, Janssen’s and Meijer’s procedure [7,43] for the
description of the filament breakup, and Janssen’s and Meijer’s theory of coalescence [7,43] for blends
with partially mobile interface were used in calculations. Results of the theory were compared with
experimentally determined time dependence of rheological functions in various flow regimes, not with
droplet size distribution.

Fortelný and Jůza [48] have recently formulated equations for calculation of steady droplet size in
flowing immiscible polymer blends. They focused on calculation of the average size using assumption
that the droplets were monodisperse. An approximate Equation (Equation (51) or (54)), reflecting the
dependence of Pc on system parameters resulted from theories of Rother and Davis [60] and Fortelný
and Jůza [71–73], and was used for the description of the coalescence. Breakup frequency in the steady
shear flow for Ca, not much higher than Cac was constructed from the experimental results of Cristini
et al. [47] for the breakup time tB and the number of fragments nf. The equation:

F = (n f − 1)t−1
B (63)

was used for a monodisperse system. Solution of Equation (57) with F given by Equation (63) with tB

expressed using Equation (15b) led to the equation:

am(R∗ − 1)ac+1/2 + (R∗ − 1)1/2
−

4(1 + p)
π

k1Pc(R)φ(R∗ − 1) −
4(1 + p)

π
k0Pc(R)φ = 0 (64)

where R∗ is the ratio of R and its critical value for breakup, Rc and am = 8.759 and ac = 1.748,
k0 = 4.3 and k1 = 27.7 are numerical constants determined from experimental data of Cristini et al. [47].
Unfortunately, data for the dependence of nf on R − Rc show variance, which negatively affects
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the reliability of the derived dependence of the average R on φ. On the other hand, solution
of Equation (64) is not much sensitive to values of am and ac. Solution of Equation (64) with
Pc(R) = PSph showed almost linear growth of R∗ with φ. The rate of growth increased with p.
Dependence of R* on φ predicted by Equation (64) fairly matched that experimentally determined for
polypropylene/ethylenepropylene elastomer and poly(lactic acid)/polycaprolactone blends for φ until
about 0.2 (see Figure 7). However, critical radii for the droplet breakup, Rc, and for steep decrease in
Pc, RL, determined experimentally [112,113] are much large than those predicted by Equations (3) and
(55), respectively.
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Figure 7. Reduced droplet sizes calculated using Equation (64) and experimental sizes for blends
ethylene-propylene rubber (EPR)-polypropylene (PP) [112] (dashed line and empty circles) and
poly(lactic acid) (PLA)-poly(caprolactone) (PCL) [113] (solid line, full squares).

For Ca >> Cac, the breakup frequency was constructed from tB calculated as a sum of times of the
droplet deformation into fibril and of the fibril breakup. This approach led to the equation [48]:

R∗1/3 =
4
π

φ

g(p)Ca1/3
c

Pc(R), (65)

where g(p) is given by the equation:

g(p) =
25/2

3π
[
2 + (2

√
2)
µ]xm(p), (66)

where µ = 0.65 and xm(p) is dominant wave number according to fibril breakup theory. R∗ proportional
to φ3 follows from Equation (65) for Pc = PSph. However, dependence of Pc on average R, characteristic
for a highly polydisperse system, should be considered in this case. Therefore, slower increase of R∗

with φ should be characteristic for polydisperse systems. Generally, the dependence of the average
R on φ can be different in intervals of small and large φ. Most dependences of average R on φ,
determined experimentally at constant mixing conditions, can be expressed by quadratic form in φ.
These dependences can be quite modeled well by the combination of the solutions of Equations (64)
and (65).
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The equation for the average droplet radius in steady extensional flow was derived [48] using
breakup frequency following from Cox’s theory [12]. This equation did not provide reasonable
dependence of R on φ, apparently because Cox’s theory is not plausible for Ca higher than Cac.

5. Discussion of Problems with Prediction of the Droplet Size Formed by Steady Mixing

Many blends of synthetic polymers have been already successfully commercialized. It is probable
a reason why the study of the relations between droplet size on the one hand and blend composition,
parameters of the blend components and flow characteristics on the other hand have not been intensively
studied during recent years. Sometimes theories used for the interpretation of experimental data have
been chosen occasionally without consideration of their plausibility for a certain system, which can lead
to false conclusions. We believe that the practical importance of knowledge of the above mentioned
relations will be strongly enhanced in the near future due to attempts to commercialize blends of
bio-polymers. The main features of correct description of the droplet breakup and coalescence in
flowing polymer blends are summarized in the paragraph below. Other parts of this section deal with
discussion of applicability of theoretical results obtained for blends of Newtonian liquids in simple
flows to blends of viscoelastic liquids in complex flow fields.

The above results demonstrate that the dependence of the droplet breakup frequency on its radius
is fundamental for the dependence of the average droplet radius on volume fraction of the dispersed
phase. Dependence of the breakup frequency on system parameters needs further investigation.
Different breakup mechanisms should be considered for blends with average R only slightly larger than
Rc and with average R substantially larger than Rc. Pc should be considered as a decreasing function
of p in description of flow-induced coalescence in systems characterized with small Ca. Different
dependences of Pc on the average droplet radius are valid for systems with narrow and broad droplet
size distributions. These statements should be considered in derivation of any reliable theory of the
phase structure evolution in polymer blends.

Most of the above theories, describing the droplet breakup, coalescence, and the competition
between them, were derived for Newtonian systems in simple flows. Their results have been frequently
used for prediction of the morphology of polymer blends formed during their mixing in batch
mixers or extruders. However, polymers are viscoelastic substances showing shear thinning and
flow fields in batch mixers and extruders are complex. The effect of the droplet and matrix elasticity
on the droplet breakup has been studied rather broadly; main results are mentioned in Section 2.
On the other hand, these results are not sufficient for construction of the dependence of breakup
frequency on the droplet radius, viscosities, and elasticity parameters of the droplet and matrix and
flow characteristics. The results of recent approximate studies of the effect of matrix elasticity on the
probability of coalescence, Pc, are summarized in Section 3. To our best knowledge, the effect of the
droplet elasticity on Pc has not been addressed so far. Therefore, the effect of the matrix and droplet
elasticity on coalescence needs further intensive investigation.

Components of polymer blends are mostly shear-thinning liquids. This must be taken into account
when describing the droplet breakup and coalescence. Since the stress is continuous at the interface,
viscosity and elasticity parameters of the matrix and droplets at constant stress related to the flowing
blend should be considered. In contrast to other approaches [43,64], we believe that it should be applied
also to the description of flow-induced coalescence because rheological properties are controlled by
conformation of polymer molecules (deformation, entanglements) in flow.

Further aspect, not properly addressed so far, is the effect of surrounding droplets on the breakup
of a droplet and coalescence of a certain droplet pair. The concept of substitution of ηm with the blend
viscosity in calculation of Ca [42,43] should be verified for determination of Rc and its applicability to
the description of the breakup and coalescence frequencies should be studied. It should be taken into
account that, due to the slip at the interface, viscosity of a blend is frequently not equal to the viscosity
calculated for the related emulsion using stick condition at the interface.
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The above mentioned problems are common for the description of the phase structure evolution
in simple flows, e.g., in rheometers, and in complex flow fields in mixing and processing devices.
Specific problem of the description of the droplet size evolution in mixing and processing devices
is proper modeling of the flow field in these devices. Substitution of complex, position-dependent,
flow fields in mixing and processing devices with much simpler flows is unavoidable in a quantitative
or semi-quantitative description of the particle size distribution during mixing and processing of
polymer blends. So far, only a very limited care has been paid to this problem. Shear flow with the
effective shear rate has been considered in evaluating the morphology formed in batch mixers [1,3,4].
The two-zone model, having zones with weak shear and strong extensional flows, was considered in
modeling the flow field in a screw extruder [43,64].

Recently, we have compared experimentally determined average droplet sizes in polypropylene/

ethylene-propylene rubber [112] and poly(lactic acid)/polycaprolactone [113] blends mixed in a batch
mixer with the droplet sizes calculated using effective shear flow in the mixer. The effective shear rate,
.
γeff, in the batch mixer was determined by the method [114] successfully applied to determine the
flow curve from the dependence of the torque on the rotor speed of a batch mixer. For both blends,
experimentally determined Rc were substantially larger than Rc calculated from Equation (3) using
.
γeff. Agreement between calculated and measured value of Rc was not improved using σeff, given
by Equation (5), instead of equilibrium σ in calculation of Ca. Using of

.
γeff leads to the prediction

that the collision efficiency, Pc, is negligibly small for both blends. It was in strong contradiction with
experimentally detected pronounced growth of the average droplet radius with volume fraction of the
dispersed phase. These results indicate that improvement in modeling of flow fields in mixing and
processing devices and in description of breakup and coalescence in viscoelastic systems is a necessary
condition for at least semi-quantitative prediction of the droplet size.
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Symbols and Abbreviations

Ac Upstream interception area
A(s) Function of far-field approaching
B Width of deformed droplets
a, b Adjustable dimensionless parameters of Equation (34)
ac, am Parameters of Equation (64)
C(i, j): Coagulation kernel—Equation (1)
C Ratio of circulation length and droplet distance—Equation (33)
Ca Capillary number Equation (2)
Cac critical c.n.
CH Parameter of coalescence in a blend—Equation (62)
D Droplet deformation—Equation (7)
D* Dimensionless function in Equation (37)
E Rate of strain tensor
EDK Volume energy—Equation (58)
F(i) Overall breakup frequency—Equation (1)
F Drag force
Fc Driving force of the coalescence—Equation (29); FS in shear flow; Fe in uniaxial extension
f General functions—Figure 3; not the same in Equation (23); another f F in Equation (61)
h Distance between droplets surfaces
hc critical distance
G’ Storage modulus
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G’m s.m. of matrix
G’d s.m. of the dispersed phase
g(m) Function defined by Equation (31)
g(p) function defined by Equation (66)
I Unit second-order tensor
J Rate of coalescence
J0 r.c. without interdroplet interactions
K(p, Λ) Function in Equations (36) and (37)
ki Parameters in Equations (15b) and (64)
L Length of deformed droplets
m Parameter defined by Equation (32)
m Orientation vectors
n Number of droplets
ni, nj of radius Ri, Rj
nk of volume V1—Equation (1)
n Number of spherical droplets in a volume unit—Equation (57)
nf Number of fragments/daughter droplets
nf(i) formed at breakup of a droplet of volume iV1
n Outward unit normal to the spherical contact surface
N1,d, N1,m The first-normal stress differences of the droplets and matrix
Pc Collision efficiency
p Ratio of disperged phase and matrix viscosity ηd/ηm

q The growth rate
R Droplet radius
Rc critical d.r. for breakup
R* = R/Rc reduced d.r.
R0 r. of parent droplet
Rf r. of formed droplets
Rd r. of daughter droplets
Req equivalent d.r. def. by Equation (35)
RL r. of steep decrease in Pc

RF parameter of Equation (51)
r The vector from the center of droplet 1 to the center of droplet 2
r0 Initial thread radius
rf Radius of flattened part of a droplet—Equation (29)
S Surface
s Dimensionless center-to-center distance s = r/R
t Time
tB Breakup t.
ts Local minimum of Equation (20)
tg t. needed for the growth of α to its critical value
tc t. of coalescence
ti interaction t.
tB* Dimensionless breakup time
u Velocity of a particle
v Velocity
v12(r) relative velocity of colliding droplets
V1 Elementary volume
x, y, z Spatial Cartesian coordinates
x 2πR/λ —Equation (20)
xm Dominant wave number Equation (23)
α(t) Distortion amplitude at time t
α0 initial d.a.
β Parameter in Equations (44)–(46)
.
γ Shear rate
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.
γeff effective s.r.
.
ε Stretching rate
ζ Friction resistance
η Viscosity
ηm matrix v.
ηd droplets/dispersed phase v.
ηap apparent v. of the blend
θ Polar angle
Λ Ratio of radii of smaller to larger droplet
λ Wavelength of droplet breakup
λm dominant w.; λ0 at t = 0

λr
Ratio of the magnitude of the strain rate tensor to the sum of magnitudes of the strain rate and
vorticity tensors

µ Parameter of Equation (66)
σ Interfacial tension
σef effective if.t.
τm Relaxation time
Φ(x, p),
Φ(x, p)

Functions in Equation (20) defined in [7]

ϕ Azimuth
φ Volume fraction of the dispersed phase
Ψ (λ, p) Function in Equation (17)
Ω Angular velocity tensor

ω(i, j)
Probability that a fragment formed by the breakup of a droplet of volume jV1 will have
volume iV1

EPR Ethylene-propylene rubber
PCL Poly(caprolactone)
PLA Poly(lactic acid)
PP Polypropylene
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72. Fortelný, I.; Jůza, J. Consequences of the effect of matrix elasticity on the rotation of droplet pairs for collision
efficiency. Colloid Polym. Sci. 2015, 293, 1713–1721. [CrossRef]
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