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Abstract: One of the most famous anticancer drugs, paclitaxel (PTX), has often been used in drug
controlled-release studies. The polymers derived from bio-compound bile acids and degradable
poly(ε-caprolactone) (PCL) form a reservoir and have been used as a drug delivery system with great
advantages. Herein, we grafted poly(N,N-diethylaminoethyl methacrylate) and poly(poly(ethylene
glycol) methyl ether methacrylate) into the bile acid-derived three-armed macroinitiator CA-(PCL)3,
resulting in the amphiphilic block copolymers CA-(PCL-b-PDEAEMA-b-PPEGMA)3. These
pH-responsive three-armed block copolymers self-assembled into micelles in aqueous solution
and PTX was encapsulated into the micellar core to form PTX-loaded micelles with a drug loading of
29.92 wt %. The micelles were stable in PBS at pH 7.4 and showed a pH-triggered release behavior of
PTX under acidic environments, in which 55% of PTX was released at pH 5.0 in 80 h. These cholic
acid-based functionalized three-armed block polymers present good biocompatibility, showing great
potential for drug controlled-release.

Keywords: cholic acid; pH-sensitive; PTX; drug delivery

1. Introduction

According to the latest report released by the International Agency for Research on Cancer (IARC),
the number of cancer deaths in 2018 has reached 9.6 million, which is increasing year by year, with
cancer becoming one of the major causes of mortality in the world. Over the past several decades,
chemotherapy has been considered as one of the efficient methods for cancer therapy and has gained
unprecedented attention. It has been demonstrated that typically, as a kind of anticancer agent,
paclitaxel (PTX) and its derivatives such as Abraxane®, Taxotere® and Taxol®, to name a few, have
a certain therapeutic efficacy on the treatment of ovarian cancer [1], breast cancer [2] as well as lung
cancer [3]. To date, these series of anticancer drugs still face several limitations, including poor water
solubility and uncontrollable pharmacokinetic processes. Furthermore, the nonspecific biodistribution
of the anticancer drugs usually causes severe side effects on normal tissue and undermines the
therapy effect on tumor tissue [4,5]. In order to effectively improve the therapeutic efficacy as well as
minimize the side effects mentioned above, an increasing attention has been paid to the development
of a drug delivery system, including liposomes [6,7], micelles [8], vesicles [9,10], mesoporous silica
nanoparticles [11], and other nanoparticles.

Notably, polymeric micelles are the preferred drug delivery system for anticancer drugs because
of their unique structure, adjustable size and shape, simple synthesis route, and tailor-made
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functionalization [12–14]. As is well known, polymeric micelles with a unique core-shell structure
are spontaneously assembled from amphiphilic block copolymers, and the micelle inner core that is
made up of hydrophobic polymer chains serves as a nanocontainer for the loading of hydrophobic
anticancer drugs [15]. However, a drug controlled-release system of polymer-based micelles still faces
several challenges, namely, the burst release of anticancer drugs, poor biodegradability, and target-free
delivery of tumor tissue [16–18].

Interestingly, compared with normal tissues, tumor tissues have some differences in the tissue
microenvironment, such as weak acidity [19], abnormal temperature gradients [20,21], overexpressed
proteins and enzymes, as well as a higher concentration of glutathione (GSH) or cysteine [22,23].
Based on these significant differences in microenvironment, a series of stimulus-responsive polymeric
micelles have been exploited to control the release of the anticancer drugs at the expected target
sites. For example, researchers used the weak acidity of tumor tissues and developed a series of
pH-responsive drug controlled-release systems, which can accept appropriate pH changes in response
to acidic fluctuation of the tumor tissues [24–26].

Cholic acid (CA), a naturally occurring bile acid, is derived from liver cells in the human body.
Due to its special structure, cholic acid and its derivatives have attracted the attention of researchers,
and their application in drug controlled-release systems has been reported extensively [27–30]. Zhu
and co-workers reported the synthesis of series polymers based on CA, and using them in drug
delivery systems. Research indicated that the micelles formed from cholic acid-based star polymers
had a lower density than linear polymers with a similar structure, forming an internal reservoir that
can accommodate a larger amount of hydrophobic therapeutic drug, showing their advantages in
terms of biocompatibility and drug loading [31–35]. The drug loading and encapsulation efficiency of
these nanoparticles reached up to 35 wt % and higher than 89%, respectively, improving bioavailability
and pharmacokinetics of the drug.

Herein, biocompatible hydrophobic poly(ε-caprolactone) (PCL) was bonded with cholic
acid by ring-opening polymerization (ROP) to form the micellar core during the self-assembly.
Then pH-responsive block poly (2-(diethylamino) ethyl methacrylate) and hydrophilic block
poly (ethylene glycol) methyl acrylate (PPEGMA) were sequentially grafted onto PCL via atom
transfer radical polymerization (ATRP) to obtain a three-armed star amphiphilic block polymer,
CA-(PCL-b-PDEAEMA-b-PPEGMA)3, also named as CA-CDEP (Scheme 1). For comparison,
CA-(PCL-b-PPEGMA)3, also named as CA-CP, without pH-responsive block was also synthesized
under the same conditions (Scheme S1). PTX was encapsulated in these two types of polymeric
micelles. The drug was expected to release in a weakly acidic environment due to the swelling of
micelles in the presence of block PDEAEMA (Figure 1). Furthermore, the self-assembly, drug loading
performance, drug release, and in vitro cytotoxicity of these polymeric micelles were also evaluated.
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2. Materials and Methods

2.1. Materials

All chemical reagents were used as received unless otherwise noted. Cholic acid (CA, 98%),
2-bromoisobutyryl bromide (2-BIBB, 98%), copper(I) bromide (CuBr, 99%), N,N,N′,N′,N′′-pentamethyl
diethylene-triamine (PMDETA, 98%), 2-(diethylamino) ethyl methacrylate (DEAEMA, 99%), poly
(ethylene glycol) methyl ether methacrylate (PEGMA, Mn = 500 Da) and paclitaxel (PTX, 99%) were
purchased from Aladdin (Shanghai, China). ε-caprolactone (ε-CL, 99%) and stannous octoate (Sn(Oct)2,
95%) were purchased from Macklin Biochemical Co. Ltd. (Shanghai, China). Dichloromethane
(DCM, AR), triethylamine (TEA, AR), tetrahydrofuran (THF, AR), dimethyl sulfoxide (DMSO, AR),
and dimethyl formamide (DMF, AR) were purchased from Energy Chemical (Shanghai, China). All
other solvents such as ethyl alcohol were supplied by Guangzhou chemical reagent factory and
used directly. Copper(I) bromide was purified via washing with acetic acid and ethyl alcohol three
times, respectively, and then stored in a vacuum glove box. DEAEMA and PEGMA were purified by
column-chromatography over basic alumina to remove the inhibitors before used. TEA, DCM, THF,
and ε-CL were stirred overnight with CaH2 at room temperature and distilled at atmospheric pressure
to remove any water remaining in the solvent, then stored with 4A molecular sieves.

2.2. Characterization

1H NMR spectra were recorded on a Bruker AVANCE III 400 MHz superconducting Fourier
(Bruker, Billerica, MA, USA) in deuterium generation reagent with tetramethyl silane (TMS) as the
internal standard for structure characterization of polymers. The number average molecular weight
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(Mn) was detected by gel permeation chromatography (GPC) (Waters 1515/2414, Waters, Milford,
MA, USA), using THF as the mobile phase with a flow rate of 1.0 mL/min and polystyrene (PS)
as the standard for calibration. The morphological characterization of the polymeric micelles was
characterized with a HT7700 transmission electron microscopy (TEM, Hitachi, Japan). The sizes and
zeta potential of the block polymers were measured by dynamic light scattering (DLS) with a Zeta
PALS zeta potential and granularity analyzer (Brookhaven, New York, NY, USA). The fluorescence
spectra were examined on a FluoroMax-4 fluorescence spectrometer (HORIBA Jobin Yvon, Clifton
Park, NY, USA). UV–Vis spectra were performed on a UV2450 spectrophotometer (Shimadzu, Kyoto,
Japan). The copper residues in the polymer were characterized by an Escalab 250Xi X-ray photoelectron
spectroscopy (XPS, Thermo Fisher, West Sussex, UK).

2.3. Synthesis of Polymers

2.3.1. Synthesis of CA-(PCL28)3

Cholic acid (0.4 g, 1 mmol) and ε-CL (6.8 g, 60 mmol) were added to a Schlenk flask and degassed
with three freeze-pump-thaw cycles to remove oxygen. Then, Sn(Oct)2 (36 mg, 0.088 mmol) mixed
with toluene (0.5 mL) was injected into the flask under inert atmosphere protection, followed by
continuous stirring and heating at 160 ◦C for 8 h. After cooling down to room temperature, the crude
product was dissolved in THF and the undissolved solid was removed by filtration. Subsequently, the
collected filtrate was precipitated into excess cold n-hexane and further purification was performed by
successively washing with ethyl alcohol and petroleum ether for three times. The purified polymer
was dried at 40 ◦C in vacuum overnight to obtain the white powder.

2.3.2. Synthesis of CA-(PCL28-Br)3

CA-(PCL28-Br)3 as the initiator was synthesized by bromination reaction with 2-BIBB. CA-(PCL28)3

(2.0 g, 0.21 mmol) and TEA (0.3 g, 3 mmol) were added into a dried flask, then dissolved in 25 mL
DCM at 0 ◦C. After being degassed with three freeze-pump-thaw cycles, 2-BIBB (0.35 mL, 3 mmol)
dissolved in anhydrous DCM (5 mL) was fed dropwise into the flask with vigorous stirring under ice
bath conditions. The mixture was continually stirred at 0 ◦C for 2 h and then at room temperature for
another 24 h. The sediment was removed by filtration and the filtrate were successively washed by
HCl (1 mol/L), saturated NaHCO3, and deionized water. After drying over anhydrous magnesium
sulfate, the product was precipitated into excess n-hexane and then collected by drying at 40 ◦C in
vacuum overnight.

2.3.3. Synthesis of CA-(PCL28-b-PDEAEMA5)3

CA-(PCL28-b-PDEAEMA5)3 was prepared via ATRP. CA-(PCL28-Br)3 (1.0 g, 0.1 mmol), DEAEMA
(1.1 g, 6 mmol), and PMDETA (36.4 mg, 0.21 mmol) were dissolved into 30 mL anhydrous THF and
degassed with three freeze-pump-thaw cycles. Under the protection of argon, CuBr (20 mg, 0.139 mmol)
as the catalyst was fed into the mixture and the system was degassed with three freeze-pump-thaw
cycles again. The system was stirred at 65 ◦C for 24 h followed by the presence of oxygen to terminate
the chain growth. The unreacted catalyst was removed by passing it through a neutral alumina column
(such as THF as the eluent). The organic solution was concentrated by rotary evaporation, and then
dispersed into ten times volume of n-hexane. Finally, the insoluble part was dried at 40 ◦C in vacuum
for 24 h to obtain the pure product.

2.3.4. Synthesis of CA-(PCL28-b-PDEAEMA5-b-PPEGMA5)3 (CA-CDEP)

As shown in Scheme 1, CA-(PCL28-b-PDEAEMA5)3 (1.5 g, 0.11 mmol) as the initiator with
hydrophilic monomer PEGMA (1.0 g, 2 mmol) and PMDETA (36.4 mg, 0.21 mmol) as the ligand
were dissolved into 20 mL anhydrous THF and degassed with freeze-pump-thaw cycle three times
to eliminate the extra oxygen. Then, CuBr (20 mg, 0.139 mmol) was quickly added into the Schlenk
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flask and degassed with three freeze-pump-thaw cycles to make sure the system was keeping an
oxygen-free condition to remain the active state of catalyst. The polymerization was conducted at
65 ◦C for 24 h in the oil bath. The mixture was diluted with THF and passed through a neutral alumina
column to remove the catalysts. The organic solution was concentrated by removing eluent from
rotary evaporation, and then the polymer was precipitated from an excess of hexane. The pure product
CA-(PCL28-b-PDEAEMA5-b-PPEGMA5)3, named as CA-CDEP, was obtained after being dried in a
vacuum at 40 ◦C for 24 h.

2.3.5. Synthesis of CA-(PCL28-b-PPEGMA7)3 (CA-CP)

CA-(PCL28-b-PPEGMA7)3 was prepared via a similar method using CA-(PCL28-Br)3 as the
macroinitiator. CA-(PCL28-Br)3 (1.0 g, 0.1 mmol), PEGMA (2.0 g, 4 mmol), and PMDETA (36.4 mg,
0.21 mmol) were dissolved into 30 mL anhydrous THF and degassed with three freeze-pump-thaw
cycles. Under the protection of argon, CuBr (20 mg, 0.139 mmol) was fed into the solution as the catalyst
and the whole system was degassed with three freeze-pump-thaw cycles. The system was stirred at
65 ◦C for 24 h. The catalyst was removed by passing it through a neutral alumina column using THF
as the eluent. The organic solution was concentrated by rotary evaporation then dispersed into ten
times volume of n-hexane. The product CA-(PCL28-b-PPEGMA7)3, named as CA-CP (Scheme S1), was
collected by drying at 40 ◦C in vacuum for 24 h after filtration.

2.4. Self-Assembly of the Micelles

Briefly, the polymer (20 mg) was dissolved in 2 mL acetone, then added dropwise into the
deionized water with a syringe and stirred at ambient temperature for 24 h. An initial polymer
solution at a concentration of 1 mg/mL was obtained after removing the acetone. For the preparation
of PTX-loaded micelles, the block polymer and PTX were dissolved into DMSO together. After being
added dropwise into phosphate buffer (pH 7.4) with a syringe and stirred for 2 h, they were placed in
a dialysis bag (MWCO = 3500 Da) and dialyzed against PBS solution for 6 h, then dialyzed against
deionized water for 48 h. The solution was filtered through a 0.45 µm filter and kept in freeze-dried
storage for further characterization.

2.5. CMC of the Micelles

The critical micelle concentration (CMC) of CA-CDEP and CA-CP were determined by a
fluorescence spectrometer using pyrene as the fluorescence probe [36]. The fluorescence scanning
range was from 300 to 350 nm and the emission wavelength was 373 nm. A quantity of pyrene was
dissolved in 0.5 mL acetone, and then the acetone was volatilized overnight at room temperature in
the dark. The initial polymer solution obtained above was diluted into a series of concentrations from
0.0001 to 0.1 mg/mL and fed into the vials containing pyrene. The mix solution was left to equilibrate
in the dark for 24 h before being measured. The final concentration of pyrene in aqueous solution was
6.5 × 107 M.

2.6. Drug Loading and In Vitro Release

PTX loading was measured by subtracting the amount of PTX released during quantitative
purification from the amount of PTX in the feed. The amount of PTX in the micelles was determined by
its absorbance at 258 nm on a UV–Vis spectrophotometer (UV2450), and combining with a calibration
curve for PTX in DMSO. Then, 1 mg lyophilized PTX-loading micelles was dissolved into 10 mL
DMSO, filtered using a 0.45 µm syringe filter.

The drug loading content (DLC) and entrapment efficiency (EE) were calculated based on three
independent measurements as follows:

DLC (wt %) =
wt o f loaded drug

wt o f drug− loaded micelle
× 100%, (1)
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EE (%) =
wt o f loaded drug
wt o f drug in f eed

× 100%. (2)

The PTX release behavior from PTX-loaded block polymer micelles was monitored by changing
the pH of the ambient environment. First, 5 mg PTX-loaded micelles were dispersed in 5 mL PBS
(1 mg/mL) and put into a dialysis bag (MWCO = 7000 Da), then immersed in PBS containing 1 wt %
DMSO, thereby allowing us to better observe the release progress of the drug. The whole process
was stirred in a shaking water bath at 37 ◦C. Different pH environments were provided by PBS and
acetate buffer. An amount of 4 mL release medium was taken out at regular intervals and 4 mL fresh
medium was replenished to maintain the same volume of the solution. The released amount of drug
was determined using a UV–Vis spectrophotometer. The tests were repeated three times, and the
results were presented as the average of three independent measurements.

2.7. In Vitro Cytotoxicity Assay

NIH-3T3 cells were incubated in 96-well plates at a density of 5000 cells per well with 80 µL
culture medium (NIH-3T3 cells in 90% DMEM containing 10% FBS and 1% P/S), and the cytotoxicity
was determined by a CCK-8 assay. The cells were incubated at 37 ◦C and 5% CO2 in medium for 24 h,
then the culture medium was removed, and fresh medium with different concentrations of samples
was added, the cells were incubated for a further 48 h. Free fresh culture medium was used as a control,
and each sample was replicated in three cells. A 10 µL portion of Cell Counting Kit-8 solution was
added to each well and the cells were incubated for 2 h. The absorbance of the solution was measured
at 450 nm using a Nivo reader (PerkinElmer, Waltham, MA, USA). The experiments were repeated
three times, and the results were obtained from three independent measurements. The cell viability
was calculated as follows:

Cell viability (%) =
ODS

AVER (ODnc)
× 100%, (3)

where ODs is the absorption value of the sample wells and ODnc is the absorption value in the absence
of samples. The background blank control well absorbance should be subtracted from the measured
absorbance of each group.

3. Results and Discussion

3.1. Synthesis of Block Polymers

The amphiphilic block polymers CA-CDEP and CA-CP were both synthesized by a combination
of ROP and ATRP. The molecular weight (Mn) of all polymers was determined by GPC and the
weights are summarized in Table 1. The GPC curves presented in Figure 2 exhibited unimodal
symmetric distribution, indicating that ROP and ATRP processes were well controlled. As can be seen
in Table 1, the Mn by GPC was lower than the Mn by theoretical calculation because of the relatively
low conversion rate. The polydispersity indexes of overall polymers were between 1.30 and 1.55,
which is beneficial for further drug delivery. The degrees of polymerization of ε-CL, DEAEMA, and
PEGMA were approximately 84, 15, and 15, respectively, obtained from the GPC data. For CA-CP, the
degrees of polymerization of ε-CL and PEGMA were about 84 and 21, respectively.
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Table 1. Molecular weight measured by GPC and compared to the theoretical value.

Polymer Mn,th
1 (g/mol) Mn,GPC (g/mol) PDI 2

CA-(PCL28)3 9500 9400 1.46
CA-(PCL28-b-PDEAEMA5)3 16,900 12,800 1.55

CA-CDEP 31,780 19,500 1.44
CA-CP 32,900 19,400 1.31

1 Value by design. 2 Polymer molecular weight dispersity indexes determined by GPC.

Polymers 2019, 11, x FOR PEER REVIEW 7 of 16 

 

0 10 20 30 40

-1000

0

1000

2000

3000

4000

5000

6000

 

 

S
li

ce
 A

re
a

Elution time (min)

 CA-(PCL28)3

 CA-(PCL28-Br)3

 CA-(PCL28-PDEAEMA5-Br)3

 CA-CDEP

 CA-CP

 

Figure 2. Gel permeation chromatography (GPC) analysis in THF of CA-(PCL28)3, CA-(PCL28-Br)3, CA-
(PCL28-b-PDEAEMA5)3, CA-CDEP, CA-CP. 

Table 1. Molecular weight measured by GPC and compared to the theoretical value. 

Polymer Mn, th 1 (g/mol) Mn, GPC (g/mol) PDI 2 
CA-(PCL28)3 9500 9400 1.46 

CA-(PCL28-b-PDEAEMA5)3 16,900 12,800 1.55 
CA-CDEP 31,780 19,500 1.44 

CA-CP 32,900 19,400 1.31 
1 Value by design. 2 Polymer molecular weight dispersity indexes determined by GPC. 

The 1H NMR spectra shown in Figures S1–S4 demonstrate the compositions of CA-CDEP and 
CA-CP. In Figure S1, the signals at 1.38, 1.65, 2.31, and 4.06 ppm were the characteristic peaks of –
CH2– protons of PCL. The signal at 1.93 ppm was ascribed to –C(CH3)2–Br of CA-(PCL28-Br)3 in Figure 
S2. As presented in Figures S3 and S4, the peaks at 2.69 and 3.99 ppm were assigned as methylene 
protons of –CH2–CH2– in DEAEMA unit. The peaks at 2.58 and 1.02 ppm belonged to the methylene 
and end methyl protons of –CH2–CH3 in DEAEMA unit. The peaks at 0.81 and 1.75–1.90 ppm were 
ascribed to –CCH3 and –CH2– of the acrylate part. The chain extension of PPEGMA on CA-(PCL28-b-
PDEAEMA5)3 results in the appearance of signals at 3.67 ppm (–OCH2–CH2O–), 3.38 ppm (–OCH3), 
and 4.23 ppm (–COO–CH2–). 

3.2. Formation and Characterization of the Micelles 

The amphiphilic block polymer consisting of hydrophobic PCL unit and hydrophilic PPEGMA 
unit self-assembled into micelles in aqueous solution. The CMC of polymeric micelle was an 
important parameter to determine the conformational states of polymer chains (single molecule or 
aggregate). The stability of the micelles in the human blood circulation became better due to the lower 
CMC value [37]. 

The CMC of polymeric micelles were performed on fluorescence spectroscopy with 
pyrene as fluorescence probe. As shown in Figure 3, the CMC value of CA-CDEP was 0.0035 mg/mL 
lower than that of CA-CP (0.0048 mg/mL). This may be attributed to the high hydrophobic portion 
of CA-CDEP with the presence of block PDEAEMA. In general, amphiphilic polymer micelles with 
low CMC values remain stable in the blood circulatory system and prevent chemotherapy drugs from 
releasing before reaching cancer cells [38]. 
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CA-(PCL28-b-PDEAEMA5)3, CA-CDEP, CA-CP.

The 1H NMR spectra shown in Figures S1–S4 demonstrate the compositions of CA-CDEP and
CA-CP. In Figure S1, the signals at 1.38, 1.65, 2.31, and 4.06 ppm were the characteristic peaks of –CH2–
protons of PCL. The signal at 1.93 ppm was ascribed to –C(CH3)2–Br of CA-(PCL28-Br)3 in Figure S2.
As presented in Figures S3 and S4, the peaks at 2.69 and 3.99 ppm were assigned as methylene protons
of –CH2–CH2– in DEAEMA unit. The peaks at 2.58 and 1.02 ppm belonged to the methylene and end
methyl protons of –CH2–CH3 in DEAEMA unit. The peaks at 0.81 and 1.75–1.90 ppm were ascribed to
–CCH3 and –CH2– of the acrylate part. The chain extension of PPEGMA on CA-(PCL28-b-PDEAEMA5)3

results in the appearance of signals at 3.67 ppm (–OCH2–CH2O–), 3.38 ppm (–OCH3), and 4.23 ppm
(–COO–CH2–).

3.2. Formation and Characterization of the Micelles

The amphiphilic block polymer consisting of hydrophobic PCL unit and hydrophilic PPEGMA
unit self-assembled into micelles in aqueous solution. The CMC of polymeric micelle was an important
parameter to determine the conformational states of polymer chains (single molecule or aggregate).
The stability of the micelles in the human blood circulation became better due to the lower CMC
value [37].

The CMC of polymeric micelles were performed on fluorescence spectroscopy with pyrene as
fluorescence probe. As shown in Figure 3, the CMC value of CA-CDEP was 0.0035 mg/mL lower than
that of CA-CP (0.0048 mg/mL). This may be attributed to the high hydrophobic portion of CA-CDEP
with the presence of block PDEAEMA. In general, amphiphilic polymer micelles with low CMC values
remain stable in the blood circulatory system and prevent chemotherapy drugs from releasing before
reaching cancer cells [38].
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Figure 3. Intensity ratio (I336/I332) in the fluorescence spectra of pyrene as a function of polymeric
concentrations in aqueous solution.

Figure S5 shows the acid–base titration curve. During the continuous addition of NaOH, the pH
value of polymer CA-CDEP presented a clear buffering trend, which ranged from 4.42 to 6.68. Such a
response region was not observed for CA-CP, for which the variation trend was basically consistent
with the NaCl solution. The results indicated that the pKb of the CA-CDEP shifted to 5.53 after the
introduction of the DEAEMA monomer, which is also the inflection point of the curve of the block
polymer CA-CDEP.

Spherical nanoparticles with a micellar structure were expected since the molecular mass of
the hydrophobic block was less than that of the hydrophilic block [23,39]. The size changes of the
amphiphilic block polymer micelles and PTX-loading micelles were observed by TEM and DLS.
Figure 4 shows the TEM image of the polymer micelles CA-CP and CA-CDEP. Figure 4a,b shows the
particle sizes of CA-CP blank micelles at pH 7.4 and 5.0, respectively, and both are around 100–120 nm.
The particle size of PTX-loading CA-CP micelles was increased to 180–250 nm with the clear core-shell
structure (Figure 4c). The blank micelles assembled by CA-CDEP showed a spherical structure with a
diameter of 90–120 nm at pH 7.4 (Figure 4d). The size of these blank polymer micelles increased to
about 140 nm when the pH was adjusted to 5.0 (Figure 4e). Such an increase in size may be caused
by the electrostatic repulsion of the protonated tertiary amino group of the PDEAEMA units under
acidic conditions [24]. From the TEM images of PTX-loading CA-CDEP micelles (Figure 4f), the size
increased from approximately 120 nm to approximately 230 nm compared with the blank micelles.
The larger diameter of the drug-loaded micelles may be due to the entrapment of the PTX causing
the hydrophobic layer to swell. Meanwhile, the spherical core-shell structure became more obvious
after drug loading from the TEM image, which also proves that the drug is well wrapped in the
polymer micelles.

It is known that the size of micelles between the aqueous dispersions and the dry state is somewhat
different. The mean particle sizes of the CA-CP micelles, CA-CDEP micelles, PTX-loaded CA-CP
micelles, and PTX-loaded CA-CDEP micelles were 151.0, 170.4, 269.2, and 268.2 nm measured by DLS,
at pH 7.4, respectively, which is a little larger than that observed from TEM (Figure 5). This may be
due to the hydration of the PPEGMA chains in the aqueous medium [40]. The effect of pH on the
morphological changes was also studied by DLS. Figure S6 shows the size of micelles at different pH
ranging from 2 to 10. When the pH was adjusted from 10 to 7, there was no significant effect on the
size of the micelles. The size of CA-CDEP micelles increased to 188 nm when pH was dropped from 7
to 4, because the tertiary amine group in the PDEAEMA segment was gradually protonated under
the acidic conditions and the micelles expanded to balance the increasing electrostatic repulsion. The
size decreased as the pH was further lowered from 4 to 2, which demonstrated that the electrostatic
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repulsion was greater than the hydrophobic interaction within the micelle, thus the number of polymer
aggregates decreased [15,41]. In contrast, for the CA-CP micelles without the DEAEMA group, the
size remained basically unchanged.Polymers 2019, 11, x FOR PEER REVIEW 9 of 16 
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Figure 5. Particle-size distribution of micelles in PBS. (A) CA-CP, (B) CA-CDEP; (a,e) for blank
micelles at 7.4; (b,f) for blank micelles at 5.0; (c,g) for drug-loaded micelles 3/10; (d,h) for drug-loaded
micelles 5/10.

Figure S7 presents the zeta potential of both micelles when the pH was adjusted from 10 to 2. In
an acidic environment, the charge of the micelles was positive, which could enhance the enhanced
permeability and retention (EPR) effect of micelles for a longer time [42]. The zeta potential of micelles
was negative at the alkaline environment, probably due to the hydrolysis of esters in the alkaline
media. Overall, the introduction of DEAEMA increased the pH responsiveness of the polymer micelles,
providing the possibility for the drug controlled-release.

3.3. Drug Release Assay

The PTX-loading and release properties of micelles were investigated using the UV–Vis method.
Two different masses of PTX were loaded into the micelles, where the feed ratios of PTX to polymer
were 3/10 and 5/10, respectively. As listed in Table 2, the DLC of the polymer micelles was mainly
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affected by the polymer chemical structures and drug-loading feed. The DLC of PTX-loaded micelles
increased as the drug-loading feed increased. At the same dose, the polymer micelles CA-CDEP
with longer length of PCL and PDEAEMA block displayed a higher drug loading capacity. DLC
of CA-CDEP (29.92%) at a feed ratio of 5/10 was more than twice that of CA-CP micelles (11.4%).
Clearly, the increase of DLC resulted in the superior capacity to entrap more drugs in the micelle core
assembled by the hydrophobic PCL and PDEAEMA blocks.

Table 2. Diameter, PDI, zeta potential, DLC, and EE of micelles.

Sample PTX/Polymer
Diameter (nm) PDI 1

(DLS)
Potential

(Zeta, mV) DLC (wt %) EE (%)
DLS TEM

CA-CP – 151.0 100 ± 20 0.093 −14.96 – –
CA-CDEP – 170.4 120 ± 20 0.205 −16.04 – –

CA-CP + PTX
30/100 245.2 – 0.147 – 6.96 22.17
50/100 269.2 220 ± 20 0.105 – 11.4 23.14

CA-CDEP + PTX
30/100 230.6 – 0.097 – 20.48 41.77
50/100 268.2 210 ± 20 0.171 – 29.92 48.24

1 Particle size dispersion index determined by DLS.

The presence of the PDEAEMA moiety in the CA-CDEP confers to the delivery system a
responsiveness to acid. In vitro release of PTX at 37 ◦C was conducted at three different pH values.
The results shown in Figure 6 compare the drug release of two micelles at three pH values. For CA-CP
(Figure 6A), a less pronounced release of PTX was observed, and there was no significant increase
in drug release during the gradual neutral to acidic phase of pH. In the environment of pH 5.0, the
cumulative release of the drug at 80 h was 15% higher than that in the pH 7.4 environment. It can
be seen in Figure 6B that the drug cumulative release of CA-CDEP micelles at pH 7.4 was about
20% at 80 h, avoiding the burst release of PTX during the blood circulation. However, when the pH
decreased from 7.4 to 5.0, the cumulative release increased from 20% to 55%, which revealed well the
pH-responsive drug release behavior of PTX-loaded CA-CDEP micelles.
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Figure 6. In vitro PTX release profiles of drug-loaded micelles (A) CA-CP and (B) CA-CDEP at 37 ◦C
with different pH.

The drug release from a polymeric system is a complex and varied process. A comprehensive,
simple semi-empirical equation established by Peppas and co-workers is widely used to briefly analyze
the release mechanism, called the power law [43]:

Mt

M∞
= ktn, (4)
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where Mt and M∞ are the absolute cumulative amount of drug released at time t and infinite time,
respectively; k is a constant incorporating structural and geometric characteristics of the device; and n
is the release exponent indicating the release mechanism. The value of n is determined by geometric
configuration of the polymeric system. For a sphere, the value of n is equal to 0.43 for Fickian diffusion
and 0.85 for case II transport, 0.43 < n < 0.85 belongs to anomalous transport mechanisms (non-Fickian
diffusion), and n < 0.43 belongs to the erosion–diffusion common mechanism [44–47].

Figure S8 displays the power law curve of PTX release, and the related parameters are shown
in Table 3 (R2 was the correlation coefficient). For CA-CP micelles, in the cases shown in Table 3 and
Figure S8A, the PTX released mainly by an anomalous transport mechanism and all n values are in the
range of 0.43–0.85. For CA-CDEP micelles, as shown in Table 3 and Figure S8B, at pH 7.4, the drug
release was also mainly controlled by an anomalous transport mechanism due to the similar structure
as CA-CP without the protonation of PDEAEMA. After the protonation of DEAEMA, the micelles
were swelled and even dissociated at pH 6.5 and 5.0. PTX released from the CA-CDEP micelles was
primarily controlled by a combination of diffusion and erosion control, and the n values were lower
than 0.43. The k values under acidic conditions were higher than that of pH 7.4, suggesting the drug
release rates accelerated as pH decreased. Moreover, the k values of CA-CDEP micelles were higher
than that of CA-CP micelles at each pH condition due to the presence of PDEAEMA block in CA-CDEP.

Table 3. Fitting parameters of PTX release data from PTX-loaded micelles at different pH.

Sample pH n k R2

CA-CP
7.4 0.45 0.11 0.991
6.5 0.50 0.10 0.982
5.0 0.52 0.10 0.993

CA-CDEP
7.4 0.47 0.11 0.986
6.5 0.28 0.23 0.973
5.0 0.29 0.22 0.967

Briefly, the drug release rate was significantly accelerated when changing pH from 7.4 to 5.0. The
PTX release transformed from an anomalous transport mechanism to a joint control of diffusion and
erosion caused by the presence of PDEAEMA. Drug was released from CA-CDEP micelles mainly
through diffusion and erosion in an acidic environment.

3.4. In Vitro Cytotoxicity

The toxic side effects caused by the copper catalyst during polymerization were excluded by the
XPS. As shown in Figure S9, for both two polymers, no copper element was detected, indicating the
catalyst had been removed completely in the subsequent operation.

The toxicity of the blank micelles and the PTX-loaded micelles (5/10) was tested with NIH-3T3
cells, and the results are presented in Figure 7. While the concentration of blank micelles of CA-CP
and CA-CDEP reached 60 µg/mL, the cell viability for both was over 80%. This demonstrated that
the two blank micelles had great biocompatibility and were essentially non-toxic to NIH-3T3 cells
at concentrations below 60 µg/mL. As shown in Figure S10, the IC50 of CA-CP blank micelles was
121.9 µg/mL, and no IC50 of CA-CDEP blank micelles was observed at the concentration tested, which
showed a better biocompatibility than CA-CP blank micelles.

Cytotoxicity of the micelles after PTX loading was also evaluated. Interestingly, the cell viability of
NIH-3T3 cells after 48 h incubation with culture medium containing drug-loaded micelles (12 µg/mL)
dropped sharply. It was inferred that the phenomenon was caused by the concentration of PTX released
from the drug-loaded micelles (12 µg/mL) in the medium, calculated combined with the Figure 6,
was higher than the lowest concentration of free PTX (0.096 µg/mL). Therefore, the cell viability of
two kinds of drug-loaded micelles (12 µg/mL), which was 38% for PTX-loaded CA-CP and 37% for
PTX-loaded CA-CDEP, was still higher than that of the free PTX (0.096 µg/mL, 33% cell viability).
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4. Conclusions

Two three-armed amphiphilic block polymers with a cholic acid core were designed and
synthesized through a combination of ROP and ATRP. The CMC values of two polymers were
relatively low and the assembled micelles in aqueous solution had a stable core-shell structure. The
particle sizes of the micelles after PTX loading were both approximately 260 nm and the PTX loading
of CA-CDEP was higher than that of CA-CP, with a maximum loading of 29.92 wt %. When the
pH dropped from 7.4 to 5, the presence of PDEAEMA block increased the PTX release from 20% to
55%. The drug loading system can be used to alleviate the side effect of burst release during PTX
administration. These polymers had expected biocompatibility to NIH-3T3 cells at a concentration
below 60 µg/mL. More importantly, the issues regarding in vivo studies such as cytotoxicity, release,
and further biocompatibility, etc., still need to be refined to achieve a complete drug controlled-release
system. Undoubtedly, this drug controlled-release system based on cholic acid has great potential in
the field of biomedical science. We anticipate that this work will provide more inspiration in the future
for a drug delivery system based on cholic acid series.
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