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Abstract: In this paper, we present a facile and efficient strategy for the fabrication of magnetic,
durable, and superhydrophobic cotton for oil/water separation. The superhydrophobic cotton
functionalized with Fe304 magnetic nanoparticles was prepared via the in situ coprecipitation of
Fe?* /Fe** ions under ammonia solution on cotton fabrics using polyvinylpyrrolidone (PVP) as a
coupling agent and hydrophobic treatment with tridecafluorooctyl triethoxysilane (FAS) in sequence.
The as-prepared cotton demonstrated excellent superhydrophobicity with a water contact angle of
155.6° £ 1.2° and good magnetic responsiveness. Under the control of the external magnetic field, the
cotton fabrics could be easily controlled to absorb the oil from water as oil absorbents, showing high
oil/water separation efficiency, even in hot water. Moreover, the cotton demonstrated remarkable
mechanical durable properties, being strongly friction-resistant against sandpaper and finger wipe,
while maintaining its water repellency. This study developed a novel and efficient strategy for the
construction of magnetic, durable, and superhydrophobic biomass-based adsorbent for oil /water
separation, which can be easily scaled up for practical oil absorption.

Keywords: cotton fabrics; magnetic; superhydrophobic; oil/ water separation; durability

1. Introduction

Oil spills due to the release of marine oils or industrial wastewater have attracted worldwide
attention for their potential pollution to the environment and impact on human health [1-3]. Tradition
methods such as gravity separation [4], filtration [5], and centrifuge have been used for the separation
of organic oils from polluted water. Nevertheless, the above methods are still insufficient in
generality, usability and adaptability for oil/water separation owing to the low separation efficiency
or complicated operation procedures.

Since Jiang et al. [6] innovatively proposed a straightforward, rapid, and economical method for
the construction of steel mesh film with superhydrophobic/superhydrophilic coatings for oil/water
separation, various superhydrophobic substrates have gained attention for their potential application in
oil/water separation [7-14]. The common oil/water separation materials such as stainless steel [15-17],
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strainer [18-21], filter paper [22-25], foam polyurethane [26-29], fabrics [30-36] and aerogels [37-39]
have been widely studied in recent years. There still exist limitations such as low absorption capacities
or environmental incompatibility or complicated preparation process.

Cotton is the most abundant and renewable biopolymer, with outstanding properties and various
range of applications. The length of cotton fiber is about 20 mm, with a flat structure and a hollow
degree of more than 40%. Its special structure advances its use as biomass absorbing material for oily
wastewater treatment after hydrophobic modification. Cotton with three-dimensional architecture can
achieve a large volume of oil absorption during oil/water separation. However, as far as it is known,
there are relatively few reports about cotton fiber directly used as a three-dimensional absorbent
material for oil/water separation [40-42].

Recently, superhydrophobic materials with magnetic property have attracted wide attention
because they can be easily controlled under an exterior magnetic field. Methods have been developed
for the fabrication of superhydrophobic magnetic materials by the incorporation of Fe304 magnetic
particles due to their inherent low toxicity and strong magnetism [43—47]. However, the reported
superhydrophobic magnetic sponges are usually based on polyurethane sponge, polystyrene foam
or melamine foam with low absorption capacity and poor recyclability. Besides, the fabricating
methods are relatively complicated and time-consuming with multiple steps: preparation of Fe3O4
nanoparticles, surface treatment of sponge, and dipping or immersing sponge in a solution with Fe3O4
magnetic nanoparticles and a low-surface-energy compound. Therefore, it is urgent to develop some
facile one-step methods with high performance based on biodegradable adsorbents.

This report describes a facile and straightforward strategy to construct superhydrophobic
cotton@Fe30y for oil/water separation. The super-wettability surfaces of cotton fabrics were
constructed via in situ precipitation Fe?*/Fe3* ions onto cotton using PVP as a coupling agent
to construct cotton@Fe3;0O4 micro/nano hierarchical surface. After surface modification with
tridecafluorooctyl triethoxysilane (FAS), the cotton fabrics exhibited not only good superhydrophobic
and efficient oil/water separation ability but also fast magnetic responsivity. The prepared cotton
also showed mechanical durability against tear and sandpaper friction. Moreover, the adsorption
capacity of the cotton could reach more than 50 times its own weight and could be reused for more
than 15 cycles.

2. Materials and Methods

2.1. Materials and Reagents

Cotton was obtained locally. Polyvinylpyrrolidone with average molecular weights of 130 kg/mol
(PVP-130), ferric chloride hexahydrate (FeCl3-6H;0O), ferrous chloride tetrahydrate (FeCl,-4H,0), and
tridecafluorooctyl triethoxysilane (FAS, >99%) were obtained from Sigma-Aldrich (Shanghai, China).
Ethanol and aqueous ammonia solution (25 wt.%) were supplied by Guangzhou Chemical Reagent
Factory (Guangzhou, China). Deionized water was made in-house. The powerful NdFeB magnet (N35,
1.21T) was purchased from Guangzhou Yican Magnetic Material Co., Ltd (Guangzhou, China).

2.2. Preparation of PV P-Modified Cotton

Raw cotton was first washed with deionized water and ethanol in sequence to remove dust and
then dried at 60 °C for 12 h. Next, 1 g of dry cotton was transferred into 50 mL deionized water
containing 0.1 g PVP. After being mechanically stirred at 100 rpm for 30 min, the cotton was then dried
at 60 °C for 12 h.

2.3. Preparation of Fe304-Modified Cotton

Fe3;0O4-modified cotton fabrics were prepared using a modified co-precipitation process [48].
Under gentle magnetic stirring, 1 g PVP-modified cotton was added to 200 mL deionized water
containing different amount of ferric chloride and ferrous chloride (varying from 0.54 g/0.19 g,
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0.80 g/0.30 g to 1.0 g/0.35 g) at room temperature. After magnetic stirring for 20 min under N
atmosphere, NH3-H,O solution was added dropwise until the pH reached 8. Then, the mixture was
stirred vigorously for 6 h. After being washed in sequence with EtOH and water, the Fe304-modified
cotton was dried at 60 °C for 12 h.

2.4. Fabrication of Superhydrophobic Cotton

The solution containing 1.00 mL of tridecafluorooctyl triethoxysilane (FAS) and 99 g of absolute
ethanol was mechanically stirred for 2 h. After pre-hydrolysis, the Fe3O4-modified cotton fabrics were
placed in the above solution and mechanically stirred for at least 3 h. The stable water-repellent cotton
fabrics were dried at 60 °C for 12 h.

2.5. Characterization

Fourier transform infrared spectrometer (FI-IR) was used to analyze structures of cotton before
and after surface modification (Spectrum 2000, Perkin Elmer, Waltham, MA, USA). X-Ray photoelectron
spectroscopy (XPS) was used to determine the elemental composition of samples (Thermo Electron
Escalab 250, Thermo Fisher Scientific Waltham, MA, USA), with Al Ka radiation (20 eV) as the excitation
source. A scanning electron microscope (FESEM: Quanta 400F, FEI, Hillsboro, OR, USA) was used to
observe the morphological microstructures of samples. The crystallographic phase analysis of samples
was performed on an X-ray diffractometer (PW3040/00 X'Pert MPD, Philips, Amsterdam, Netherlands)
using Cu-Ka, ranging between 10° and 90°. Thermogravimetric analysis (TGA) was performed on
a Q600 instrument with a heating rate of 20 °C/min from 40 to 600 °C under nitrogen atmosphere.
A Dataphysics OCA20 contact angle system was used to measure water contact angles (WCAs) of
samples with liquid droplets of 5 uL. The oil absorption capacity of samples was determined according
to the previously reported method [42].

3. Results

Polyvinylpyrrolidone (PVP) is a non-ionic macromolecular compound, which is the most
representative among the n-vinyl amide polymers and the most widely studied fine chemicals. PVP can
adsorb onto different substrate surfaces, such as polymers, silica, plant fibers, metals and rare earths,
attributed to polar -C-N-C=0 groups in PVP [49]. This study shows how PVP plays a key role in cotton
absorbing Fe3* /Fe?* ions and subsequent precipitation in situ forming Fe3O4-modified cotton. The
green procedure for the synthesis of superhydrophobic/superoleophilic Fe304-modified cotton fabrics
and following magnetic control of oil/water separation is depicted in Scheme 1. PVP was first grafted
onto cotton fabrics, then Fe>* /Fe?* ions were adsorbed and subsequently coprecipitated onto cotton
surfaces due to the strong static adsorption between Fe3* /Fe?* ions and highly polar -C-N-C=0 groups
in PVP. After hydrophobic treatment with FAS, the cotton fabrics containing Fe3O4 nanoparticles could
be magnetized under external magnetic field, allowing them to be flexibly controlled by a magnet
during the oil/water separation process.
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Scheme 1. Synthetic procedure for superhydrophobic/superoleophilic Fe304-modified cotton fabrics
and subsequent magnetic control of oil/water separation.

Surfaces of pristine cotton and cotton modified with different amounts of Fe304 were illustrated
via SEM analyses. In Figure la, raw cotton fabrics had a smooth surface and typical arrangement
of fibrils in spiral fashion [50], which were beneficial for loading more Fe30,4 nanoparticles. After
coprecipitation with 0.54 g ferric chloride and 0.19 g ferrous chloride, a thin layer of Fe3O4 nanoparticles
was arranged well on cotton fabrics (Figure 1b). With the amount of ferric chloride and ferrous
chloride increased, the amounts of Fe304 nanoparticles on cotton surface increased accordingly. When
the addition of ferric chloride and ferrous chloride were 1.0 g and 0.35 g respectively, the Fe3O4
nanoparticles on the surface of cotton fabrics had a much more heterogeneous coating thickness and a
multilayer shell, creating a micro/nanostructured roughness surface (Figure 1d).

FT-IR spectra of the cotton fabrics before and after surface modification in different stages are
shown in Figure 2. In Figure 2b, compared with the spectra with raw cotton in Figure 2a, the new
vibration peak at 1640 cm ™! corresponds to the -C=O group in amide carbonyl of PVP chains, which
proved the successful graft of PVP onto the cotton surface. After surface in situ coprecipitation
with Fe?* /Fe3* ions, the peak around 580 cm~! became stronger due to the stretching vibration of
the Fe-O bond in Fe3;O4 in Figure 2¢ [51]. After hydrophobization treatment of FAS in Figure 2d,
new peaks at 1195 cm ™! and 1226 cm~! were due to C-F stretching vibrations in FAS [48]. These
results indicated that cotton@PVP@Fe3;04,@FAS composites were successfully synthesized to construct
magnetic, durable, and superhydrophobic cotton for oil/water separation.
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Figure 1. SEM images of raw cotton fabrics (al,a2), cotton fabrics modified with different amount of
ferric chloride and ferrous chloride (b1,b2) 0.54 g/0.19 g; (c1,c2) 0.80 g/0.30 g; (d1,d2) 1.0 g/0.35 g.
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Figure 2. FI-IR spectra of (a) raw cotton fabrics, (b) PVP-modified cotton fabrics, (c) Fe3O4-modified
cotton fabrics, and (d) Fe3O4-modified cotton after fluorination treatment.

XPS spectra were further used to confirm the surface chemical composition of raw cotton fabrics,
cotton@PVP@Fe30,, and cotton@PVP@Fe30, composites after fluorination (Figure 3). In Figure 3al,
the XPS survey spectra of pristine cotton showed the binding energy of 285.3 eV and 532.6 eV belonging
to carbon (C 1s) and oxygen (O 1s) of cotton [52]. In Figure 3a2, a new peak of N 1s in 397.9 eV appeared
after modification with PVP. For Fe3O4-modified cotton and Fe3O4-modified cotton after fluorination
treatment, new peaks at 724.2 eV (Fe 2pq,7), 710.3 eV (Fe 2p3,,), and 689.1 eV (F 1s) appeared,
respectively (Figure 3a3), Figure 3a4, Figure 3b, Figure 3¢, which strongly confirmed that nano Fe3O4
particles were chemically covered on the surface of cotton fabrics and that magnetic superhydrophobic
cotton was successfully constructed.
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Figure 3. (a) XPS survey spectra of pristine cotton fabrics (al), PVP-modified cotton (a2),

Fe304-modified cotton (a3), Fe3O4-modified cotton after fluorination treatment (a4); (b) high-resolution
spectra of Fe 2p of pristine cotton and cotton@PVP@Fe3;O4 composites; (c) F 1s of pristine cotton and
cotton@PVP@Fe304@FAS composites; (d) C 1s of pristine cotton fabric; (e) C 1s of cotton @ PVP; and
(f) C 1s of cotton@PVP@Fe;0, composites.
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High-resolution spectra of C 1s of pristine cotton, cotton@PVP, and cotton@PVP@Fe;0,
composites are displayed in Figure 3d—f. In Figure 3d, the C 1s peak was deconvoluted into three
peaks of -C=0, C-0O, and C-C located at 288.0, 286.5, and 284.8 eV, respectively [53]. After the surface
was grafted with PVP (Figure 3e), the relative intensity of C—C/C=C at 284.8 eV and C=0 at 288.0
eV increased due to the pyrrole ring in PVP. After surface precipitation of FezOy (Figure 3f), the
intensity of the C=0 peak decreased, probably owing to the elimination of the —C-N-C=0O of PVP
during the deposition of iron ions [54]. These results indicated that PVP acted as a bond bridge
for the surface in situ deposition of Fe>* /Fe?* and cotton fabrics to synthesize cotton@PVP@Fe30,
composites successfully.

Besides, the surface elemental mapping analysis (EDS mapping) illustrated in Figure 4
demonstrates that each kind of element were uniformly attached to cotton fabrics, which further
certified the successful fabrication of cotton@PVP@Fe;04@FAS composites.

Figure 5 shows the XRD patterns of pristine cotton fabrics, cotton@PVP@Fe;04 composites, and
FAS-modified cotton@PVP@Fe;04 composites. Figure 5a shows three typical cellulose peaks of raw
cotton at 20 values of 14.6°, 22.4°, and 34.6° corresponding to the reflection planes (101), (002), and
(400) [53]. After surface modification with Fe3Oy, there were new diffraction peaks at 26 of 30.4°, 43.2°,
53.7°,57.3°, 62.8°, which can be indexed respectively to the (220), (400), (422), (511), and (440) planes of
Fe304 [55,56]. The XRD pattern of the FAS-functionalized cotton@PVP@Fe3;0,4 composites in Figure 5c
was similar to that of cotton@PVP@Fe30y in Figure 5b. The XRD analyses suggested that the surface
coprecipitation of Fe3O4 had little effect on the crystallization property of cotton fabrics. Similarly,
hydrophobic modification with FAS of cotton@PVP@Fe;0, composites also had little effect on the
crystallization property of Fe3O4 nanoparticles.

9um Electron Image C Kal O Kal

Fe Kal N Kal F Kal

Figure 4. EDS mapping images of Fe30O4-modified cotton fabrics after fluorination treatment with FAS.
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Figure 5. XRD patterns of (a) pristine cotton fabrics, (b) cotton@PVP@Fe;04 composites, and (c) FAS-
modified cotton@PVP@Fe;04 composites.

The thermal stability and Fe304 amount coated on cotton fabrics were presented in Figure 6. It can
be seen that both the raw cotton fabrics and Fe;O4 modified cotton fabrics with different amount of
ferric chloride and ferrous chloride began to decompose at temperatures above 300 °C. This observation
showed that Fe3O4 surface modification did not destroy the chemical structure of raw cotton fabrics.
In Figure 6a, the remaining inorganic component of raw cotton fabrics was 8.70 wt% [57]. After
surface precipitation of Fe3Oy particles (Figure 6b), the residual solid slightly increased to 14.79 wt%
(Figure 6b. With the addition of ferric chloride and ferrous chloride from 0.80 g/0.30 g t0 1.0 g/0.35 g,
the residual solid increased from 21.18 wt% to 31.13 wt%, illustrating more Fe3O4 were attached to
cotton fabrics (Figure 6¢,d). These TGA curves combined with the SEM analysis in Figure 3 proved
that the composites were composed of cotton fabrics and Fe3O4, which constituted organic-inorganic

hybrid composites.

0 T I T I T T I
100 200 300 400 500 600

Temperature (°C)

Figure 6. TGA curves of (a) pristine cotton fabrics, and Fe;O4-modified cotton fabrics with different
amounts of ferric chloride and ferrous chloride: (b) 0.54 g/0.19 g; (c) 0.80 g/0.30 g; (d) 1.0 g/0.35 g.
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The superhydrophobic properties of the Fe304-modified cotton fabrics were characterized by
WCA measurement shown in Figure 7a,b. The as-prepared superhydrophobic cotton fabrics presented
excellent superhydrophobic property, with water droplets dyed with methylene blue standing firmly
on the cotton fabric’s surface and maintaining spherical shapes with WCA of 155.6° + 1.2°. After being
placed on the water surface, the raw cotton fabrics were quickly wetted, absorbed, and sank into the
water, while the modified cotton fabrics still floated on water surface owing to its superhydrophobicity
(Figure 7c). Moreover, the silver mirror-like phenomenon could be seen by pressing the modified
cotton fiber into the water by an external force (Figure 7d). This nonwetting phenomenon by water
was due to the synergistic effect of micro-nano hierarchical structure and low surface energy on the
cotton fabrics surface, which was in Cassie—Baxter state [58].

Figure 7. (a) Optical images of the water droplets on cotton@PVP@Fe;O,4@FAS surface; (b) Shape of
a droplet (5 puL) on the as-prepared cotton surface; (¢) raw cotton and cotton@PVP@Fe;O;@FAS
composites placed in water; (d) cotton@PVP@Fe;04@FAS composites immersed in water by an
external force.

The superhydrophobic property of cotton@Fe3;O4@FAS composites endowed them with
high-selectivity oil adsorption capacity. Besides, the cotton can be used for oil/water separation
under the control of an external magnetic field. In Figure 8a and Video S1, the cotton quickly absorbed
the red oil-dyed n-hexane spread on water and the red oil-dyed chloroform from the bottom of the
water within several seconds controlled by the external magnetic field. The oil-loaded cotton remained
floating on the water’s surface, leaving a transparent region of water and could be taken out of water
under magnetic control after oil/water separation, which depicted excellent oil/water separation
capability of cotton fabrics. Moreover, the magnetic-responsive cotton also provided a new approach
for magnetically controlling the oil/water separation process.
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Figure 8. (a) Optical images demonstrating the oil/water separation driving by an external magnetic

field; (b) optical pictures demonstrating the oil/water separation process under hot water at
temperatures greater than 90 °C.

The cotton fabrics also presented durable superhydrophobicity and excellent oil absorption
capacity even in hot water at temperatures higher than 90 °C. In Figure 8b and Video S2, the
cotton quickly selectively absorbed the n-hexane spread on water, after it was placed into the
mixture of n-hexane/chloroform and hot water (>90 °C). When the cotton was immersed into
hot water by an external force, it absorbed the red oil-dyed chloroform from the bottom of water
within a few seconds. The hot water solution became clean and transparent with the volume
nearly unchanged, which showed excellent superhydrophobic stability under high temperature of
cotton@Fe30,@FAS composites.

Most reported superhydrophobic materials are inherently fragile to mechanical forces, and even
cannot withstand a finger touch owing to their fragile micro/nano hierarchical structure. As a
superhydrophobic/superoleophilic oil/water separation material, mechanical stability is of vital
importance for the properties and applications of the final oil absorbent material. Therefore, a
finger-wipe test was used to evaluate the mechanical durability of the superhydrophobic cotton
(Figure 9a and Video S3). After several finger-wipes, rub and tear, the Fe304 nanoparticles remained
on the cotton surface with no visible paint loss. Moreover, the water quickly fell off the surface of
cotton fabrics, which proved that the cotton still maintained superhydrophobicity.

The friction-resistant experiment against sandpaper in terms of superhydrophobicity, simulating
practical conditions, was also tested. As shown in Figure 9b and Video S4, the cotton fabrics were
placed on a 400-mesh sandpaper under a weight of 50 g. After several back-and-forth friction cycles,
though the sandpaper abrasion could remove the fabrics from the surface of the cotton, and the
embedded fabrics were exposed, the cotton still maintained good water repellency. The effect of
friction-resistance against sandpaper on the superhydrophobicity of cotton was negligible even after
50 cycles.
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Figure 9. (a) Optical pictures demonstrating the method of the finger-wipe test of the as-prepared
cotton fabrics; (b) optical pictures demonstrating one cycle of the sandpaper-abrasion test of the
as-prepared cotton fabrics.

As an oil/water separation absorbent, the oil absorption ability and durability of the prepared
cotton are of great importance for practical applications. To evaluate the oil absorption ability, different
kinds of oil were used for the absorption experiment, as shown in Figure 10a. The cotton showed good
oil absorption capacity varying from 20.7 g/g to 51.2 g/g depending on different oil densities. Besides,
as shown in Figure 10b, the as-prepared cotton also showed good reusability with no obvious decline
in absorption capacity even after more than 15 cycles of the absorption process using dichloromethane,
crude oil, DMEF, and chloroform for study. The results further proved that the as-prepared cotton
possesses excellent oil absorption ability for a wide range of oils and mechanical durability even after
being reused for 15 cycles, which are quite important properties for actual applications.

—
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Figure 10. (a) Absorption capacity of the as-prepared cotton for different oils and (b) reusability of the
as-prepared cotton in four different oils.

4. Conclusions

In summary, a facile approach for the fabrication of a magnetic, durable, and superhydrophobic
cotton@Fe;04@FAS oil absorbent was proposed by in-situ precipitation of Fe?* /Fe®* ions onto a cotton
surface in the presence of PVP and subsequent hydrophobic modification with FAS. The pyrrolidone
ring of PVP could adsorb Fe?*/Fe®" and subsequently immobilized the Fe304 nanoparticles on cotton
fabrics. The binding of Fe3O,4 nanoparticles on the surface of cotton not only increased the surface
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roughness but also endowed the cotton with magnetic responsivity. The cotton fabrics exhibited
excellent superhydrophobic property, good mechanical and hot water stabilities, and the merits of
magnetic actuation. In addition, the cotton fabrics could quickly select absorb oil from water under
the control of the external magnetic field, providing new opportunities for the development of novel
biomass-based functional adsorbents for oil/water separation.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com /2073-4360/11/3/442/s1,
Video S1: The oil/water separation experiment using the as-prepared cotton fabrics under the control of the
external magnetic field. Video S2: The oil/water separation experiment under hot water higher than 90 °C. Video
S3: The finger-wipe test to qualitatively evaluate the mechanical durability of the superhydrophobic cotton fabrics.
Video S4: The as-prepared cotton fabrics were placed on a 400 mesh sandpaper under a weight of 50 g.
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