Supplementary Materials

Formulation and Characterization of a SIS-Based Photocrosslinkable Bioink

Julian A. Serna ¹, Sergio Leonardo Florez ², Vivian A. Talero ¹, Juan C. Briceño ¹, Carolina Muñoz-Camargo ^{1,*} and Juan C. Cruz^{1,*}

- ¹ Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; ja.serna10@uniandes.edu.co (J.A.S.); va.talero24@uniandes.edu.co (V.A.T.); jbriceno@uniandes.edu.co (J.C.B.)
- ² Department of Electrical and Electronics Engineering, School of Engineering, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; sl.florez10@uniandes.edu.co
- * Correspondence: c.munoz2016@uniandes.edu.co (C.M.-C.); jc.cruz@uniandes.edu.co (J.C.C.); Tel: +(571)-339-49-49 (ext. 1789) (J.C.C.)

Figure S1. Dependency of the blue light irradiance intensity with respect to the distance from the sample. Data points were fitted to a power function with an R² of 0.98.

Figure S2. Rheological time sweep test for the 0.5 % (w/v) concentration of RF bioink. (a) Storage and loss moduli 180 s before irradiation and (b) after irradiation. Experiments were performed at 1 Hz and 1% strain, while temperature was held constant at 22 °C. Results showed gelation of the bioinks prior to irradiation, as the storage modulus is always greater than the loss modulus.

Figure S3. (a) Outlet velocity at the center of tip of the printing nozzle at varying extrusion pressures for three different nozzle diameters. In addition, velocity (m/s) profiles are shown for each nozzle diameter when applying a 20 kPa gradient extrusion pressure: (b) 27 G, (c) 25 G and (d) 23 G.

Table S1. Comparison of similar reported bioinks in terms of rheological parameters and crosslinking strategy implemented. Values displayed for viscosity correspond to flow sweep experiments between 0.01 and 200 1/s shear rate. Values displayed for storage modulus G' are the maximum achieved after cross-linking or gelation. Disclaimer: values displayed on the table are approximations based on the figures reported by the cited authors.

Material	Gelation or crosslinking method	Viscosity (Pa*s)	Storage modulus G' (Pa)	Reference
SIS dECM	Photo (RF-Vis)	1.5-3900	6000	Ours
Heart tissue dECM	Photo (RF-UVA) and thermal	0.4-210	10,000	[1]
Heart tissue dECM	Thermal	0.65-35	600	[2]
Adipose tissue dECM	Thermal	N.A.	550	[2]
Cartilage tissue dECM	Thermal	0.65-2.5	4000	[2]
Type I collagen	Photo (RF-UVA)	N.A.	40	[3]
Gel-MA/Type I collagen	Photo (Ru/SPS-Vis)	N.A.	N.A.	[4]

References

- Jang, J.; Kim, T.G.; Kim, B.S.; Kim, S.W.; Kwon, S.M.; Cho, D.W. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. *Acta Biomater.* 2016, 33, 88–95, doi:10.1016/j.actbio.2016.01.013.
- Pati, F.; Jang, J.; Ha, D.; Kim, S.W.; Rhie, J.; Shim, J.; Kim, D.; Cho, D. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. *Nat. Commun.* 2014, *5*, 1–11, doi:10.1038/ncomms4935.
- Diamantides, N.; Wang, L.; Pruiksma, T.; Siemiatkoski, J.; Dugopolski, C.; Shortkroff, S.; Kennedy, S.; Bonassar, L.J. Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and pH. *Biofabrication* 2017, *9*, 34102, doi:10.1088/1758-5090/aa780f.
- Lim, K.S.; Schon, B.S.; Mekhileri, N.V.; Brown, G.C.J.; Chia, C.M.; Prabakar, S.; Hooper, G.J.; Woodfield, T.B.F. New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks. *ACS Biomater. Sci. Eng.* 2016, *2*, 1752–1762, doi:10.1021/acsbiomaterials.6b00149.