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Abstract: The aim of the present paper is to analyse the differences between tube-based models
which are widely used for predicting the linear viscoelasticity of monodisperse linear polymers, in
comparison to a large set of experimental data. The following models are examined: Milner–McLeish,
Likhtman–McLeish, the Hierarchical model proposed by the group of Larson, the BoB model of Das
and Read, and the TMA model proposed by the group of van Ruymbeke. This comparison allows us
to highlight and discuss important questions related to the relaxation of entangled polymers, such
as the importance of the contour-length fluctuations (CLF) process and how it affects the reptation
mechanism, or the contribution of the constraint release (CR) process on the motion of the chains.
In particular, it allows us to point out important approximations, inherent in some models, which
result in an overestimation of the effect of CLF on the reptation time. On the contrary, by validating
the TMA model against experimental data, we show that this effect is underestimated in TMA.
Therefore, in order to obtain accurate predictions, a novel modification to the TMA model is proposed.
Our current work is a continuation of earlier research (Shchetnikava et al., 2014), where a similar
analysis is performed on well-defined star polymers.

Keywords: rheology, entangled polymer melts, tube model, linear chains

1. Introduction

Currently, the theory of de Gennes, Doi and Edwards is considered to be the most advanced set
of ideas in the physics of entangled polymers [1,2]. It replaces the complex system of linear polymer
chains with a mean-field approach, employing the concept of a tube in order to represent the molecular
environment of an entangled chain. Due to the simplifications it offers, the theory of de Gennes,
Doi and Edwards, provides a powerful tool for applying rheology as an analytical method in industry,
and the majority of research within the field of rheology follows this widely-accepted theoretical
picture in order to describe the dynamics of macromolecules [3–8].

De Gennes [1] was the first to simplify the complex many-body problem of a large number of
interacting polymer chains diffusing in a melt. His strategy was to introduce a mean-field approach
by reducing the many-body problem (all chains) to a one-body problem (“test” chain) in an average
effective field. The topological constraints imposed by the surrounding chains on the “test” chain are
assumed to be equivalent to the tube, in which the “test” chain is confined since it cannot move in the
direction perpendicular to the tube axis. At equilibrium, the tube is assumed to be a random Gaussian
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walk consisting of Z steps of length a and average length L = Za [2]. Nevertheless, when a rapid
strain is imposed on the melt, the tube is deformed and the assumption of the random walk is not
valid anymore. The following relaxation towards equilibrium occurs via a change in the configuration
of the tube which confines the “test” chain. By wriggling back and forth, the chain vacates parts of
the original deformed tube and the stress linked to those portions is “forgotten”. In other words,
the chain is forced to relax its stress by reptation, that is curvilinear Brownian motion along the tube
axis. Therefore, the unreleased stress in the system, G(t), is proportional to Ψ(t), the fraction of the
initial tube that remains occupied by the chain at time t.

Originally, the tube model was designed to describe the motion of a long polymer chain in a
fixed cross-linked rubber network [1]. Further development of the concept of reptation by Doi and
Edwards [2] led to a full theoretical framework which is a cornerstone of the field of rheology of
monodisperse linear entangled melts. To explain and fix some drawbacks in the predicted results
several relaxation mechanisms were subsequently added to the reptation theory. For instance, the time
it takes for the chain to diffuse out of the initial stressed tube τd was predicted to be proportional to the
molecular mass M as M3, while experimental data showed a τd ∼ M3.4 dependency [9]. The physical
origin of this difference was explained later as some subsidiary relaxation process, which is faster than
reptation [10]. This process is called primitive-path or contour-length fluctuations (CLF), according
to which, due to Brownian motion, the ends of the chain can wrinkle quite some distance inside the
tube, thereby vacating part of the tube end. When one end is pulled out back, it occupies a new
random tube segment and part of the stress associated with the end of the original tube is lost. Thus,
the contour length of the chain L fluctuates around the value <L>. Doi [11,12] performed the first
calculation of CLF and analysed their effect upon reptation. The essential point of Doi’s arguments is
that CLF reduces the reptation time τd for medium-sized chains (number of entanglements Z < 100).
His explanation is based on the idea that if the chain ends fluctuate rapidly over a distance ∆L,
the chain needs to reptate only over a distance L− ∆L. As a result, the correction due to the contour
length fluctuation is of the order of 1/

√
Z and the impact of the CLF reduces as the chain length

increases. Different estimates of the CLF effect were later obtained by des Cloizeaux [13], Milner and
McLeish [3], and Likhtman and McLeish [4]. An alternative view on the origin of 3.4 exponent for
τd was also proposed by Liu et al. [14]. Their results indicate that the motions of surrounding chains
have a significant influence on the latter dependency and the contribution of CLF to the τd scaling is
quite weak.

Another mechanism, which needs to be taken into account, is the constraint release (CR) process,
which emerges from the mobility of the surrounding chains. It is also included in the original tube
theory [15]. Chains that form the tube of the “test” chain are moving as well in their own tubes. Thus,
the tube itself evolves in time by releasing the topological constraints on the “test” chain and allowing
the latter one to move on a large scale perpendicular to the tube axis. Marrucci [16] proposed that
the process of constraint release speeds up the relaxation of the melt, considering that the relaxed
portion of the chain behaves as solvent for the unrelaxed part of the molecule. CR is then modeled
through “dynamic tube dilation” (DTD) [5,15,17] as well as “CR-Rouse motion” [15,18]. Within this
framework, the relaxation modulus is given as G(t) = G0

NΨ(t)Φα(t), where Ψ(t) is the fraction of
the material which is not yet relaxed, and Φ(t) is the volume fraction which corresponds to the tube
diameter such that a(t) = a0Φα/2(t). Under the assumption that an entanglement is formed by two
chains, the dynamic dilution exponent α becomes 1. On the other hand, Colby and Rubinstein [19]
suggest that α should equal 4/3 by considering that an entanglement is formed by some fixed number
of binary contacts between the chains. It is important to note here that constraint release effects are
also present in monodisperse samples. Indeed, as it was recently shown by Matsumiya et al. [20],
viscoelastic relaxation process in the monodisperse system is accelerated by CR, and suppression of
this mechanism is clearly observed if the chains are blended into a very long linear matrix. Thus, even
for monodisperse samples, a good description of CR is needed in order to reach quantitative level
of predictions.
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All tube-based computational models that predict the linear viscoelasticity (LVE) agree that,
in addition to the high frequency Rouse modes, the relaxation of linear polymer melts consists of the
three main processes described above: reptation, contour length fluctuations and constraint release.
For example, these mechanisms form the basis of the quantitative theory developed by Milner and
McLeish (MM theory) for monodisperse linear polymers [3]. In this model, a linear chain is represented
as a two-arm star polymer able to reptate. In this way, relaxation starts with contour length fluctuations
and retraction (activated CLF) of the chain ends, and at time t = τd is followed by reptation along the
unrelaxed part, as retraction is becoming slower than reptation. The Hierarchical model of Larson [6]
incorporates the physics of the MM theory and together with some additional features forms a model
which can be applied to linear polymers as well as to mixtures of branched polymer molecules.
This model was modified by Park [21–23] to include the “early-time” fluctuations and some other
refinements. The BoB model, which also uses the MM theory, was developed by Das et al. [7] and
incorporates modeling of branch on branch structures.

While all models use a common theoretical approach for the LVE of linear entangled polymers,
they differ in some important assumptions [24]. Notably, the definition of CLF in models which
are based on the MM theory, contradicts the original idea developed by Doi [2], according to which
only the fast fluctuations at the end of the chain shorten the contour length of the tube. Therefore,
although theoretically it is based on Doi’s assumption [12], numerically the amount of the material that
is being subtracted from the reptation time seems to be overestimated. The effect of this assumption is
discussed in detail in Section 4. On the other hand, as is discussed in Section 5, the MM theory neglects
the constraint release modes arising from reptation. In the present work, we investigate the importance
of this modeling choice and its impact on the predictions of LVE by comparing the results obtained
with the BoB model to a large set of experimental data. Tube models also require the definition of an
expression for the relaxation modulus. The BoB and the Hierarchical models use the same expression
as the one used in the MM theory. In Section 6, we discuss the accuracy of this expression, and propose
an alternative derivation of this relaxation modulus.

Another LVE theory was proposed by Likhtman and McLeish [4] (LM theory). It involves all the
relevant mechanisms considered above and does not include any new physical processes. This theory
solves the existing mathematical models for the relaxation processes in a consistent and more accurate
way. In particular, the expression for the amount of unrelaxed material at early times is derived by
solving the one-chain problem combining analytical and stochastic approaches. The resulting function
slightly enforces the influence of early fluctuations, as compared to the one used in the other models,
and the transition between CLF and reptation regimes always happens at time 3.6τR, where τR is the
Rouse time. As discussed in Section 5, this estimate is much closer to the original idea of CLF, than the
estimates employed in the BoB and Hierarchical models.

As a third approach, the time-marching algorithm (TMA) [8] for monodisperse linear polymers is
also a tube-based model, but in fact, it is quite different from the other models. For example, CLF and
reptation processes act simultaneously, while the MM, Hierarchical and BoB models consider reptation
and CLF as mutually exclusive processes with a transition time at t = τd. From cursory analysis, there
seems to be a substantial distinction between TMA and other models. For instance, reptation is often
a slower process in TMA, however arm fluctuation can speed up the terminal relaxation indirectly
through Ψ(t), which is the fraction of material not yet relaxed by reptation or retraction. It must be
noted that, in addition to these relaxation processes, all above models consider the high frequency
Rouse relaxation in a similar way [4].

Therefore, a first aim of this paper is to discuss the main differences between TMA approach
and the models based on the MM theory, as well as the influence that each assumption has on the
relaxation process. In particular, we would like to understand why all these models, despite their
large differences, lead to similar predictions in case of linear polymers. To this end, we collected a
large set of experimental data from literature, that we use, first, to discuss the material parameters
of the different polymers, then to validate the different approaches. This comparison allows us to
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address two important questions: (1) what is the importance of CLF in the relaxation process of a linear
chain? (2) how does it affect the terminal relaxation time of the chains? Based on our conclusions,
we then propose to modify the TMA model. Another purpose of this work is to draw attention to
the differences observed between the theory and the numerical implementation for the BoB and the
Hierarchical models.

From a more general perspective, the objective of the present work is to revisit the existing
tube models and propose improvements in order to be able to extend them towards a quantitative
prediction of the viscoelastic properties of polydisperse polymers. Indeed, while this work only focuses
on monodisperse linear polymers, it allows us to discuss in depth three issues which are intrinsic to
the models, and which can have very large consequences on the prediction of the relaxation of more
complex polymers.

The first question is related to the balance between reptation and fluctuation processes, which
is of primary importance if we want to be able to predict the viscoelastic behavior of both linear and
star-like polymers while keeping the same parameters [25]. And this first step is of primary importance
if we want to be able to predict the relaxation behavior of binary blends composed of linear and
star-like polymers. As mentioned in ref. [26], today, most of the tube models fail at doing so, which is
probably the strongest limitation for applying such models to polydisperse samples.

The second question that we would like to address here is the too fast relaxation of very
short polymer chains [27], which leads to a wrong description of the plateau modulus [14,28,29].
This requires a careful description of the chain dynamics at short times, in order to prevent the possible
disentanglement of the chains before the Rouse relaxation of their entanglement segments.

The third question is related to the influence of constraint release (CR) process, and how this one
is taken into account in the models. As already mentioned, its effect is quite large, even in the case of
monodisperse linear polymers. By combining the present results obtained for monodisperse linear
polymers with the ones coming from recent studies on the viscoelastic properties of binary blends of
entangled linear polymers [30–34], in which mechanisms such as the Constraint Release Rouse process
and the dynamic tube dilution have been studied in detail, we believe all the ingredients will be there
in order to extend these studies to the linear viscoelastic properties of polydisperse samples.

This paper is organized as follows. First, in Section 2, we present the time-marching algorithm
(TMA) for the case of linear macromolecules. Second, in Section 3, we present the experimental data
together with the material parameters used within the present study. In Sections 4 and 5, we compare
the theoretical predictions of TMA with LVE data of polybutadiene, polyisoprene and polystyrene
polymer samples and propose a novel modification to the model. Then, in Section 6, we discuss the
main differences between the TMA and the BoB model, focusing on the way CLF is treated, and on the
way the relaxation modulus is derived. Additionally, we propose changes to the BoB model, so that
the implementation is consistent with the theory. Section 7 compares the results of the TMA and BoB
predictions for the various sets of experimental data, and finally conclusions are presented at the end
of the article.

2. Modeling

The TMA model for prediction of the LVE properties of linear polymers is described in several
publications [8,34], however in slightly different forms. In the current paper, we present a new
version of the TMA, which is consistent in both definitions and notation with our earlier work [25] on
star-shaped polymer melts, as well as with tube theory for linear polymers.

2.1. Modeling of the Relaxation Modulus in TMA

As already mentioned, all tube-based models assume that a single polymer is represented by an
ideal chain (i.e., a random walk), which is trapped in a so-called tube. Such a polymeric system will
always remain in equilibrium, unless it is forced to change its state. If the system is subjected to a
strain, the distribution of chains will be disturbed, and the polymer melt is under stress. The system
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should readjust its “stressed” configuration in order to reduce that stress. Each chain has to move out
of its original “stressed” tube into a new tube, through a relaxation mechanism such as reptation, CLF
and retraction. Every time a portion of the tube is vacated by the chain, the memory of the orientation
is lost. This memory loss is described by the survival function Ψ(t), defined as the unrelaxed fraction
of initial tube segments at time t.

There are several time-scales involved in the relaxation process. At a very short time scale, less
than the Rouse time of an entanglement segment τe, the chains are unaware that they are surrounded
by other chains and thus, they relax locally through Rouse motion. The chain starts to feel the
topological constraints due to its surroundings only after τe. This prevents the polymer chain from
moving perpendicular to the tube axis. At this time, since we treat the linear chain as a two-arm star,
the stress starts to decrease through CLF and arm retraction. Nevertheless, it is not the only possible
relaxation processes taking place at time t > τe. Indeed, unlike other models, the TMA assumes that
the reptation and retraction processes are independent and can occur simultaneously. Recall that,
the “test” chain is a statistical representation of all polymers in the system. Furthermore, as discussed
elsewhere [25], the effect of constraint release must be taken into account via the concept of “dynamic
tube dilation” [3,15,16]. According to this picture, the relaxed portion of the arm acts as a solvent
for the unrelaxed part, thereby reducing the entanglement density, i.e., increasing the effective tube
diameter, and finally speeding up stress relaxation. Nonetheless, since in monodisperse linear melt
all chains relax nearly simultaneously these last ones are assumed to reptate in an undilated tube.
All three relaxation mechanisms and their relationships are discussed in detail below.

The relaxation of a polymer after a small step strain is usually described by the relaxation modulus
G(t), which is the ratio of the stress remaining at time t to the applied step strain [2]. The stress
relaxation modulus of any polymer melt includes contributions of each relaxation mechanism:

G(t) = G0
N F(t) + FLR + FFR, (1)

F(t) = Ψ(t)Φ(t)α, (2)

where Ψ(t) is the fraction of material not yet relaxed by reptation or retraction, Φ(t) is responsible for
CR and defines the volume fraction of the chains acting as effective constraints in the system, α is the
dynamic tube dilution exponent, FLR is the contribution of the longitudinal Rouse modes [4] and FFR
is that of unconstrained fast Rouse motion.

After the Rouse relaxation of the entanglement segments, the macromolecules are coarse grained
at the level of segments between neighbouring entanglements, and they are represented by their
primitive path. The location of a primitive chain segment is represented by the normalized curvilinear
variable x, ranging from 0 at the chain end to 1 at the center of the chain. The segment survival
probabilities are determined for each time step ti. Let p f luct(x, ti) and prept(x, ti) be the probabilities
that the segment x of the primitive chain remains inside the initial tube at time ti and is not yet relaxed
by fluctuation or by reptation, respectively. As a result, the relaxation function Ψ(t) is calculated by
summing up the survival probabilities of all segments along the chain:

Ψ(t) =
∫ 1

0
p f luct(x, t)prept(x, t)dx. (3)

Thus, the probability of the segment x to survive relaxation at time t is the joint probability of two
separate events: surviving from the relaxation either by retraction or by reptation. In contrast to the
other models, we assume that the prevailing relaxation process within the polymer system is defined
implicitly via the probability values. For example, we can observe a clear separation between retraction
and reptation only for a long chain. Basically, each chain in a melt has a possibility to relax its segment
x via one of the relaxation mechanisms to which a probability is assigned.

On the other hand, the dilution factor Φ(t) is usually equal to the fraction of the survived initial
entanglements Ψ(t). However, if a large fraction of the material is relaxed in a very short time window,
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the tube widening becomes faster than the rate at which chains are able to explore it at that time.
Therefore, in such case, the “constraint-release Rouse motion”(CRR) [3] process controls the limits of
the tube diameter, in the following way:

ΦCRR(ti) = Φ(ti−1)

[
ti−1

ti

]1/2α

, (4)

Φ(ti) = max {Ψ(ti), ΦCRR(ti)} , (5)

where Ψ(ti) is the the unrelaxed volume fraction at time ti and ΨCRR(ti) defines the diameter of the
supertube that could be explored by the Rouse motion of the confining tube at time ti. Out of the CRR
regime, Φ(ti) = Ψ(ti).

The last terms of the relaxation modulus are the contribution from the high-frequency Rouse
relaxation modes. They include stress relaxation of segments of the test chain both shorter than τe,
and longer than τe, during which only the longitudinal Rouse modes along the tube [4]:

FFR = G0
N

5
4Z

+∞

∑
j=Z

exp
(
−2j2t

τR

)
, (6)

FLR = G0
N

1
4Z

Z−1

∑
j=1

exp
(
−j2t
τR

)
, (7)

are active. In the above, Z = M/Me is the number of entanglements per chain and τR = Z2τe is the
Rouse time.

2.2. Contour Length Fluctuations in TMA

As it is mentioned above, TMA considers reptation and fluctuations as independent processes,
which are never interrupted during the polymer relaxation and can occur at the same time.
Furthermore, in the TMA model, the CLF do not have an explicit effect on the disentanglement
time τd: there is no shortening of the distance along which the chain must reptate. Nevertheless, for the
chains which are not too long (Z < 30), there is an implicit impact of the arm retraction on reptation
via the product of the survival probabilities (see Equation (3)). It must be noted that in such a case,
the segments close to the middle of the chain (0.5 < x < 1) have approximately equal opportunity to
be relaxed by retraction or by reptation (p f luct(x, t) ' prept(x, t) < 1).

In order to visualize the qualitative behaviour of TMA, one should consider that at time t, the test
chain represents the average behaviour of the whole system. Thus, the relaxation state of a chain
segment x reflects the statistical value of the segment relaxation, which is determined from the
probability distribution over all possible relaxation states of this molecular segment of all chains in
the system. At the beginning, most of the chains renew their outer segments via retraction as this is
much faster than reptation. Later, the diffusion (reptation) of the middle segments catches up with
the speed of retraction, such that p f luct(x, t) ≥ prept(x, t) for unrelaxed segments x. Thus, the survival
probabilities of these segments are p f luct(x, t) ' 1 for long chains, and p f luct(x, t) ' prept(x, t) for
shorter ones. Therefore, most of the chains with high molecular weight end their relaxation only with
reptation, while relatively smaller chains have a possibility to release their final segments from the
initial tube via both reptation and retraction.

The survival probability p f luct(x, t) of a given segment x decays with time and is calculated by
the formula:

p f luct(x, t) = exp

(
−t

τf luct(x, t)

)
, (8)
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where the characteristic fluctuation time τf luct(x, t) is defined by:

τf luct(x, t) = τearly(x), x ≤ xtr, (9)

τf luct(x, t) = τearly(xtr) exp
(

U(x, t)−U(xtr, t)
kBT

)
, x > xtr. (10)

The survival probability needs to be recalculated at every time step for all unrelaxed segments x,
whereas the reptation time τrept remains constant.

In TMA, the transition between the two fluctuation processes happens at the transition segment
xtr, for which the potential is of the same order as the thermal energy (U(xtr) ≈ kBT). The potential is
irrelevant for the early fluctuations; the end of the chain can move freely, and the relaxation time is
estimated by:

τearly(x) =
9π3

16
τe

(
Z
2

)4
x4. (11)

Deep retractions are entropically unfavourable and are represented by the diffusion of the chain
end uphill in an effective potential

U(x, t) =
3
2

kBTZ
(∫ xc(t)

0
ξΦ(τ(ξ))αdξ + Φ(t)α

∫ x

xc(t)
ξdξ

)
, x > xc(t). (12)

In the above equation, Φ(τ(ξ)) is the polymer fraction not relaxed at time τ(ξ) when segment ξ was
relaxed and xc(t) is the segment relaxing at the current time t, such that t = τ(xc) [25].

As a remark, it should be noted that in our recent paper [34] the modeling of the arm retraction
excludes the “deep” fluctuations, as we tried to follow the common understanding that reptation
should be always faster than an exponentially suppressed process and CLF includes only fast retraction.
Definitely, at some point reptation takes over from the slowing down fluctuations. However, there is no
agreement yet on the estimation of the transition zone between the two relaxation processes. Until now,
all theories, except LM, include slow retraction in their modeling of CLF. Moreover, MM-based theories
assume that deep fluctuations in the contour length of the linear polymer along its tube will shorten
the distance of reptation. Arguably, this seems to be a too strong modeling assumption as discussed in
Section 5.

2.3. Reptation

The probability that the segment x, going from one chain end (y = 0) to the other extremity
(y = 1), is not yet relaxed by reptation at time t was determined by Doi-Edwards [2] to be:

prept(y, t) = ∑
podd

4
pπ

sin
( pπy

2

)
exp

(
−p2t

τd

)
, (13)

where the reptation time is given by:

τd = 3τeZ3{Φ∗}α. (14)

In the coordinate system used by TMA, we only calculate the relaxation times of the segments for
half of the chain (from x = 0 at the chain end, to 1 in the middle), so that y = 1− x/2. The volume
fraction Φ∗ defines the diameter of the tube in which the chain reptates. In this work, since only
monodisperse polymers are studied, we assume that the polymer chain reptates in the undilated tube.
This is equivalent to Φ∗ = 1.
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3. Experimental Section

In the subsequent discussion, we present and analyse the experimental linear viscoelastic response
of thirteen sets of monodisperse linear polymer samples.

3.1. Materials

The molecular characteristics of experimental samples used in this work are listed in Tables 1, 2 and 3.
The number of entanglements Z has been obtained by using the values of Me from Table 4.

Polybutadiene

Different set of polybutadiene samples were analyzed. The first two sets of data were collected
from Kapnistos et al. [35] and Liu et al. [14], except for PBD165, which was synthesized by Roovers [36].
The data of Baumgaertel et al. [37] and Lee et al. [38] has been used in the paper of Likhtman and
McLeish [4] to validate the theoretical predictions based on their model. The authors concluded that
different values of Me and τe must be used for each set of data. At this point, it seems important to
underline that in the work of Likhtman and McLeish [4], data referencing is questionable. Indeed,
the authors refer tot the data from the work of Juliani [39], while in reality, they used unpublished data
from the group of Archer [40]. Part of that data was reported later by Lee et al. [38]. In this work we
compare all above mentioned literature data to examine the consistency between the input parameter
values (Me, τe) used for TMA and BoB predictions.

Table 1. Characteristics of linear monodisperse PBD samples.

Sample Mw (g/mol) Z PI T ◦C

Kapnistos
PBD8 9100 4.6 1.04 25.0
PBD21 22,800 11.5 1.05 25.0
PBD37 38,400 19.4 1.05 25.0
PBD47 51,800 26.2 1.11 25.0
PBD75 78,800 39.8 1.05 25.0
PBD165 155,000 78.3 1.05 25.0
PBD326 365,000 184.3 1.12 25.0

Liu
PBD22 22,800 11.5 1.05 25.0
PBD39 38,600 19.5 1.03 25.0
PBD98 98,800 49.9 1.03 25.0
PBD163 163,000 82.3 1.01 25.0

Baumgaertel
PBD20 20,700 10.5 1.04 28.0
PBD44 44,100 22.3 1.04 28.0
PBD97 97,000 49.0 1.07 28.0
PBD201 201,000 101.5 1.27 28.0

Lee

PBD25 26,060 13.2 1.01 28.0
PBD161 163,220 82.4 1.01 28.0
PBD395 402,900 203.5 1.02 28.0

Juliani
PBD18 18,540 9.3 1.03 26.0
PBD41 42,230 21.3 1.03 26.0
PBD86 89,960 45.4 1.04 26.0
PBD129 133,180 67.2 1.03 26.0
PBD336 359,520 181.6 1.07 26.0
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Polyisoprene

The viscoelastic measurements for polyisoprene (PI) samples were taken from Auhl et al. [41] and
Watanabe et al. [42]. The data is listed in Table 2. It must be noted here that the reference temperatures
for both data sets are different.

Table 2. Characteristics of linear monodisperse PI samples.

Sample Mw (g/mol) Z PI T ◦C

Auhl
PI33 33,600 7.0 1.03 25.0
PI90 94,900 19.7 1.03 25.0
PI200 226,000 46.9 1.03 25.0
PI400 483,000 100.2 1.03 25.0
PI1000 1,131,000 234.6 1.05 25.0

Watanabe
PI21 21,400 6.0 1.04 40.0
PI43 43,200 12.1 1.03 40.0
PI60 59,900 16.8 1.05 40.0
PI179 179,000 50.0 1.02 40.0

Polystyrene

The sets of polystyrene (PS) viscoelastic data are coming from Huang et al. [43], Nielsen et al. [44]
and Shahid et al. [45]. In addition, we use experimental data from Schausberger et al. [46] and
Graessley et al. [47], which were also analysed in the work of Likhtman and McLeish [4]. The data can
be found in Table 3. To fit the data accurately, they had to adjust the values of Me, τe and G0

N separately
for each set. As it appears later, this is not the case for TMA and BoB.

Table 3. Characteristics of linear monodisperse PS samples.

Sample Mw (g/mol) Z PI T ◦C

Nielsen
PS100 102,800 6.7 1.02 130.0
PS200 200,000 13.0 1.04 130.0
PS390 390,000 25.4 1.06 130.0

Huang
PS285 285,000 18.6 1.09 130.0
PS545 545,000 35.5 1.12 130.0

Shahid
PS820 820,000 53.4 1.02 130.0

Schausberger
PS290 290,000 18.9 1.07 180.0
PS750 750,000 48.9 1.07 180.0
PS3000 3,000,000 195.4 1.05 180.0

Graessley
PS275 275,000 17.9 169.5
PS860 860,000 56.0 169.5

3.2. Material Parameters

In order to test TMA and BoB against the experimental data, we need, first, to define several tube
parameters: the plateau modulus G0

N , the molecular weight between two entanglements Me, the Rouse
time of an entanglement segment τe and the dilution coefficient α. It is considered [48], that the plateau
modulus and entanglement molecular weight are related to each other by G0

N = (4/5)(ρRT/Me),
with ρ being the density of polymer, R the universal gas constant, and T the absolute temperature.
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While Me and τe are material and temperature dependent, the dilution exponent α is expected to be
independent and has been set to 1 for all predictions.

As a first point, we show that any molecular theory used for describing the linear viscoelasticity
of monodisperse polymers should be independent of the chemistry of the samples. Under such
assumption, we normalized the storage and loss moduli of several sets of data by a horizontal shift
factor τe, and by a vertical shift factor equal to 1/G0

N (see Table 4). In Figure 1, we present the
normalized data of specific PBD, PS and PI polymers, which show good superposition at high and low
frequencies. With respect to the tube model, this means that these polymers have an identical number
of entanglements per molecule, Z, since they exhibit similar LVE behavior in the sense that the shape
of the G′ and G′′ curves plotted against the angular frequency ω is the same.

For convenience, we report the length of the chosen samples, as well as the number of
entanglement segments, using the Me values from Table 4.
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Figure 1. Comparison of normalized master curves between four sets of experimental data. On the left:
PBD98 (�, 49.9Z) and PBD97 (�, 49Z); PBD39 (�, 19.5Z) and PI90 (◦, 19.7Z); PS100 (�, 6.7Z) and PI33
(◦, 7Z). On the right: PI43 (�, 12.1Z) and PBD22 (∗, 11.5Z); PBD47 (�, 26.2Z) and PS390 (∗, 25.4Z).

Therefore, from the similarity of the curves, we can conclude that the pairs of polymers in Figure 1
have identical ratio M/Me. Since their molar masses are known, this allows us to take one chemical
type of samples as a reference, for example PS, and determine the relative values of Me for other
samples (PBD, PI) by looking at the ratio between their molar masses.

We fix Me = 15,350 g/mol for PS samples for different reference temperatures, since the same
value was used in our previous work on star-shaped polymers [25]. Now, looking at the comparison of
PS390 versus PBD47, it seems that the ratio MPS

e /MPBD
e must be approximately 7.6. Thus, based on the

value taken from PS, the value of Me for PBD is expected to be close to 2000 g/mol. In case of Auhl’s PI
samples, by comparing (PS100-PI33) and (PI90-PBD39), we find that the ratios are MPS

e /MPI
e = 3.1 and

MPI
e /MPBD

e = 2.5. Therefore, MPI
e should be around 4900 g/mol, while MPBD

e again shows a value in
the vicinity of 2000 g/mol. However, comparing the data of Watanabe (PI43-PBD21) we get a different
result, MPI

e /MPBD
e slightly smaller than 1.9, which leads to MPI

e slightly shorter than 3800 g/mol.
While the origin of this difference is unclear, this last value of Me is consistent with the one used in our
previous paper [25]. Based on this observation, two different sets of material parameters are used for
modeling the LVE of the PI samples. The exact values of Me are found in Table 4. They were slightly
adjusted, based on the best fitting of storage and loss modulus for all samples.

In Figure 1 we also compare rheological data of polybutadiene chains coming from two different
sources: Baumgaertel et al. [37] (PBD97) and Liu et al. [14] (PBD98). Recently, this data has been
analyzed by Park et al. [49]. The authors concluded that the data of Baumgaertel et al. [37] do not
follow the same relaxation behaviour as the other linear PBD. However, as it can be seen from Figure 1,
the viscoelastic data of PBD98 and PBD97 coincide perfectly at the transition frequency.
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Besides Me, the value of τe must be determined. The choice of τe is driven by the idea to have the
best fit between the data at high-frequencies, where the Rouse process takes place. The same value
of entanglement time should be used in both TMA and BoB model, as the two approaches use the
same description of longitudinal relaxation and fast Rouse relaxation [7]. In general, τe should have a
universal value for samples at the same temperature and can be extracted from the high-frequency
data irrespective of the molecular weight or architecture. This holds only when determination of
the shift factors for the time-temperature superposition is performed consistently and the glassy
dynamics does not affect the experimental measurements at those frequencies (not included in the
modeling). Based on latter statement, Park et al. [49] found that the equilibration time for PBD
should be τe = (3.7± 0.93)× 10−7 s at 25 ◦C . In the present work all predictions for PBD samples
were performed by considering the Rouse time of an entanglement segment as τe = 4.0× 10−7 at
T = 26± 2 ◦C. This is thus in good agreement with the work of Park et al. [49].

The third parameter to define is the plateau modulus. It should follow the definition of Fetters [50]
and be given by G0

N = (4/5)(ρRT/Me). In order to determine it, we use the following densities of
polymer melts: ρ = 0.91 g/cm3 (PI 25 ◦C ), ρ = 0.90 g/cm3 (PI 40 ◦C ), ρ = 0.9 g/cm3 (PBD) [51],
ρ = 1.01 g/cm3 (PS 130 ◦C) and ρ = 0.98 g/cm3 (PS 180 ◦C). Note that the temperature dependencies
of the density for PI and PS that we use are given by ρ(T) = 0.9283− 0.61× 10−3T and ρ(T) =

1.2503− 6.05× 10−4(273.15 + T), respectively [52,53]. The calculated values of G0
N can be found in

Table 4. They are generally quite low compared to the values usually used. If we compare them to the
values found by the best fitting, they are by ∼ 20% lower (except for Watanabe’s and Baumgaertel
data), i.e., closer to the definition proposed by Ferry [9] for Me, where the prefactor of 4/5 is omitted
(see Table 4). In order to use the Fetters definition, one would need to set α to 4/3, which would
allow us to take smaller values of Me [21,22,24,38]. Alternatively, reducing the equilibration time τe

by a factor 2 would also lead to the choice of a smaller Me values. However, such choice requires
corrections in high-frequency predictions of Rouse process. This idea is discussed in a recent paper of
Park et al. [49]. Here, we accept the arguments of Auhl et al. [41], that many mechanisms can affect
the prefactor in the definition of Me. Thus, the precise value of G0

N is unknown, and we use the one
obtained from the best fitting. Data from Auhl et al. has been already modeled by LM theory [41],
using the following input parameters for PI: Me = 4820, G0

N = 0.47 and τe = 1.32× 10−5. Those values
are comparable with the ones used in the TMA model. Moreover, experimental data available for PBD
requires the parameters similar to the ones determined by Roovers for PBD165 sample [36] (G0

N = 1.07,
τe = 2.56× 10−7, Me = 1980). PBD data from Baumgaertel requires a higher value of G0

N as usually
accepted, however it is consistent with the values used for the same samples by Baumgaertel et al. [37]
and Likhtman et al. [4].

The resulting model parameters are listed in Table 4.

Table 4. The TMA and BoB input parameters for PBD and PI.

Sample
TMA and BoB

G0
N(used) (MPa) G0

N(calc) (MPa) Me (g/m) τe (s)

PBD
25.0◦C 1.15 0.9 1980 4.0× 10−7

26.0◦C 1.10
28.0◦C 1.45

PI
25.0◦C 0.46 0.38 4820 1.6× 10−5

40.0◦C 0.48 0.50 3575 2.7× 10−6

PS
130.0◦C 0.23 0.18 15, 350 7.5× 10−1

130.0◦Ca 0.21 7.5× 10−1

169.5◦C 0.19 9.2× 10−4

180.0◦C 0.19 3.4× 10−4

a Nielsen data [44].
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4. Renormalization of the Coordinate System

In our previous study [25], we propose a renormalization of the segment coordinates in order
to improve LVE predictions of the TMA model for short star-shaped polymers (arm length Z < 20).
Indeed, we noticed that by time τe, a large portion (0.48Me) of the shorter chains has already been
relaxed due to CLF. A similar conclusion was made by van Ruymbeke et al. [35] while investigating
discrepancies in tube-model predictions regarding the plateau modulus of short linear chains. This
fast relaxation has also been reported in several works, such as the work by Liu et al. [14,28] and by
Hou et al. [29] when comparing the LM theory to molecular dynamics (MD) simulations of bead-spring
polymer melts. The early relaxation, observed at time smaller than τe, predicted by the tube-based
models contradicts the tube picture, since, at time t < τe , chains should only relax by Rouse motion,
and are unaware of the surrounding chains. However, classical tube-based models consider that
relaxation by CLF starts immediately at t = 0. This effect is especially important for short chains,
as observed by Bacova et al. [54] in their MD simulation data analyses of the entangled linear and
star polymers. Furthermore, the latter study reveals that the primitive path near the chain ends
is almost fully relaxed by simple Rouse dynamics at t < τe, since the outer segments are weakly
affected by the topological constraints. Therefore, the decay of CLF at time earlier than τe should be
omitted, since it is already taken into account by the high-frequency Rouse relaxation. Otherwise,
the chain relaxation is underestimated and the level of the plateau modulus is predicted too low. This
assumption strongly affects the relaxation of short molecules, and especially star-shaped molecules
since segmental fluctuation times are exponentially dependent on the square of their depth and the
unrelaxed fraction [25].

In fact, many works on poorly entangled chains have shown that the dynamics of the outer
segments should be treated differently than the dynamics of the middle part of a chain due to the
variant nature of entanglements. It seems that the chain tips show a Rouse-like relaxation. Here, we
briefly review these works, before discussing how tube models can be corrected in order to avoid
double counting of the relaxation of the outer segments (i.e., by Rouse and CLF). This issue was well
described by Kavassalis and Noolandi [55–57], who presented a packing entanglement theory, where
the loose chain ends are not expected to contribute to the formation of effective entanglements. High
mobility of the chain ends prevents them from forming long-living connections with other chains.
According to their model, an effective entanglement is defined by the presence of a certain number of
non-tail neighboring polymer segments; the concentration of the latter segments scales as λ = 1− 1/Z.
The average tail length is Mt ≈ 0.5Me. Thus, as chains get shorter, more and more dangling ends are
excluded from contributing to entanglements, and the entanglement spacing Me varies with molecular
weight M. To support this assumption, Rathgeber et al. [58] used neutron spin-echo spectroscopy
(NSE) to investigate on a microscopic length scale the influence of topological constraints on the
single-chain dynamics. To this end, they varied the mass fraction of long tracer chains in a short-chain
matrix. As a result, the authors found that the number of end segments relative to the number of
inner segments increases with decreasing tracer fraction, thus weakening the topological constraints.
Consequently, the value of Me and the concentration of longer chains are directly proportional, since
shorter chains create fewer entanglements. Taking chain-end effects into account, Rathgeber [58]
obtained an excellent description of the NSE data.

In addition to rheology and NSE measurements, nuclear magnetic resonance (NMR) T2 relaxation
time studies [59,60] can provide information on the chain mobility. Most NMR experiments measure
segmental dynamics ultimately in terms of an orientation autocorrelation function [61]. Highly mobile
polymer chain ends exhibit an isotropic motion (fast reorientation), which shows a slow transverse
relaxation with a long corresponding relaxation time T2. At the same time, the entanglement network
induces an anisotropy of chain motion on the central segments. Segments located near chain ends are
expected to be subject to molecular motions different than those in the central block, provided that
the molecular mass of the chain is above the critical value Mc, in order to ensure entangled dynamics.
As far as NMR is concerned, Kimmich et al. [62] proposed that the outer entanglement lengths of a
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reptating chain behave in a similar fashion to a Rouse chain not subjected to topological constraints.
Indeed, through analysis of bi-exponential fits to experimental data, they showed that the effective
molecular weight of the end performing Rouse motion is independent of the molecular weight of the
chain, and approximately equal to Me. This is consistent with the fact that unentangled linear chains
with a molecular weight approaching Mc, display Rouse dynamics.

Moreover, also based on NMR, Guillermo and Addad [63] showed that it is possible to represent
a chain as two end-submolecules, independent of M, and one inner part with clearly distinct dynamics.
The idea that the end sections are undergoing fast Rouse-like dynamics, whereas the central section is
undergoing slower dynamics is also confirmed by Ries et al. [64] and by Chavez and Saalwachter [61].
The latter research showed that during the constraint Rouse regime the chain is less restricted than
predicted by the tube model. Wang et al. [65] argue that this conclusion reflects the importance of ruling
out the chain end contributions. Nevertheless, today, the main problem is that the transition between
isotropic and anisotropic parts cannot be clearly defined [60,66]. Furthermore, it is not completely clear
to which extent the constrained Rouse motion is observed by NMR as isotropic or not. However, it is
clear from the above that it is important to separate contribution of end monomers to the relaxation
mechanism and include it to the current TMA model, even if quantitative description of chain-end
effect still needs to be refined by NMR experiments or computer simulations.

A first solution was proposed by van Ruymbeke et al. [35], in order to slow down the CLF process:
(1) adding to the chain an abstract sub-chain of length 0.48Me , thus forming an “equivalent” chain,
and, (2) rescaling the coordinate system. As a result, the fluctuation time of the original chain end is
equal to τe in the new coordinate system of the “equivalent” molecule. The obtained result is in good
agreement with the experimental data for short linear chains. Nevertheless, this procedure is rather a
numerical technique for being consistent with the tube theory. Instead, to attain consistency with our
previous works, we propose here to account for the role of chain ends in the relaxation process through
three considerations: (1) effective entanglements are only formed by the chain segments with relaxation
time higher than τe, in other words, chain ends are not part of the entanglement network due to their
high mobility, (2) they relax via free Rouse-like motion, and therefore, (3) they are neglected in the
calculations of the relaxation of the chain by fluctuations or reptation. To this end, we introduced [25]
a new coordinate system with the origin x = 0 localized at the molecular segment x0, which has a
relaxation time τe. This correction is in qualitative agreement with the approach of van Ruymbeke et al.
[35], while it includes the specific influence of chain ends on the entanglement network as the chain
length is shortened. In this way, the latter effect makes our approach consistent with the tube theory.

The above mentioned discrepancies in tube-model predictions regarding the plateau modulus of
short linear chains are illustrated in Figure 2. In this figure, the original TMA predictions (dash-dotted
line) of the storage modulus are compared to experimental results for short PBD polymers. The results
are obtained with material parameters from Table 4. Whereas the agreement between theory and
experiments is relatively good, the plateau modulus is poorly described for really short chains, like
PBD8 and PBD21, due to the fact that the chain starts to relax their tube before τe. Hence, using the
new coordinate system in order to prevent this too fast relaxation seems important.
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Figure 2. Comparison of the original TMA ( ), TMA in a new coordinate system ( ) and TMA in a
new coordinate system and with fast CLF subtracted ( ) with experimental data: PBD8 (4.6Me), PBD21
(11.5Me) and PBD37 (19.4Me).

In our work on star-shaped polymers [25], we showed that part of the tube end of length
s0 = 0.48Me is relaxed by time τe via the free Rouse motion. This means that the relaxation of the
ends is already included in high-frequency Rouse relaxation defined by Equation (6) and must be
excluded from the determination of the relaxation function Ψ(t) in Equation (3). Here, we use the
same result, which is in good agreement with the estimation provided by the theory of Kavassalis and
Noolandi [55–57]. This requires working in a new coordinate system, as already mentioned.

Indeed, once relaxation reaches τe, the original tube with equilibrium length L0 will already lose
its ends up to segment x0, and the molecular weight between entanglements needs to be renormalized
as M∗e = Me/(1− x0). The segmental Rouse time is also rescaled as τ∗e = τe/(1− x0)

2 and the Rouse
relaxation process is postponed till τ∗e , such that segments up to x∗0 are relaxed. Thus, x∗0 represents the
deepest segment which relaxes by high-frequency Rouse relaxation. Segments after x∗0 are relaxing in a
tube. Therefore, after a time τ∗e , only the central part of the chain with molecular weight of M(1− x∗0) is
confined in the tube. This means that the relaxation function Ψ(t) is calculated over the interval [x∗0 , 1].
Based on the above arguments, following on previous work [25], retraction and reptation should be
calculated in a new coordinate system with the origin xeq = 0, localized at the tube segment x∗0 , which
has a relaxation time τ∗e in the original coordinate system. However, to keep the calculations simple
and due to negligible difference in predictions made using x∗0 and x0, we start the new coordinate
system at x0 as indicated in Figure 3. The same holds for τ∗e , where τe is used instead.

Figure 3. Definition of the new coordinate system. Here, M/2 is the molecular weight of the chain
and L0/2 is its equilibrium tube length in the original system of coordinates. (M/2)(1− x0) and
Leq = L0(1− x0)

1/2 are the same parameters defined in the new coordinate system.

Following the classical tube theory, early fluctuations are not influenced by dilution. The relaxation
time τearly is found for x ∈ [0, 1], but only values from x0 are valid for the calculations. Thus, for the
new coordinate system Equation (11) should be rescaled as

x = x0 + xeq(1− x0), xeq ∈ [0, 1]. (15)
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The above renormalization ensures that at time t = τe the tube in the new coordinate system is yet
to start relaxing. Additionally, it only affects the properties of the short chains (Z<20). Results
obtained with the new coordinate system are shown in Figure 2 (dashed line). The agreement
between the experimental plateau modulus of short linear chains and the theoretical one is certainly
improved. It must be noted that in our initial work on linear binary blends [34] the prefactor 0.5 in the
fluctuations process of TMA could have been avoided by considering the coordinate transformation
under discussion, along with considering the effects of deep retraction process.

5. Comprehension of CLF in the Tube Models

Besides the importance of avoiding CLF before t = τe, another important question to address is
the transition between fluctuations and reptation processes, and how it is taken into account in the
different models. To this end, we first discuss the comparison between the experimental and theoretical
PBD viscoelastic data presented in Figure 2. For the theoretical predictions of G′ and G′′ calculated
by the TMA model with the coordinate renormalization as described in Section 4, we see that the
modeling results (dashed line) correctly predict the plateau modulus, but show a too slow relaxation
in the terminal zone for the shorter polymers.

This deviation can be attributed to the fact that the influence of CLF process on reptation is
neglected. Indeed, although the TMA model incorporates the retraction of the chain ends, this effect is
not accounted for as tube length fluctuations that speed up reptation. This contradicts, the original
idea behind CLF [2,11,12], which states that only in the absence of fluctuations the disengagement time
is estimated as the time τd = L2

D necessary for the chain to move by distance L. In case of fluctuations,
the chain can disengage from the tube when it moves the distance Le f f = L− ∆L. However, only
under the condition that the chain ends are fluctuating rapidly over the distance ∆L. Consequently,

the disengagement time should be τd =
L2

e f f
D [2]. While, in TMA, the reptation time in Equation (14)

involves the entire chain length L, most models consider a linear chain being relaxed by reptation,
when its center of mass diffuses along the tube over a shorter distance Le f f = L− ∆L. In the case of
MM-based theories, ∆L is designed as the whole fraction of the tube that did not survive from the full
arm retraction by that time. On the other hand, the Likhtman–McLeish (LM) approach has a special
scaling form for the effective tube length:

Le f f

L
= 1− 1.69√

Z
+

2
Z
− 1.24

Z3/2 . (16)

Introducing CLF into reptation allowed explaining the experimentally observed dependency
τd ∼ M3.4 [9]. Doi suggested [12] that the effective length, 1− ∆L/L, decreases with the chain length
as 1− X/

√
Z and X being a constant larger than 1.47. Stephanou predicted [67] the value of X from

the primitive path analysis to be close to 1/
√

3.
In Figure 4 we plot the estimations of the effective fraction of the tube 1− ∆L/L participating

in reptation versus Z for polymers with a molecular weight up to 400 entanglements. As expected,
the Likhtman–McLeish results are close to Doi’s, where the chain ends move quickly on the time
scale of the Rouse time τR. On the other hand, the primitive path (PP) simulations reveal a much
weaker effect of CLF. Similar observations were done by Likhtman in his MD simulations of polymer
melts [68]: chains with the length of Z = 7− 15 had tube shortening by only 13%, instead of 32− 42%,
that we determined here, based on the BoB model. Conversely, according to the predictions of BoB,
CLF has a much stronger impact on reptation than it was assumed initially. Prior to giving any details,
we note that the BoB model correctly estimates that part of the chain which relaxes by retraction rather
than by reptation (based on survival probabilities). However, subtracting this length from the length
to be relaxed by reptation is, to our opinion, a too strong assumption.
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Figure 4. Average fluctuation of the tube contour length used in the currently existing models for
determining the reptation time. TMA estimations are presented for the non-normalized (TMA1) and
for normalized (TMA2) coordinate systems.

At the other extreme, TMA, by excluding completely the influence of the fluctuation process
on the reptation time, misses a quite important fundamental concept in its modeling. In order to
include this effect, we need first to highlight an important point: only the segments relaxing fast in
comparison to the reptation should contribute to the shortening of the tube during diffusion along
the tube. Therefore, one should answer the question: which portion of the linear chain is fluctuating
rapidly enough to be considered negligible for reptation? Similarly to the way we defined a possible
solvent effect in reptation process [8], we argue that it is estimated as the part of the tube which has
relaxed due to fluctuations by time t = τd/Z2 = 3Zτe. In the other words, a chain segment can take
advantage of the widened effective tube, if its constraint release characteristic time resulting from CLF
is on the same time scale as the reptation time. After calculating values of Le f f for a wide range of Z
we follow the approach of Likhtman [4] and conclude that the effective length of the primitive path
can be well approximated by the empirical equation

Le f f

L
= 1− 0.46√

Z
+

0.3
Z
− 1.86

Z3/2 . (17)

In Figure 4, the corresponding results appear as TMA2 in the new coordinate system and is very
similar to the results obtained by Stephanou [67]. Based on this result, a new reptation time in the
new coordinate system can be defined as τnew

d = τ0
d (1− x0)

3(Le f f /L)2, where τ0
d is the initial reptation

time calculated in the old coordinate system according to Equation (14). In order to be consistent in a
comparison of the part relaxed by CLF with the ones found with the other models, we can account
for the amount of the material relaxed before τe , and use the old coordinate system. In such a case,
the tube is predicted to be shortened by CLF (TMA1 in Figure 4), as

L∗e f f

L
= max(0.6, 1− 0.17√

Z
− 2.98

Z
+

1.9
Z3/2 ), (18)

with the reptation time τnew
d = τ0

d (1− x0)(L∗e f f /L)2. The lower limit 0.6 for CLF influence is obtained
empirically and plays a role only for very short chains. The results obtained by using this formula
in TMA can be seen in Figure 2, where PBD experimental data are compared to the corresponding
predictions. Now TMA properly captures the behavior of linear polymers. Note that the effect of
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CLF on reptation time is important only for polymers with molecular weight up to 50 entanglements.
For higher molecular weights it becomes negligible.

6. Comparison between the TMA and BoB Models

In this section, we discuss important differences between the TMA and BoB models. This includes
designing the expression used for describing the relaxation modulus, the influence of retraction process,
as well as the way reptation and CLF are interconnected.

6.1. Relaxation Modulus

At first, we intend to show how the stress relaxation formula used in the BoB and the Hierarchical
models is derived from the continuous Maxwell model. This allows us, in a second step, to show how
the CR process is taken into account in this expression. The relaxation function for the viscoelastic fluid

G(t) =
∫ +∞

0
H(τ) exp(−t/τ) dτ (19)

is described by a continuous distribution of Maxwell modes, called the relaxation spectrum H(τ).
Rheological relaxation processes tend to occur over so long periods of time that relaxation

processes are usually modeled using logarithmic time. Nevertheless, in the derivations further on we
use time on a linear scale. The exponential function is called the kernel. The relaxation spectrum H(τ)

is independent of time and is the fundamental description of the system. It can be calculated from
the Alfrey approximation [69], where a set of exponents is replaced by a set of step functions. Simply,
exp(−t/τ) ≈ 0, at time t > τ and exp(−t/τ) ≈ 1, at time t < τ. Equation (19) is then rewritten as

G(t) ≈
∫ +∞

t
H(τ) dτ, (20)

so that

H(τ) ≈ −
[

dG(t)
dt

]
τ

. (21)

It should be highlighted that the integral in Equation (19), with the relaxation spectrum from
Equation (21), represents the stress decay through time and is always defined in the interval [0,+∞].
This means that a single Maxwell element is defined as an amount of the stress decrease at relaxation
time τ. Then H(τ)dτ defines the fraction of Maxwell’s elements with relaxation times between τ and
τ+dτ, namely, an amount of stress relaxed within that time interval.

Using Equation (21) with G(t) = G0
NΨ(t)Φα(t), together with Equation (19), the BoB and the

Hierarchical models, define the relaxation modulus as:

G(t)
G0

N
=
∫ τstop

τstart

[
−d[Ψ(t)Φα(t)]

dt

]
τ

exp(−t/τ) dτ, (22)

where Ψ(τ) is the amount of unrelaxed material at time τ and Φ(τ) is the volume fraction which
corresponds to the tube diameter (“supertube” fraction). Both models start from τstart = 0 and at
each computational step, they increase the time by dτ, up to τstop = τd + dτ. Here, τd = m dτ is the
reptation time, and m + 1 is the total number of steps. This means that although the simulation time
is longer than τstop, the calculation of Ψ(t) and Φ(t) stops after m + 1 steps. Thus, this model step is
based on the assumption that reptation happens instantaneously at τ = τd and Ψ(t) becomes zero at
the last computational step. Later, we show that this approximation leads to an overestimation of the
reptation time.

Since the modeling of BoB is applied in the discrete time domain, all variables are calculated at
each time step. The value of the integral in Equation (22) is approximated numerically by computing
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the product of the value of the integrand at the end-point of the interval by the interval length. Given
the values at each time step we can approximate the integrand using a linear spline and α = 1 [7].
Applying the numerical approximation of the derivative product rule, the integral over the interval
[τn, τn+1] becomes

∫ τn+1

τn

[
−d[Ψ(t)Φα(t)]

dt

]
τ

exp(−t/τ) dτ = F(τn+1) exp(−t/τn+1), (23)

where

F(τn+1) = Φ(τn+1)(Ψ(τn)−Ψ(τn+1)) + Ψ(τn+1)(Φ(τn)−Φ(τn+1)). (24)

Thus, the numerical approximation of Equation (22) for the BoB model becomes

G(t)
G0

N
=

m+1

∑
k=1

F(τk) exp(−t/τk). (25)

In order to separate contributions of retraction and reptation in the relaxation modulus, we rewrite
Equation (22) for the time interval [0,+∞] such that only the reptation integrand from τd till +∞ is
numerically approximated

G(t)
G0

N
=
∫ τd

0

[
−d[Ψ(t)Φ(t)]

dt

]
τ

exp(−t/τ) dτ +
∫ +∞

τd

[
−d[Ψ(t)Φ(t)]

dt

]
τ

exp(−t/τ) dτ

≈
∫ τd

0

[
−d[Ψ(t)Φ(t)]

dt

]
τ

exp(−t/τ) dτ +
+∞

∑
n=1

F(τd + ndτ) exp(−t/(τd + ndτ))

=
∫ τd

0

[
−d[Ψ(t)Φ(t)]

dt

]
τ

exp(−t/τ) dτ + Φ(τd + dτ)Ψ(τd) exp(−t/(τd + ndτ)

≈ Gretr(t) + G(τd) exp(−t/τd)

= Gretr(t) + Grept(t).

(26)

The reptation integrand has been simplified due to the above mentioned assumption, which leads to
Ψ(τd + ndτ) = 0 for n ∈ [2,+∞].

The resulting Equation (26) is nothing more than the expression for the relaxation modulus in the
Milner–McLeish model. The first term is a portion of the stress relaxing by arm retraction and has a
form identical to the one used in other models, including the TMA. However, the second term which
is responsible for the reptation differs from the one in TMA. In the Milner–McLeish theory, this has the
following form

Grept(t) = G(τd) ∑
podd

(8/π2)p−2 exp(−p2t/τd) ' G(τd) exp(−t/τd), (27)

where G(τd) is the fraction of the stress which remains after the relaxation by retraction and is identical
to Ψ(τd)Φ(τd) in Equation (26). The sum over weighted relaxation times in Equation (27) is heavily
dominated by the longest relaxation time τd, and thus, can be simplified. Looking at Equation (27),
we see that it excludes the contribution of constraint release to reptation, as it is explicitly stated in
Milner–McLeish paper [3]. That is why the exponent has the form exp(−t/τd), instead of exp(−2t/τd),
when constraint release is considered. While, the BoB and the Hierarchical models assume constraint
release always to be active, as suggested in Equation (22), they remove its effect in the derivation of
Equation (26) and use exp(−t/τd) for the reptation part .

In fact, the idea of reptation being an instantaneous process, i.e Ψ(τd + ndτ) = 0 for n ∈ [2,+∞],
appears to be a strong approximation. Indeed, at time τd, the stress of the segments relaxing by
reptation only drops to 1/e of its initial value, meaning that Ψ(τd + ndτ) should not be 0. Since no
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CCR regime is considered for monodisperse chains, Ψ(τd + ndτ) = 0 also means that Φ(τd + ndτ) = 0.
Thus, Equation (19) with the relaxation spectrum from Equation (21) can not be used, as the maximum
relaxation time of the chosen Maxwell elements should not be limited by τd and should be defined
over the time interval [0,+∞]. If instead of the integral form for the relaxation modulus, one just uses
the equivalent form G(t) = G0

NΨ(t)Φα(t), then the idea of Ψ(τd + ndτ) = 0, simply leads to G(t) = 0,
at t > τd + dτ. The latter conclusion is incorrect, as stress relaxes exponentially over a long period
of time.

In order to resolve this issue, the approximation Ψ(τd) = 0 can be used in a slightly different
context. With the introduction of constraint release to the tube model, it is difficult to determine
Maxwell elements for Equation (20), such that the maximum relaxation time is τd. Instead, we define
Ψ∗(t) being the amount of material with relaxation time larger than t. Then, Ψ∗(t) = Ψ(t), t ≤ τd and
Ψ∗(t) = 0, t > τd. The resulting expression for the relaxation modulus becomes

G(t)
G0

N
= Φ(t)

∫ +∞

0

[
−d[Ψ∗(t)]

dt

]
τ

exp(−t/τ) dτ

= Gretr(t) + Φ(t)Ψ(τd) exp(−t/τd), (28)

where the second term represents relaxation via reptation. Recall that Φ(t > τd) = Ψ(τd) exp(−t/τd),
if CCR is inactive and consequently,

G(t) = G0
N(Gretr(t) + Ψ2(τd) exp(−2t/τd)). (29)

This form of relaxation modulus includes the double reptation expression, where the unrelaxed portion
of the entanglements contributes to the modulus in proportion to the square of the remaining fraction
of entanglements.

Keeping Equation (29) aside, we can now show that similar expression can be drawn from
Equations (19) and (21) assuming that a part of the tube Ψ f luc is relaxed mostly by retraction
up to time τ∗ and the remaining part Ψrept by reptation with the survival function given by
Ψrept(t) = Ψrept exp(−t/τd). Knowing that Ψ f luc + Ψrept = 1 and neglecting CCR (Φ(t) = Ψ(t)),
Equation (22) becomes

G(t)
G0

N
=
∫ τ∗

0

[
−

d[Ψ2
f luc(t)]

dt

]
τ

exp(−t/τ)dτ +
∫ ∞

τ∗

[
−

d[Ψ2
rept(t)]

dt

]
τ

exp(−t/τ)dτ. (30)

Note that Ψrept(t) is constant for t < τ∗ and dΨrept(t)/dt = 0 in that interval. Thus, although the
second integral is responsible for relaxation via reptation for t > τ∗, integration can start from
0 rather than from τ∗. The second term of Equation (30), can then be simplified to Ψ2

rept(t) =

Ψ2
rept(τd) exp(−2t/τd), if we replace the exponential with a step function. Similarly to the G(t) derived

above, this expression reproduces the concept of double reptation. In reality, reptation should start
earlier than τd, when Ψrept(t) ' 1. Empirical estimations show that τ∗ = τd/

√
Z and the segment with

this relaxation time is close to xd, as calculated by the BoB model.
Based on this analysis, our present concern is that the BoB model fails to properly capture

reptation behaviour. Due to the strong assumption, i.e., Ψ(τd + dτ) = 0, the term G(τd) exp(−t/τd)

in Equation (26) misses a factor of 2 in the exponent compared to Equation (29) (simplified version),
and consequently, the relaxation time in the BoB and the Hierarchical models is smaller than the
original τd by approximately a factor of 2.

Interestingly, the too slow reptation term seems to be well compensated by the too strong effect
of CLF (see Figure 4). There seems however to be no justification regarding the hypothesis that deep
fluctuations of chain ends speed up the reptation process.
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6.2. Arm Retraction

If we deal with the linear chains as two-arm stars, then the contour-length fluctuations of the
ends are the same as the retracting motion of a star arm. The retraction dynamics of the TMA and the
BoB models is already compared in our previous work [25], where it was shown that both models
successfully predict the linear viscoelastic data of star-like molecules. However, the difference in the
definition of the prefactor in the first-passage time of the activated fluctuation τf luc(x), x > xtr together
with some small algorithmic discrepancies lead to slightly different material parameters for the two
models (MBoB

e > MTMA
e ). Here, the best fit to the experimental data was obtained with the same

entanglement spacing parameter Me for the TMA and BoB predictions (see Table 4). It means that the
deep fluctuations of linear chains in the TMA model are slightly faster than in the BoB model. Due to
that fact, we expect to see a slower relaxation of shorter linear polymers (Z < 15).

6.3. Cumulative Effect of Reptation and CLF

All models, except TMA, assume that at some time, retraction of the linear polymer will be
interrupted, and stress relaxation is completed by reptation using the theoretical framework developed
by Doi and Edwards [2]. Similarly, the Hierarchical and the BoB models consider retraction and
reptation as mutually exclusive processes with a transition around reptation time τBoB

d . On the other
hand, the TMA model assumes both processes to take place simultaneously and only the long chains
show this obvious crossover behaviour. At first sight, it seems that these choices are the cause of the
alternative definitions of reptation time in each model. However, we showed in the previous section
that the reason is different. In the present work, TMA shortens the contour length by excluding the
part of the chain that has relaxed by t = 3Zτe, whereas other models exclude much more—everything
that has relaxed by t = τBoB

d (see Figure 4).
Naturally, it is interesting to check the viscoelastic behavior when the long chains (Z > 50) have

this implicit transition between reptation and retraction in the TMA model. At each time step we
calculate the probabilities p f luc(x, t) and prep(x, t) that the segment x survives from relaxation by
fluctuation and by reptation. Furthermore, at any time t we can determine the so called relaxation
front, a segment xt, which separates relaxed and unrelaxed segments. This segment has a relaxation
time τ(xt) = t and the fraction of material not yet relaxed by reptation or retraction can be found
as Ψ(t) = 1− xt. Once the reptation time τTMA

d is reached, the relaxation front is at segment xd.
In Figures 5 and 6, we plot the relaxation probabilities prept(x, τ(x)) and p f luct(x, τ(x)) for segments
x < xd at the time τ(x) they relaxed, and prept(x, τTMA

d ) and p f luct(x, τTMA
d ), for segments x > xd at

the reptation time τTMA
d estimated by Equation (14). Thus, the observed decrease of prept(x, τ(x)) with

the depth of the segment, x, is due to the fact that for x < xd, the time at which this probability is
determined increases with x. By comparing prept(x, τ(x)) to p f luct(x, τ(x)) one can notice that both
processes cross over around segment xs. This indicates that it is more probable that segments x < xs

are relaxed by fluctuations rather than by reptation, and segments x > xs are relaxed primarily via
reptation, as p f luct(x, τ(x)) ' 1. This estimation of transition between relaxation process is identical
to the one from the BoB model (see Figure 4). Fluctuations stop at segment xs with relaxation time
τf luc(xs) and reptation takes over for segments x > xs.
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Figure 5. Comparison of survival probabilities p f luc(x, t) and prep(x, t) for samples with molecular
weight 200Z (a) and 100Z (b). For segments x < xd the probabilities are determined at the relaxation
time of each segment τ(x) and for segments x > xd at reptation time τTMA

d .
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Figure 6. Comparison of survival probabilities p f luc(x, t) and prep(x, t) for sample with molecular
weight 47Z. For segments x < xd the probabilities are determined at the relaxation time of each segment
τ(x) and for segments x > xd at reptation time τTMA

d .

If we analyse the short chains (see Figure 7), there is no clear separation between fluctuations
and reptation because the probability of being relaxed by retraction < 1 for all segments. However,
for x < xs the chance to be relaxed by reptation is very low, same as for the long chains. The rest of the
segments are relaxed via reptation and retraction, as prept(x, t) ' p f luct(x, t).
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Figure 7. Comparison of survival probabilities p f luc(x, t) and prep(x, t) for samples with molecular
weight 20Z (a) and 7Z (b). For segments x < xd the probabilities are determined at the relaxation time
of each segment τ(x) and for segments x > xd at reptation time τTMA

d .
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In fact, it is easy to show the numerical equivalence of the TMA and the BoB models, especially
for long chains (Z > 50). To illustrate this conclusion, we add several features from the BoB model
to the TMA model and compare the results. First, we modify the TMA algorithm (TMAexcl) in
order to allow reptation to start only after the arm fluctuation is finished. This transition from
fluctuation process to reptation takes place at segment xs. In other words, the joint survival probability
becomes p(x, t) = p f luc(x, t), if x < xs and p(x, t) = prept(x, t) ' exp(−t/τTMA

d ), if x > xs, where
τf luc(xs, t) = τBoB

d . It must be noted that G(t) in the TMA is calculated at each time step, so we
need to determine x(s) a priori. The TMA model which accounts for this first modification is called
TMAexcl . In addition, we examine how the choice of the relaxation modulus equation used in the
BoB model influences the relaxation process. Therefore, we introduce one extra modification in our
model, called TMAexcl−BoB, where the reptation time τBoB

d and G(t) of TMAexcl are now determined
according to BoB’s formulations, in addition to preventing fluctuations and reptation process to take
place simultaneously. This version of the TMA model is almost identical to the BoB model, except for
the transition between the early and the deep fluctuations and calculation of the relaxation time for the
latter one, as was explained before.

Figure 8 shows a comparison between TMA (solid line), TMAexcl (dotted line) and TMAexcl−BoB
(dashed line) predictions for Auhl’s PI samples from Table 2. Both TMA and TMAexcl models
predict nearly the same results for samples with high number of entanglements. The explanation
goes as follows: by using the joint survival probability prept(x, t)p f luc(x, t), TMA introduces a
smooth transition between retraction and reptation processes. The domination of the arm retraction
(prept(x, t) ' 1 for all unrelaxed segments x) is followed by a period when reptation starts to take over;
namely prept(x, t) tends to p f luc(x, t) for segments of the relaxation front. Finally, a chain will complete
its relaxation by reptation, rather than by retraction, since prept(x, t)� p f luc(x, t) ' 1 for unrelaxed
segments. In general, this rule holds for linear chains with a molecular weight of 50 entanglements
or higher.
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Figure 8. Comparison of TMA ( ), TMAexcl ( ) and TMAexcl−BoB ( ) predictions of G′ (a) and G′′

(b) with the experimental data (◦) for PI33 (7Me), PI90 (19.7Me), PI200 (46.9Me), PI400 (100.2Me) and
PI1000 (234.6Me).

A different behavior is observed for shorter chains, where TMAexcl shows a slower decay of G′ and
G′′ in the terminal zone. Although TMAexcl and TMA have the same reptation time, there is no actual
transition between processes in the TMA model, as in case of the long chains. Relaxation of segments
after xs is also governed by those two processes, rather than by pure reptation, because probabilities of
being relaxed by reptation or retraction are almost equivalent for those segments. This explains the
difference in the obtained results of the two models, as in TMAexcl relaxation ends with pure reptation.

Interestingly, comparing these data with the TMAexcl−BoB model allows us to illustrate how
the two main approximations discussed above, i.e., a reptation process two times slower and an
overestimated influence of CLF on reptation, compensate each other in the BoB model. Indeed, BoB
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can be viewed as the TMAexcl model with the reptation time τTMA
d ≈ 2τBoB

d . Nevertheless, samples
having a high molecular weight show slightly slower terminal relaxation with BoB. Indeed, when
τTMA

d /τBoB
d > 2 for short chains, TMA still has retraction, which implicitly reduces reptation time to

the level of τTMA
d = 2τBoB

d . For very long chains the reptation relaxation time ratio is slightly less than
2 and leads to longer terminal relaxation in the BoB model.

In the BoB model, the missing constraint release in reptation is compensated by choosing a smaller
value for τd by excluding the part of the chain relaxed by deep fluctuations, such that a relationship
between TMA and BoB reptation times of τTMA

d ≈ 2τBoB
d is found. Here, we argue against this

hypothesis. Indeed, during retraction, one end of the chain will be first dragged inside the tube over a
maximum distance ∆Lret by forming some big loops between entanglements. However, at the same
time, the other end will be pulled out of the tube by reptation over the same distance ∆Lret and will
first stretch those loops rather than translating them over the distance ∆Lret, so that the fluctuating tip
of the chain will stay fixed. Therefore, on average, the equilibrium length of the chain stays constant.
Only the fast fluctuations (compared to the reptation time) should speed up reptation. Furthermore,
deep retraction cannot be considered as a fast process compared to reptation.

7. Comparison of Theoretical and Experimental LVE Data

First, we summarize in Table 5 the important features of the TMA, the modified TMA and the
Bob which were discussed in this paper.

Table 5. Main differences between the TMA, the modified TMA and the BoB.

Polymer Fraction CR Effect Chain Ends Separated
Models CLF Acting as Solvent in Reptation Treatment Relaxation

for Reptation Processes

TMA Early No Yes No No
fluctuations
and retraction

Modified TMA Early Yes Yes Yes No
fluctuations
and retraction

BoB Early Yes No No Yes
fluctuations
and retraction

The modified TMA and the BoB models with the input parameters presented in Table 4 are used
to compute G(ω). The comparison between experimental and theoretical data for PI samples is shown
in Figures 9 and 10.
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Figure 9. Comparison of the TMA predictions of G′ ( ) and G′′ ( ) with experimental data (◦) and BoB
modeling ( ) for Auhl’s PI samples.
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Figure 10. Comparison of the TMA predictions of G’ ( ) and G′′ ( ) with experimental data (◦) and
BoB modeling ( ) for Watanabe’s PI samples.

The overall agreement between the Auhl’s PI data and the more advanced version of the TMA
model is remarkable. The BoB model exhibits a deviation from the experimental plateau modulus for
the short chains. This is explained by accounting twice the effect of chain ends relaxation as discussed
in Section 4. Also, the predictions of BoB for short chains (Z < 20) are relaxing a bit slower than
the ones from TMA. We identified the nature of this discrepancy previously: the largest part of the
chain is relaxed by retraction, and BoB would need larger Me to coincide with TMA predictions [25].
For middle range molecular weight samples, the TMA and the BoB models are found to yield similar
results when using the same set of input parameters.

Now we consider the experimental data available for polybutadiene. Figures 11–15 shows the
comparison of predictions made by the TMA and the BoB models for the data from Table 1.
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Figure 11. Comparison of the TMA predictions of G′ ( ) and G′′ ( ) with experimental data (◦) and
BoB modeling ( ) for Kapnistos’s PBD samples.
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Figure 12. Comparison of the TMA predictions of G′ ( ) and G′′ ( ) with experimental data (◦) and
BoB modeling ( ) for PBD Liu’s samples.
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Figure 13. Comparison of the TMA predictions of G′ ( ) and G′′ ( ) with experimental data (◦) and
BoB modeling ( ) for PBD Baumgaertel’s samples.
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Figure 14. Comparison of the TMA predictions of G′ ( ) and G′′ ( ) with experimental data (◦) and
BoB modeling ( ) for PBD Juliani’s samples.
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Figure 15. Comparison of the TMA predictions of G′ ( ) and G′′ ( ) with experimental data (◦) and
BoB modeling ( ) for PBD Lee’s samples.

All the PBD data are predicted with the same values for the input parameters Me and τe. Recall
that Likhtman and McLeish [4] had to set the corresponding values differently for Baumgaertel’s [37]
and Lee’s [38] data. The results in Figures 11–15 show the same quality of predictions as for PI samples.
All deviations between the experimental data and the BoB model are already explained above.

Finally, in Figures 16 and 17 we compare our predictions for linear viscoelasticity with the
experimental data of linear PS samples coming from several research groups.
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Figure 16. Comparison of the TMA predictions of G′ ( ) and G′′ ( ) with experimental data (◦) and
BoB modeling ( ) for PS Nielsen, Huang and Shahid samples.
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Figure 17. Comparison of the TMA predictions of G′ ( ) and G′′ ( ) with experimental data (◦) and
BoB modeling ( ) for PS (a) Graessley and (b) Schausberger samples.

Again, the predictions made by the TMA model are in a good agreement with all data, while the
BoB model overpredicts the relaxation of really short chains together with a clear deviation from the
plateau modulus. The data from Graessley [47] and Schausberger [46] is also considered in the work
of Likhtman and McLeish [4]. To fit the data accurately, they had to adjust the values of Me, τe and
G0

N , separately for each set. On the contrary, we use the same value of Me and G0
N for the calculations

employing these samples.
There are several comments regarding the comparison of the data. First, the shape of the relaxation

spectra G′(ω) and G′′(ω) predicted by TMA is in good agreement with the experimental data. Second,
the agreement between TMA and BoB is quite reasonable, but with some deviations. The most
pronounced disagreement is observed for the short-chain samples, where the BoB model overestimates
the terminal relaxation time, and predictions are slightly shifted downwards. Presumably, this effect
can be attributed to the difference in the coordinate systems used in both models, since TMAexcl−BoB
shows a better fit. As discussed in Section 4, the value of Z for short chains is somewhat lower due to
the renormalization. Note that the BoB model cannot predict linear and star polymers with the same
Me value (Mstar

e > Mlinear
e ). Thus, BoB predictions could lead to a better agreement for these chains,

if the values of Me for the star-shaped polymers were used. This fix is consistent with the fact that
the relaxation of the short linear polymers is mostly governed by fluctuations. Third, the distinction
between BoB and TMA is expected to be more pronounced for highly entangled samples (Z > 400).
Nonetheless, the lack of experimental data prevent this comparison.
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8. Conclusions

Although most of tube-based models produce similar quantitative results for the monodisperse
linear viscoelastic behavior of linear macromolecules, there are some crucial differences between them;
especially between TMA and the others. In this paper, we compared the theoretical frameworks for
several well-known models: Milner–McLeish, Likhtman–McLeish, the Hierarchical model, the BoB
model and the TMA model. Our comparison revealed that the most pronounced distinction between
these models is the way the dynamic modulus G(t) is determined, and as a consequence, the relaxation
time τd. Additionally, the description of the transition between relaxation processes also plays an
important role in the predictions, especially for shorter polymers.

Our analyses indicate that the BoB and the Hierarchical models use the same expression for
the relaxation modulus as MM theory, i.e., excluding the effect of constraint release modes arising
from reptation of other chains. This assumption is compensated in the MM theory, the BoB and
the Hierarchical models by including the possible deep retraction of the chain extremities into CLF
calculations and by removing this CLF from the reptation time. In this work, we showed that only fast
fluctuations of chain ends should speed up reptation, as initially proposed in the tube theory.

On the other hand, we discussed the consequences of an incorrect approximation applied in
the derivation of the relaxation modulus and proposed several alternative ways to obtain the correct
expression for G(t) calculation. We also showed that, the crude assumption made in the BoB model
does not dramatically affect the quality of the results for linear chains. However, one can wonder what
would be their impact in the case of binary blends or for very polydisperse samples. Furthermore,
modeling of branched polymers might also be affected.

Based on the comparison to experimental data, we added several modifications to the
time-marching algorithm (TMA) for the case of monodisperse linear molecules. Thanks to
renormalization of the coordinate system, we avoid considering the segments which relax before
τe in further calculations. This procedure helped us to improve the performance of the TMA model
and to eliminate the discrepancy of tube model predictions for describing the plateau modulus for
short chains. Furthermore, we included the influence of the fluctuation process on reptation time in
the modeling. This quite important fundamental concept was missing in the TMA model. The amount
of material excluded from the reptation process is consistent with the original CLF concept and agrees
with values extracted from MD simulations.

We validated the modified TMA model on a wide range of nearly monodisperse polyisoprene,
polystyrene and polybutadiene linear melt samples. All predictions are in good agreement with the
experimental data. Notably, same entanglement molecular weight Me could be used for each chemical
group, contrarily to the work of Likhtman and McLeish [4], who used different values of Me within a
chemical group. Furthermore, we were able to use the same parameters as the ones used to describe
the viscoelastic properties of start polymers. Therefore, this gives us a solid base to extend tube models
to polydisperse blends of linear and star polymers. Validation of the BoB model was performed on
the same set of experimental data. The numerical predictions of the BoB model also fit the data quite
well, apart from the deviations in the case of short chains. The latter observation can be attributed to
the fact that in the BoB model, stress relaxation by contour length fluctuations is calculated starting at
time t = 0.
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