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Abstract: The combination of flexibility and semiflexibility in a single molecule is a powerful
design principle both in nature and in materials science. We present results on the conformational
behavior of a single multiblock-copolymer chain, consisting of equal amounts of Flexible (F) and
Semiflexible (S) blocks with different affinity to an implicit solvent. We consider a manifold of
macrostates defined by two terms in the total energy: intermonomer interaction energy and stiffness
energy. To obtain diagrams of states (pseudo-phase diagrams), we performed flat-histogram Monte
Carlo simulations using the Stochastic Approximation Monte Carlo algorithm (SAMC). We have
accumulated two-Dimensional Density of States (2D DoS) functions (defined on the 2D manifold of
macrostates) for a SE-multiblock-copolymer chain of length N = 64 with block lengths b = 4, 8, 16,
and 32 in two different selective solvents. In an analysis of the canonical ensemble, we calculated the
heat capacity and determined its maxima and the most probable morphologies in different regions of
the state diagrams. These are rich in various, non-trivial morphologies, which are formed without any
specific interactions, and depend on the block length and the type of solvent selectivity (preferring S
or F blocks, respectively). We compared the diagrams with those for the non-selective solvent and
reveal essential changes in some cases. Additionally, we implemented microcanonical analysis in the
“conformational” microcanonical (NV U, where U is the potential energy) and the true microcanonical
(NVE, where E is the total energy) ensembles with the aim to reveal and classify pseudo-phase
transitions, occurring under the change of temperature.

Keywords: flexible-semiflexible multiblock-copolymers; flat histogram Monte Carlo methods;
diagram of states; microcanonical analysis; pseudo-phase transitions

1. Introduction

The presence of flexible and semiflexible parts in a single macromolecule provides effective design
opportunities, widely used both in nature (silk, elastin, ionic channels in biological membranes) and
in technology to synthesize materials with unique properties [1-6]. Such complex systems contain
usually a huge amount of (macro)molecules; however, fast progress in nanotechnologies opens also
wide possibilities of applications on the level of single (macro)molecules. Globular single chain
nanoparticles [7,8] are a good example of such a perspective, and our studies in the present paper are
also related to this topic. At the same time, an important fundamental problem is to understand the
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role of the chemical structure of (macro)molecules and the microscopic details of interaction potentials
on the macroscopic properties of materials. One of the aspects of this fundamental problem is to reveal
the contribution of particular terms in force fields (e.g., steric repulsion, intermolecular van der Waals
interactions, electrostatic interactions, intramolecular stiffness, specific interactions, like, e.g., hydrogen
bonding, etc.) on a particular property of a (macro)molecular system. Such an understanding could
become the basis of new technologies for the targeted design of novel functional materials with desired
properties. In our studies, we focus on the role of intramolecular stiffness with an inhomogeneous
distribution along a polymer chain on the conformational behavior of this chain.

As has been shown by means of computer simulations, even such a simple system as a single
flexible-semiflexible macromolecule, i.e., a single multiblock-copolymer chain consisting of equal
amounts of Flexible (F) and Semiflexible (S) blocks, without any specific interactions in a non-selective
solvent (i.e., a solvent with equal affinity to monomer units of S- and F-types), demonstrates
a complicated phase behavior [9-11]. In the present work, we perform a similar study for the case
of a selective solvent (i.e., an implicit solvent that has different affinity to monomer units of types
F and S) with the goal to obtain single chain diagrams of states (pseudo-phase diagrams). For this
purpose, we have applied the Stochastic Approximation Monte Carlo (SAMC) algorithm [12-14], which
belongs similarly to the more widely-known Wang-Landau algorithm [15,16], to the flat histogram
Monte Carlo techniques [17]. The main aim of such simulation techniques is to obtain with sufficient
accuracy a valid estimation of the Density of States (DoS) function, which contains all information
about the thermodynamics of the system [17]. On the basis of the DoS, one can perform a canonical
analysis, i.e., calculate heat capacity Cy(T) and determine its maxima, which signalize structural
rearrangements in the system [18-20]. Because the microcanonical entropy is just the logarithm of
the DoS, one can also perform a microcanonical analysis, which allows revealing and classifying
pseudo-phase transitions [21-25]. The combined canonical and microcanonical analysis is a powerful
tool for statistical systems [26-32], and we have used such an analysis in this work.

The concept of “small globules” showing a large variety of different globular morphologies
in a single chain of finite length consisting of flexible and stiff segments was discussed for the
first time in [33]. Computer simulations of different models for single chains of multiblock
copolymers were performed in [34—41] to study morphological transitions, in particular the collapse
of flexible-semiflexible multiblock copolymers in selective solvents [36], the collapse of flexible
AB-multiblock copolymers in selective solvents [35,37-41], and the phase transitions in protein-like AB-
and HPmultiblock copolymers [34]. Furthermore, a self-consistent-field theory was developed in [42]
to study transitions in a rod-coil multiblock globule, and three different possible morphologies were
identified: cols, amorphous globules, and nematic Liquid-Crystalline (LC) globules. Our approach
allows for the determination of the statistical mechanical equilibrium behavior of such polymers over
an unprecedented range of temperatures, without resorting to a mean-field-like approximation.

Our paper is organized in the traditional way. We start with the description of our model,
simulation techniques, and methods of data analysis in Section 2. In Section 3, we discuss our results:
the pseudo-phase diagrams and morphologies that belong to different regions of stability. Finally,
Section 4 contains our conclusions.

2. Model and Simulation Techniques

2.1. Model

As in our previous study of a single SF-copolymer chain in a non-selective solvent [9],
we considered an off-lattice model of a chain with length N = 64, where monomer units were
hard spheres with diameter o = 1. The bond length I between adjacent monomer units (beads) can
vary freely within the range [0.80;1.250], i.e., there was no elastic energy on the bond length and
bonded beads were allowed to interpenetrate. Moreover, such a chain was self-avoiding because
the maximal bond length was smaller than /2 (simple geometrical analysis showed that two bonds



Polymers 2019, 11, 757 3 0f 20

between hard spheres can cut each other if the bond length is larger than /2). There were beads of
two types—S and F—taken in equal composition and forming blocks of length b, regularly alternating
along the chain. Beads S and F had different affinities to a solvent. Semiflexible S-blocks in addition
possessed a bending stiffness energy (an additional potential on valence angles between successive
bonds), while such bending potential was absent for the flexible F-blocks. The interaction potential in
our model had two contributions: the energy of volume (non-valent) interactions between monomer
units that are not neighbors along the chain, Eyy, and the bending energy, Es;. Both of these terms were
taken as square-well potentials, as shown in Figure 1.

Env Est
A A 0,,=150°
o, =170°
em\n emax
T
gf--- o

Figure 1. Non-valent square-well interaction potential (on the left) and stiffness square-well potential
(on the right).

The total bending stiffness energy of a chain is:
Est = €st - nst, 1)

where g is the number of valence angles lying in the energetically-favorable interval [fpin = 150°,
fmax = 170°] and the parameter e5; < 0 is the energy contribution from one valence angle in this
range (see Figure 1, right image). Such a stiffness potential enables helical, or slightly bent, or zig-zag
conformations to be formed, while a totally stretched chain (straight line) is energetically unfavorable.
The energy of non-valent interactions comes from the contacts between non-bonded monomer
units when their spatial distance lies within the cutoff radius Ryt = 1.50 of a square-well potential
(see Figure 1, left image). The presence of solvent was simulated implicitly via the interaction between
the monomers. We considered a selective solvent, i.e., the energy contributions from a single contact
between two S-beads, €55, between two F-beads, €, and between S- and F-beads, ¢, differed from
each other. As a unit of energy, we chose e = 1. These three interaction parameters are related to
each other according to Lorentz—Berthelot combining rules, i.e., [est| = /|ess| - |€g|. The case of the
non-selective implicit solvent (ess = € = €4 = €) for this model has been studied earlier in [9-11].
The total energy of non-valent interactions is given by:

Eny = €ss " Nss + &g - Mg + Egp - N, )

where 7145 is the number of contacts between two S-beads, n¢ is the number of contacts between two
F-beads, and ng is the number of contacts between two beads of different types, and in all three cases,
the non-valent interaction was calculated only for non-bonded pairs of monomers. Hence, the total
conformational energy U of a chain is:

U = Eny + Est = €ss - N1ss + €5 Ngp + Egf * Ngg + Egt * Nt - 3)

By varying &g, one can change the relation between the two contributions to the total conformational energy:.

We have considered two types of selective solvents, which differ from each other in the values
of the non-bonded energy parameters ¢, €5, and e: (1) “flexible blocks attract each other more
strongly”, e = —1, ¢ = —0.5 and s = —0.25; (2) “semiflexible blocks attract each other more
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strongly”, ess = —4, egf = —2 and e = —1. We use below the following short names for both of these
cases: (1) “F-attract-stronger”; (2) “S-attract-stronger”. Such a choice of the interaction parameters
means that in the case “S-attract-stronger”, we have increased the strength of intermonomer interaction
in comparison to the case of non-selective solvent [9], and in the case “F-attract-stronger”, we have
decreased this strength (for the case “F-attract-stronger”, we have actually used the values g = —4,
g = —2 and egs = —1 in order to keep E,y integer and, afterwards, rescaled the non-bonded energy
to the value given above by multiplying by a factor 0.25).

2.2. SAMC Technique

We carried out our simulations by means of the SAMC algorithm [12-14]. We divided the
configuration space of microstates (conformations) into regions containing microstates for a particular
“macrostate”, which we have defined by a pair of two energy terms (Eny, 1st) (assuming a given egt)
and accumulated the two-Dimensional Density of States (2D DoS) function g(Eny, #1st). The 2D DoS
function has essential advantages in comparison with the 1D DoS function, described and explained
in [9-11,43-45], although it is much more time consuming in simulations. We used two types of trial
Monte Carlo moves: a local displacement of a randomly-chosen monomer unit (uniformly in the
interval [—0.05;0.05] along each axis) and an “end-cut-and-regrow” move [11]. The probability to
accept a trial move from an “old” state (EQ, n9/4) to a “new” state (ERSW, ni€W) is:

nv 7
) ( EOld, nold)
paccept((Egl,d, nod) — (EREW, nD€W)) = min {1, gig( E f{%z“, nz‘:ew) p 4

and the 2D DoS function is modified for all macrostates (Eyy, n1st) after each trial move according to
the following rule:

In(g(Env, 1st)) = In(g(Env, 11st)) + Tt " O(Epy,ny), (ERSW new) ®)

st

a
7t = 70 - min (1, f) , ©)

where 7, ty are parameters and J is the Kronecker delta. Note that, if the trial move was not accepted,
the “old” state (both macro- and micro-) was taken as the “new” one. Recommendations concerning
the choice of the values of the parameters 7, o, as well as other technical aspects and tricks, which
one can apply while accumulating DoS functions by means of SAMC, were described in detail in [11].
Here, we only mention briefly that we have used an iterative procedure typically choosing vy = 1,
to = 103 Monte Carlo Steps (MCS) for the first iteration and o = 0.01, ty = 10* MCS for the second
iteration and, when needed, also with subsequent refinements. With the converged DoS, one can
perform a productive run and calculate average values of observables at a certain temperature T and
given gg (setting kg = 1):

1

<A> (T/ SSt) = Z(T, Est)

. Z Z(Erw, nst) . g(Erwr nst) - exp

Env st

@)

B Env + &st - 1t
T 7

where A(Eny, ngt) is the value of a quantity A, averaged over all of its values for microstates that
belong to the macrostate (Eny, #1st), and Z(T, €st) is the partition function:

Z(T,est) = ) 8(Eny,nst) €xp

Env,nst

. ®)

|:_ Eny +é&st - nst:|

For each of the 8 systems studied here (four block lengths for two types of a selective solvent),
we performed several (from 14-28) independent determinations of the DoS functions, while each
function was accumulated for at least 101° Monte Carlo Steps (MCS; one MCS included 2N = 128
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attempts of local moves and one attempt of “end-cut-and-regrow” move). Afterwards, an averaging
was performed over these independent DoS functions, and the average DoS was used in productive
runs for about 10'?

typically about 10%, with a lower bound of 10°).

MCS to accumulate the histograms of observable quantities (the sampling size was

2.3. Canonical Analysis

From the DoS, one can calculate the heat capacity Cy as a function of the temperature and stiffness
from the fluctuations of the total conformational energy U [46]:

2 2

Cvl(est/ess e/ T) = %TI = w )
The maxima of the heat capacity signalize structural rearrangements [18-20] of a chain under changes
of et and T. This specific heat profile Cy (est /e, €4/ T) gives a diagram of states (pseudo-phase
diagram for the finite length chains we are studying here), and the positions of specific heat maxima
separate regions of stability of different morphologies. In order to determine which morphology has
the highest probability in a particular region in the diagram of states, one chooses a point (es¢ /e, €56/ T)
inside this region and evaluates the probability distribution of macrostates (Eny, 71st) at this point:

Env + &st - nst:| (10)

1
P(Envi 1ist) leg, T=fixed = 7 * 8(Env, Mst) - exp {— T
then finds the macrostate(s) (E;,, 1), at which the function p(Eny, n1st) achieves its maximum or
maxima, and finally obtains in independent simulation runs conformations (microstates), which
correspond to those macrostate(s) (E},, 13)-
To classify the microstates morphologies, we have calculated also observables that characterize

the size and shape of a chain and the orientational ordering of bonds (for details, see [9-11]).

2.4. Microcanonical Analysis

A microcanonical analysis reveals and allows us to classify pseudo-phase transitions [21].
Results of such an analysis, carried out for different polymeric systems, can be found, for instance,
in the works [10,11,25,27,28,31,32,45,47-50]. However, one should note that traditionally, Monte
Carlo methods work in the configuration (conformation) space, so that the accumulated DoS is
the “conformational” one, and the notion “conformational” microcanonical (NVU) ensemble can
be used [51]. The authors of [25,45,50-52] demonstrated an approach to consider in Monte Carlo
simulations also the kinetic energy and to calculate the true microcanonical DoS depending on the
total energy.

In the “conformational” microcanonical ensemble, we calculated a 1D DoS g(U) (with the
argument being the conformational energy U) from the 2D DoS g(Eny, 1st):

g(u)lgst = Z g(Env/ Mgt) - (11)
(Env/nst)3

Envtese-nse=U

The inverse microcanonical temperature is the derivative of the microcanonical entropy
T-1(U) = dSg(U)/dU, where the microcanonical entropy (according to Boltzmann) [53] is the
logarithm of 1D DoS function, Sg(U) = In(g(U)). In Figure 2, we plot the dependence of the
inverse microcanonical temperature T~! on the total conformational energy U at fixed values of
stiffness parameter e for one particular system (the case “F-attract-stronger”, b = 16) in order to show
an example of the loops (Maxwell constructions) and inflection points, which provide information
about pseudo-phase transitions of first- and second-order, respectively [21]. The oscillations in the
curve for the inverse temperature at the highest stiffness values resulted from the large difference in
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energy scales between stiffness and non-bonded energy [10]. In order to determine the temperature
T* of a pseudo-phase transition precisely, one must plot the derivative dT~1(U)/dU, evaluate the
positions of its maxima U*, and get the transition temperature as T* = T(U*) (see Figure 3b).
In the case of a first-order-like transition, the maximum of the inverse temperature derivative at the
transition point is positive, dT~1(U)/dU y+ > 0, while for a second-order-like transition, it is negative
dT-1(U)/du u+ < 0. These results of microcanonical analysis for the case “F-attract-stronger”, b = 16
are also presented below in Figure 4c.

T-1
10 4 €™
—0
—_—1
8 —2
—4
64 — G
_—38
—10
4
_—15
— 20
2.
04
'2 T T T T T
-800 -600 -400 -200 0
U

Figure 2. Microcanonical analysis data for the inverse temperature as a function of the potential
(conformational) energy for the case “F-attract-stronger” (F, Flexible), b = 16. The different curves are
for different stiffness energies e¢t given in the legend.

However, if we investigate the behavior of a system in the true microcanonical (NVE) ensemble,
we must consider constant total energy E, which is the sum of the conformational and kinetic energies
of the system, i.e., E = U + K. The DoS g(E) at a fixed value of stiffness parameter ¢ can be
determined using [45]:

Unax ;
Y, (E-U)2g(WOeE-U)|, (12)

umin

g(E)le, =C [

where O(E — U) is the Heaviside step function, d is the number of degrees of freedom, and C
is a normalization factor. Thus, one can perform a calculation of the dependence of the inverse
microcanonical temperature on the total energy E of a chain at fixed values of eg:
_ dIng(E)
1 —
T (E) W~ T dE (13)
In [45], a third variant of microcanonical analysis was suggested. First, it is necessary to calculate
the conditional probability p(U|E) (also at the fixed value of stiffness ¢g) from the conformational
DoS g(U):
(E— )2 Yg()O(E - U)

o) (B - uni-igur)

p(U|E) = (14)
where the range of possible values of conformational energy U at fixed total energy of the chain E is

the following:
Unin < U < min(E, Unax) - (15)
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Using p(U|E), one can calculate the average conformational energy (U) at a fixed value of the total

energy E:
min(E,Umax)

(uyey= 3, U -pUlE). (16)
U'=Upin

Finally, one can plot the inverse microcanonical temperature T~!(E) vs. the average conformational
energy (U)(E).

In Figure 3, we plot on the same graph three different dependencies T~'(U), T~(E), T~ ((U)(E))
for one particular system, and on the basis of comparison, we can conclude the following. Just like
in [45], T~1({U)(E)) did not show the oscillations present in T~1(U) at relatively high values of
stiffness €5t due to the smoothing effect of the convolution with the kinetic energy in Equation (12).
The temperatures of pseudo-phase transitions, however, remained unaltered. In some cases, one can
observe a change of the transition order (see Figure 3b) going from an analysis based on g(U) (giving
a first-order-like transition) to on- based on g(E)(indicating the same transition as second-order-like),
again due to the convolution with the kinetic energy. Assignment of phase transition orders for finite
(and small) systems is always tentative, and finite size effects can influence the order of the observed
transition. One would expect such differences between the conformational and true microcanonical
ensembles to vanish with increasing system size (i.e., chain length). This discussion should make the
reader aware that the assignment of phase transition orders, which we will discuss in the next section,
can be method dependent and have to be taken with a grain of salt.

T
2.5 - . ) derivative(T-'(U))
) _ derivative(T(<U>(E
e cee TE) 0.08 (T (<sU>(E)))
2.0+ % S T-1(<U>(E))
0.06
1.5 4 —_
b 0.04 !
1.0 4 2
S 0.024 /\
=
J )
L2 T 0.00 2
2 -
0.0 0.02 4 Q \
-0.5 T T T T T T T T 1 -0.04 T T T T 1
-900 -800 -700 -600 -500 -400 -300 -200 -100 O -850 -800 -750 -700 -650 -600
Energy Energy
(a) (b)

Figure 3. Results of microcanonical analysis for the case “F-attract-stronger”, b = 16, et = 20:
(a) dependence of the inverse microcanonical temperature on the energy, which is either the total
energy, E, or the conformational (potential) energy U, or the average conformational energy at a given
value of the total energy, (U)(E); (b) first derivatives of the dependencies T~!(U) and T~ ((U)(E)).

3. Results and Discussion

In Figures 4 and 7, we present our main results: the diagrams of states as functions of normalized
stiffness, st/ €, and normalized inverse temperature, e/ T, for a single multi-block copolymer
chain of the length N = 64. Figure 4 is for the case “F-attract-stronger” and Figure 7 for the case
“S-attract-stronger”. Parts (a)—(d) are for block lengths b = 4,8,16, and 32, respectively. The color
coding is according to the value of the specific heat, and the symbols denote the locations of local
maxima in the specific heat, determined in two ways. Firstly, when we go along the /T axis normal
to the es/¢e¢ axis, we identify the maxima in temperature dependencies of Cy(T) at fixed values
of est, which indicate either true pseudo-phase transitions or some structural rearrangements that
change the energy, but do not change the symmetry of a morphology [9] (these points are denoted
in the diagrams by empty black squares). Secondly, when we go in the orthogonal direction, we find
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maxima for Cy (&st) at fixed values of T, which indicate morphological changes when the model itself
(in particular, the ratio of stiffness to contact energy parameters) is changed, i.e., by increasing the
stiffness at fixed temperature, we can cross over from the behavior of flexible chains to the behavior of
semi-flexible chains (these maxima are denoted by open stars with magenta contour lines). Within the
regions delineated by the projected maxima, we have identified the most probable macrostates (E},, 1)
using Equation (10) and obtained the corresponding microstates (conformations) in extra simulation
runs. Selected conformations in different regions on the diagrams are illustrated in Figures 5 and 8§,
respectively, and in all of them, semiflexible blocks are blue and flexible ones red.

For each case, we performed a microcanonical analysis in the “conformational” microcanonical
(NVU) and in the true microcanonical (NV E) ensembles, but we present these results only for the case
of b = 16 in both selective solvents in Figures 4c and 7c, where the large open rhombs with a thick
green contour line indicate first-order-like transitions and the white circles indicate second-order-like
transition points.

Before discussing these pseudo-phase diagrams in detail, we describe here the general principles
that we have used to denote different morphologies of a single polymer chain. For classification of
morphologies of a single copolymer chain, we have used five different hierarchical criteria: (i) the
gyration radius calculated for the whole copolymer chain and separately for its components, which
helps to distinguish random coils from dense compact globules; (ii) the number of contacts between
monomers as a good order parameter to study the liquid—solid globule transition [54,55] because it
allows distinguishing a liquid packing of monomer units from a crystalline packing even in the case of
small globules (where traditional methods, like static structure factor analysis, do not work because of
the small size of the objects); (iii) shape parameters determined from the eigenvalues of the gyration
tensor, which help to identify spheres, oblate ellipsoids (disks and toroids), and prolate ellipsoids
(cylinders) for any clusters of monomer units inside a single chain conformation; (iv) orientational
ordering of bonds, which allows distinguishing isotropic and anisotropic (i.e., Liquid-Crystalline
(LQ)) structures [9,55-58]; and (v) local concentration (and/or the number of contacts between
beads of different types), answering the question whether S- and F-beads are mixed or demixed
from each other. Actually, as we will see, in a selective solvent in all globular structures, S- and
F-blocks were demixed. For a copolymer chain, one can calculate separately all above-mentioned
physical quantities for monomer units of different types. As in our paper on a single SF-copolymer in
a non-selective solvent [9], we used the radius of gyration, the number of contacts, and orientational
ordering as the main criteria for our classification to recognize morphological classes of coils (I),
isotropic globules (II), and anisotropic globules (III). We used all five criteria to distinguish smaller
differences inside the morphological class of anisotropic globules (III). We have tried, on the one
hand, to follow our previous classification for non-selective solvent in order to be able to perform the
comparison and to highlight new trends in the most clear way and, on the other hand, to include all
new topologically-different structures.

We will consider in the next subsections the pseudo-phase diagrams in more detail, but we
give here the list of conformational types that we have found for both cases of selective solvent
(“F-attract-stronger” and “S-attract-stronger”) in order to present an overview and simplify the
understanding of all diagrams (examples of all conformations are shown in Figures 5 and 8):

1. The Roman number I stands for coils:

(a) Ia=Dblocks of both types (F- and S-blocks) are coils;
(b) Ib = F-blocks are coils, while S-blocks are extended.

2. The Roman number II indicates isotropic globules:

(a) Ia =liquid isotropic globule (F-core-S-shell or S-core-F-shell for the corresponding types of

selective solvent);
(b) 1IIb = frozen (solid) isotropic globule (F-core-S-shell or S-core-F-shell for the corresponding

types of selective solvent);
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(c) IIc="flower-like” globules and “tadpoles”, where only the flexible blocks are collapsed and
aggregated into a single globule, while the semiflexible blocks form loops or tails.

3. The Roman number III designates anisotropic globules:

(a) IIla =dumbbell globules, i.e., bundles of S-blocks forming a cylinder-like core (resembling

a handle) with “caps” of F-beads at both ends of this handle;
(b) IIIb = “tennis rackets”, i.e., globules where the S-blocks form this structure, while the

F-monomers aggregate onto the shape defined by the S-blocks
(c) Ilc = lamellar globules with the shape of prolate ellipsoids and with nematic ordering of

S-blocks, but without folds inside S-blocks;
(d) IId = Saturn-like globules with an F-core and a toroidal S-shell;
(e) IIle = lamellar-like globules of the S-core-F-shell type with nematic ordering of S-blocks

(and maybe also with translational ordering in the case of frozen globules) and with different
numbers of folds in the S-blocks (leading to different numbers of S-stems in the core).

The following transitions between these morphologies are observed:

e Ja-Ib =no pseudo-phase transition can occur because this is just an sign. extension of semiflexible
blocks, but there can be a maximum in the temperature dependence of the heat capacity
(see below);

e la-Ila = coil-globule transition (second-order-like pseudo-phase transition from a coil to a liquid
isotropic globule);

e Ib-Ilc = collapse and aggregation of several liquid isotropic globules of F-blocks, while the
S-blocks still stay extended (we found that the collapse of F-beads was always accompanied by
their aggregation and therefore was registered as a first-order-like pseudo-phase transition);

e Ila-IIb = liquid-solid globule transition (first-order-like pseudo-phase transition from a liquid to
a frozen globule);

e  [-III = transitions between coils and globules with orientational ordering of bonds are usually
first-order-like pseudo-phase transitions because they are accompanied by the generation of LC
order (e.g., the formation of toroidal structures or the formation of bundles of stems);

e  [I-III = transitions between isotropic and anisotropic globules are usually first-order-like due to
some underlying LC transitions;

e [III-III = transitions between anisotropic globules with different types of symmetry in bond
ordering could be both first- or second-order-like depending on the nature of the underlying
structural changes.

After these preparatory explanations, we are ready to present our results on pseudo-phase
diagrams for different solvent qualities.

3.1. Diagrams of States for the Case “F-Attract-Stronger”

We have collected the pseudo-phase diagrams for four values of block length in Figure 4 and
made a separate figure with snapshots of all types of morphologies (Figure 5). The diagrams of states
for all four block lengths include the regions of coils (Ia) and coils with extended S-blocks (Ib), isotropic
liquid (IIa), frozen (IIb) and “flower-like” (Ilc) globules, and anisotropic globule (III) with several
different types of intraglobular ordering: dumbbell globules (Illa), “rugby ball”-like lamellar globules
(IlIc), and “Saturn”-like globules (IIId). All globules were of the F-core-S-shell types, and in all globular
morphologies, S- and F-beads were segregated. At low stiffness, we observed the usual sequence
of transitions from coil to liquid globule and then to solid globule upon decreasing temperature.
Because the energy of interaction was decreased in comparison to the case of non-selective solvent [9],
both the coil-globule transition and liquid—solid globule transition were shifted to lower temperatures,
i.e., the coil-globule transition from e /T ~ 0.5 in non-selective solvent to /T ~ 0.7 — 0.8, and the
liquid—solid transition from eg /T ~ 4.0 in non-selective solvent to e¢/ T ~ 4.3 — 4.5. This is valid for all
block lengths. The diagrams in Figure 4 are in general quite similar to those in the case of non-selective
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solvent [9]; however, there were several differences. Although most structures were essentially the
same, some of them were gone (e.g., an S-core-F-shell globule was not stable), and some new structures
appeared (e.g., the “flower-like” globule, Ilc). Let us specify the differences in more detail.
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Figure 4. Diagrams of states for the case “F-attract-stronger” for a chain of length N = 64 and block
lengths (a) b =4, (b) b =8, (c) b = 16, and (d) b = 32. The colors encode the specific heat values.
The numbers denote the following morphologies: I: coil (blocks of both types are coils, Ia, and F-blocks
are coils while Semiflexible (S)-blocks are extended, Ib); IIa: liquid isotropic globule; IIb: frozen isotropic
globule, Ilc: F-blocks are collapsed and form a single F-globule; Illa: dumbbell globule; Illc: “lamellar”
globule with no folds in S-blocks, IIId: Saturn-like globule. Open squares indicate maxima in the
dependencies of Cy(T) at fixed values of €g; open stars with magenta contour lines indicate maxima in
the dependencies of Cy (est) at fixed values of T. Large open rthombs with a thick green contour line
and white circles in (c) indicate the results of microcanonical analysis (see the text and Figures 2 and 3).
Snapshots of selected conformations are shown in Figure 5.

In the case of a non-selective solvent [9], we did not distinguish two different sub-classes of coils
(Ia and Ib) and joined them into a single coil structure (I), although the line of heat capacity maximum
between structures la and Ib was also visible on those diagrams of states, as well. Upon increasing
that stiffness at the same value of temperature, the F-blocks stayed in the coil state, while the S-blocks
extended in such a way that all valence angles fell in the energetically-favorable interval (Region
Ib). This did not happen collectively, so it is not a pseudo-phase transition, but for each bond angle
individually. The bond angles constituted a two-level statistical system giving rise to the maximum of
the specific heat between Regions la and Ib by virtue of a Schottky anomaly [59,60].
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Figure 5. Selected conformations (Ia, Ib, Ila, IIb, Ilc, I1la, IIIc, IIId, indicated for each snapshot) for the
case “F-attract-stronger”. Conformations Ia, Ib, Ilc, and IIId are shown for a copolymer chain with
block length b = 16. Conformations Ila, IIb, and Illa are for b = 8; Conformation Illc is for b = 4. Beads
of S-blocks are blue; beads of F-blocks are red.
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Morphology Ilc is a new pseudo-phase in comparison to the case of non-selective solvent.
The collapse of F-blocks and their aggregation in our model and for the values of parameters that
we have studied (including the total chain length) always took place together. “Pearl-necklace”
conformations where the extended coils of S-blocks connected separate globules of F-beads existed,
but they were metastable in all regions on pseudo-phase diagrams. The morphology Ilc was
present in the pseudo-phase diagrams (as a stable microstate in a separate region) only for the case
“F-attract-stronger” and block lengths b = 8, 16, and 32.

A “half-moon”-like structure (IIIb), which was identified in a non-selective solvent [9] as
a liquid globule with some orientational ordering of S-blocks on the surface of an F-core, was not a
separably-identifiable structure here, but by slight deformations, went up in Classes Ilc, I1Id and IIlc.
We use the designation IIIb now for the “tennis rackets”, which had a region of stability (although
a very narrow one) only in the case “S-attract-stronger” and b = 32 (see Section 3.2). Region Illa of
the dumbbell globules was present only for shorter blocks (b = 4 and 8) and included also “squeezed
dumbbells”, which we have identified previously as a separate morphology in the case of non-selective
solvent [9]. In contrast to that case, now, F-beads from the “caps” typically penetrated quite deeply
into bundles of S-blocks in order to win additional contact energy.
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Morphologies Illc for block length b = 4 looked like “rugby balls” (where the F-core was
covered by co-directional stems or helices of S-blocks on its surface). These structures were similar
to lamellar-like globules Illc in the case of non-selective solvent [9]. On the boundary between Areas
IIIa and Illc, stiffness energy and intermonomer interaction energy were about equally important.
Upon the decrease of temperature, contacts of flexible blocks with flexible ones won, because of their
four-times higher energy contribution. For block lengths b = 8,16, and 32, Morphology Illc was
nowhere stable. Morphology IIId (Saturn-like globules) was more densely packed in comparison to
the same morphology in non-selective solvent [9], because now, the contacts between S- and F-beads
were more energetically favorable than the contacts between F-beads.

For block length b = 8 at high values of stiffness es¢/e¢s > 10 upon decreasing temperature,
firstly, we observed a dumbbell-like structure (Region Illa) as the most stable. At lower temperatures,
the contribution from the energy of flexible-flexible intermonomer contacts won: flexible blocks
formed the kernel, and semiflexible blocks were forming loops (“flower ”-like morphologies, Ilc) or
wrapping around in a toroidal fashion at lower temperatures (“Saturn”-like globules, IIId). On the
boundary between Areas Illa and Ilc, one can clearly see a high maximum in the specific heat resulting
from a competition between the stiffness energy and the energy of monomer-monomer interactions.
Only for block length b = 8 at high stiffness, we observed the sequence of transitions Ib-Illa-Ilc upon
decreasing temperature. In comparison to the case of non-selective solvent, the transition IIla-Ilc-IIId
became more pronounced (the specific heat maximum became higher), because the transition Illa-IIc
was now more related to the aggregation (of two F-“caps”) and a “core inversion” transition, while the
transition IIc-1IId was related to “corona-onto-core” adsorption (see below).

For b = 16 and b = 32, an important difference from other cases (both non-selective solvent and
selective solvent for short blocks b = 4 and b = 8) is that there was no Region Illa of stability of the
dumbbell-like globule, so that the sequence of transitions at high stiffnesses was Ib-Ilc-IIId. For these
transitions for b = 16 and &5 = 20, we present in Figure 4c also the results of a microcanonical analysis
(Figure 3) showing that there was a first-order-like transition Ib-Ilc around ¢ /T = 1 (which is the
aggregation of two F-globules) and a second-order-like transition Ilc-IIld around e¢ /T = 2 (there were
two close points, indicating a broad transition with some intermediate states), marked on the diagram
in Figure 4c by rhombs and circles correspondingly. In the case of non-selective solvent [9], we have
also observed the first-order-like transition between Illa (dumbbell) and IIId (Saturn), similarly to
the present case of selective solvent (and this is well compatible with the interpretation in terms of
aggregation transition and/or “core inversion”, which is a quite significant rearrangement of the
structure, with changing of the “morphological symmetry”). For b = 32, there was a very high
maximum of the specific heat at e/ T ~ 2, and this was the Ilc-IIld transition accompanied by the
adsorption of the S-corona onto the F-core.

The diagram for b = 32 was also interesting because of the absence of two transition lines, the one
between Regions la and Ila and the one between Regions Ib and Ilc. The Ia-Ilb transition was the
usual coil-globule transition, which for this case, did not register as a maximum in the specific heat,
but was visible with the dependence of the order parameter of this transition (the radius of gyration
of the chain) as a function of temperature. The reason for the vanishing of the specific heat peak can
be easily understood: growth in ng, g and ng numbers of contacts occurred at slightly different
temperature values. Consequently, the maxima of the specific heat contributions for these three terms
in the total contact energy were shifted slightly with respect to each other, so that the maximum on
the total specific heat was completely smeared out. Figure 6a shows the temperature derivative of the
squared gyration radius of the whole chain and of both blocks, separately. The maxima were located
ateg/ T =~ 1.3 for the semiflexible block and for the whole chain, while the maximum for the flexible
block was located at ¢/ T ~ 0.6, and it was visible only as a shoulder on the total curve.
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Figure 6. (a) Temperature dependence of the derivative of the squared gyration radius of the whole
chain and of each block separately for b = 32 for a flexible copolymer (e5; = 0). (b) Temperature
dependence of the squared gyration radius for a semiflexible copolymer (es; = 20). Both figures are for
the case “F-attract-stronger”. Data for the whole chain are denoted as F + S, and data for beads of each
type separately are denoted as F and S, respectively.

The transition Ib-Ilc for a semiflexible chain (e5; = 20) was absent in the specific heat data for
block length b = 32, while it was present and of first-order for b = 16. It was again observable
in the dependence of the radius of gyration on temperature, and we show this in Figure 6b for the
whole chain and for both blocks separately. One observes an extension of the S-block at e¢/T ~ 0.2
accompanied by a smoother collapse of the F-block (this is the Ib-Ilc transition), followed by a very
sharp collapse of the S-block at g/ T ~ 2.0 (this is the IIc-IIId transition).

3.2. Diagrams of States for the Case “S-Attract-Stronger”

We have collected the pseudo-phase diagrams for four values of block length in Figure 7,
and Figure 8 shows snapshots of all types of morphologies. The diagrams include the regions of stability
of the following morphologies: coils where blocks of both types were coils (Ia) and F-blocks were
coils while S-blocks were extended (Ib); isotropic globules—liquid isotropic globule (Ila) and frozen
isotropic globule (IIb); anisotropic globules—dumbbell globule (Illa), “tennis racket”-like globule (IIIb),
lamellar globule with fully-extended S-blocks (Illc), “Saturn”-like globule (IIld), and lamellar globule
with sharp folds inside the S-blocks (Ille). These diagrams are best understood by a comparison
to the case of semiflexible homopolymers [32,43,55-58] because here, both large energy scales were
associated with the S-blocks, and the collapse of these defined the resulting morphologies: toroids,
cylinders, tennis rackets. The F-blocks just followed those motifs and adjusted themselves to them
in the best possible way to minimize the energy. There was a competition between contact energy
and bending stiffness in compact globular structures, because contacts between the S-beads were
favorable, but the bending stiffness energy can become unfavorably large. Short S-blocks collapsed to
cylinder-like bundles, because they did not need to bend during such an aggregation of blocks, while
long S-blocks collapsed to toroids.
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Figure 7. Diagrams of states for the case “S-attract-stronger” for a chain of length N = 64 and block
lengths (a) b =4, (b) b =8, (c) b = 16, and (d) b = 32. The colors encode the specific heat values.
The numbers denote the following morphologies: I: coil (blocks of both types are coils, Ia, and F-blocks
are coils while S-blocks are extended, Ib); Ila: liquid isotropic globule; IIb: frozen isotropic globule;
IIIa: dumbbell globule; IlIb: “tennis racket”; Illc: “lamellar” globule with no folds in S-blocks; IIId:
Saturn-like globule; Ille: lamellar globule with folds in S-blocks. Open squares indicate maxima in the
dependencies of Cy(T) at fixed values of &s; open stars with magenta contour lines indicate maxima
in the dependencies of Cy (¢st) at fixed values of T. Large open rhombs with a thick green contour
line and white circles in (c) indicate the results of microcanonical analysis (see the text). Snapshots of
selected conformations are shown in Figure 8.

The topology of the pseudo-phase diagrams for all block lengths, except b = 4, was different from
that for the case of non-selective solvent [9], but it was quite similar to the topology of the diagram of
states for a single semiflexible homopolymer chain [55]. The main difference in topology lied in the
presence of horizontal lines indicating the morphology changes Illc-Ille and IlId-Ille, i.e., between
conformations having different numbers of sharp folds inside the S-blocks. Almost all globules were of
the S-core-F-shell types, although F-core-S-shell globules were also formed for long blocks b = 16 and
b = 32 at high values of the stiffness parameter: these were toroids from S-blocks, Saturn-like globules
IIId, but with more dense packing, i.e., more tight wrapping of S-blocks around the F-core to win the
contact energy. The beads of S- and F-type were separated from each other in all globular structures.
The parameter values for the non-bonded interactions were equal to |ess| = 4; |esf| = 2; |ege| = 1,
i.e., the energy of interaction was increased in comparison to the case of non-selective solvent [9],
and therefore, both the coil-globule transition (Ia-Ila) and liquid-solid globule (Ila-IIb) transition were
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shifted to higher temperatures: the coil-globule transition was shifted from e¢/ T ~ 0.5 to about 0.2
and the liquid—solid transition from e/ T ~ 4.0 to about 1.0. Region Ilc of “flower-like” globules was
not present on the diagrams. In contrast to the case of non-selective solvent or the “F-attract-stronger”
case, for which the maximal value of stiffness parameter & at which any changes in the state diagram
topology can still be observed was about 20, in the case of “S-attract-stronger”, this value was larger
(it was about 80 for b = 16 and 32).

L )

228, o2
Tla) ] :

Ib) . ) % TIc)

IIIb) T1d) Ile) %

Figure 8. Selected conformations (Ila, IIb, IIla, ITIb, Illc, I1Id, IlIe, Ille’ indicated for each snapshot) for
the case “S-attract-stronger”, for block lengths b = 4, 8,16, 32 (in rows from top to bottom). Beads of
S-blocks are blue; beads of F-blocks are red.

Ile’) o

The structure in Area Illa was the dumbbell globule. It was present for block lengths of 4, §,
and 16, but was absent for the block length of 32. The F-beads were not really forming cups here,
but were quite deeply embedded into the cylindrical core of the S-beads, in contrast to the case
of non-selective solvent [9] and similar to the above discussed opposite case of stronger attraction
between F-beads. The S-blocks in cylindrical core can also twist. We observed a very narrow region of
stability of morphology IIIb, i.e., “tennis rackets”. These conformations were most favorable for b = 32
at high values of the stiffness parameter in a very narrow temperature interval. Morphologies Illc
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were “twisted cylinder ”-like globules where twisted bundles of straight or helical stems of S-blocks
formed the cylindrical core, which was densely and uniformly covered by a F-shell. They were present
for block lengths b = 4,8, and 16. These structures also were similar to lamellar-like globules Illc in
the case of non-selective solvent [9] in the same respect as mentioned in Section 3.1 above. For a large
block size, those lamellar globules in non-selective solvent had some kinks in the S-blocks, and such
structures belong now to Class Ille. For b = 4, there was no difference between Structures Illc or Ille
(i.e., from the point of view of classification criteria, both of these notations can be applied to those
structures). In Regions IIId (“Saturn”-like globules). the toroidal S-shell squeezed the F-core more
strongly than in the “F-attract-stronger” case.

For block lengths b = 8,16, and 32, we added the notation Ille’ for the region of stability of globules
with the cylindrical S-core as a bundle of locally-extended, orientationally-ordered, and folded S-blocks
and a quite loose F-shell with a small number of contacts with S-beads in the core (to designate
them from the structures where both the S-core and F-shell were dense and close to each other,
having the maximum number of contacts). The Ille’-Ille transition was an adsorption transition of
a F-corona (F-shell) onto a S-core. This transition was in some sense similar to the IIla—IIlc transition
(two F-"caps” in Illa can be considered as a loose F-shell with a small number of contacts with S-beads,
while the F-shell covered quite densely the surface of the S-core in Illc). The most stable structures
in III (all IITa—IIIc-IIId-IIle) had some indications of helical conformations (helicity), which was a
consequence of our choice of stiffness potential. Lastly, we note that the morphologies IlIb and Ille had
their own regions of stability on pseudo-phase diagrams only in the case “S-attract-stronger”.

For b = 16, we performed the microcanonical analysis and plotted the lines of first-order-like
(marked by rhombs) and second-order-like (marked by circles) pseudo-phase transitions on the
diagram of states in Figure 7c. The transition Illa-Illc was a first-order-like transition (because it
was in some sense similar to aggregation of separate F-globules or to corona-onto-core adsorption).
Upon further decreasing the temperature, we obtained “Saturn”-like globules (Region IIId), which
were also separated from Illc by a quite high maximum of the specific heat, indicating a quite strong
transition, and this was understandable because there was a quite strong symmetry breaking (“core
inversion”). In the microcanonical analysis, the Illc-IIld transition was indicated as second-order-like.
There was also a heat capacity maximum at very low values of stiffness (es; < 10) at the inverse
temperature around one, where the freezing transition from liquid globule Ila to the frozen globule IIb
took place. In this region of the diagram, according to the microcanonical analysis data, there was an
inflection point on the dependence of inverse microcanonical temperature on the total energy.

Furthermore, in this “S-attract-stronger” case, we noted the absence of a specific heat maximum
for the coil-globule transition for b = 32 (Figure 7d), because with respect to this transition at low
stiffnesses, the cases of both solvents were essentially identical. In the case “F-attract-stronger” for
a semiflexible chain with b = 16 at &5t = 20, there was a Ib-Ilc transition (Figure 4d), which was
not visible in the specific heat, but well visible in the gyration radius (Figure 6b); while for the case
“S-attract-stronger”, the topology of the diagram of states was significantly different, and there was
a transition between Structures Ib-IIIb-IIId in the corresponding interval of inverse temperatures at
high stiffness values (es; = 80), which is well visible both in the specific heat and in order parameters.

4. Conclusions

We have demonstrated that even such a relatively simple system as a single macromolecule
of regular semiflexible-flexible SF-copolymer in an implicit selective (for blocks S and F) solvent
demonstrates a complicated pseudo-phase behavior, showing regions of stability of quite nontrivial
globular structures. Flat-histogram Monte Carlo methods allowed obtaining the pseudo-phase
diagrams, i.e., to find all types of morphologies and to analyze their stability under particular external
conditions, as well as transitions between them.

We have considered two different types of a selective solvent: in one of them, F-beads attract
each other more strongly, and in the other one, S-beads attract each other more strongly. In both
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cases, there were different interesting globular morphologies among the pseudo-phases we observed.
If flexible beads attract more strongly, there would only be small changes in the pseudo-phase diagrams
in comparison to the case of non-selective solvent [9], and the pseudo-phase transitions lines looked
essentially the same. However, for the case “S-beads-attract-stronger” for block lengths b = 8, 16,
and 32, one can observe an essential change of topology of the diagrams of states, which become quite
similar to those for a single semiflexible chain [55]. This happens because the phase behavior in this
case was mainly influenced by the semiflexible S-blocks, while the role of the flexible F-blocks was just
to arrange themselves around the S-blocks to increase the favorable contacts (although, the presence of
the F-blocks also led in turn to some adjustment of the structure of the S-blocks, of course).

The case “S-beads-attract-stronger” seems to be the more interesting with regard to the more
complicated phase behavior of the chain, because in this case, under the decrease of temperature
and under the changes of the bending stiffness, a competition between two contributions in the
conformational energy took place: on the one hand, it is energetically preferable for a chain to form as
many contacts between S-beads as possible, folding into compact squeezed structures, but on the other
hand, compact folded structures of individual S-blocks are energetically unfavorable from the point of
bending stiffness. A good compromise between contact and stiffness energy is produced by toroidal
and helical packings of S-blocks.

It is well known that a (pseudo-)phase diagram depends strongly on the model under study.
In our model, the relevant parameters were the chain length, the block length, the intrachain stiffness,
and the intermonomer interactions between beads of two types. We have demonstrated how the
competition of energy terms can lead to the appearance and stability of quite interesting, non-trivial
morphologies. From the state diagrams, one can learn how to target the single chain morphology by
the specific design of the primary structure and the choice of parameters. Such primary sequences
with desired interactions should be easily synthesizable using appropriate sequence design schemes.

Objects, investigated by means of computer simulations, are always “small”, and for this reason,
it is of importance to take into account the influence of finite size effects on the phase behavior [61].
At the same time, however, one should also keep in mind that there are many fundamentally interesting
and practically useful phenomena happening only in “small” systems, also experimentally.

Our results in this paper can contribute to developing new approaches for the targeted design of
desired single chain objects, e.g., targeted synthesis of a multiblock-copolymer chain that is able to
adopt several non-trivial conformations, which could be suitable to perform some function, and to
switch between these conformations when external conditions are changed.
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