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Abstract: Two-dimensional coordination polymers of [Pr(DMSO)2(OH2)3][Ru2(CO3)4(DMSO)(OH2)]
·5H2O (Prα) and [Ln(OH2)5][Ru2(CO3)4(DMSO)]·xH2O (Ln = Sm (Smβ), Gd (Gdβ)) formulae have
been obtained by reaction of the corresponding Ln(NO3)3·6H2O dissolved in dimethyl sulphoxide
(DMSO) and K3[Ru2(CO3)4]·4H2O dissolved in water. Some DMSO molecules are coordinated
to the metal atoms reducing the possibilities of connection between the [Ru2(CO3)4]3− and Ln3+

building blocks giving rise to the formation of two-dimensional networks. The size of the Ln3+

ion and the synthetic method seem to have an important influence in the type of two-dimensional
structure obtained. Slow diffusion of the reagents gives rise to Prα that forms a 2D net that is built
by Ln3+ ions as triconnected nodes and two types of Ru2

5+ units as bi- and tetraconnected nodes
with (2-c)(3-c)2(4-c) stoichiometry (α structure). An analogous synthetic procedure gives Smβ and
Gdβ that display a grid-like structure, (2-c)2(4-c)2, formed by biconnected Ln3+ ions and two types
of tetraconnected Ru2

5+ fragments (β structure). The magnetic properties of these compounds are
basically explained as the sum of the individual contributions of diruthenium and lanthanide species,
although canted ferrimagnetism or weak ferromagnetism are observed at low temperature.

Keywords: diruthenium compounds; lanthanide complexes; coordination polymers; magnetic properties

1. Introduction

The first tetracarbonatodiruthenium compound, {Na3[Ru2(CO3)4]·6H2O}n, was described by Wilkinson
et al. several years ago [1] although their crystal structure was reexamined by Cotton et al. [2] in order to
elucidate the relationship between diruthenium(II,III) and diruthenium(III,III) carbonato complexes.

The very stable carbonate anion, [Ru2(CO3)4]3−, has two ruthenium atoms joined by four
bridging carbonate ligands forming the typical paddlewheel structure with a Ru–Ru bond order
of 2.5 (Figure 1). This anion is very similar to the diruthenium [Ru2(O2CR)4]+ cation and, in accordance
with the theoretical calculations carried out by Norman et al. [3], a configuration σ2π4δ2π*2δ*1 is
assumed. Due to the near degeneracy of the π* and δ* orbitals, the diruthenium(II,III) complexes with
paddlewheel structure usually present three unpaired electrons (S = 3/2) [3–6]. A magnetic study
shows that this complex presents a canted ferrimagnet behavior below 4.2 K [7].
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As can be observed in Figure 1, in the [Ru2(µ-O2CO)4]3− anion each carbonate ligand has one
free oxygen atom. This oxygen atom can be coordinated to other metal atoms giving heterometallic
compounds. Thus, the combination of diruthenium dimers with S = 3/2 and metal complexes with
different spins leads to solids with interesting magnetic properties [8–18]. Thus, the reaction of
K3[Ru2(CO3)4]·4H2O and Ni(NO3)2·6H2O forms a 3D network with magnetic order at very low
temperatures [8]. Three-dimensional networks of HxK1−xMII[Ru2(CO3)4](H2O)y(MeOH)z(M = Mn,
Fe, Co, Ni, Mg) stoichiometry were obtained by the reaction of K3[Ru2(CO3)4]·4H2O with M2+ salts
(M = Mn, Co, Ni, Cu, Fe, Mg). These compounds show magnetic order as canted ferrimagnets with
very similar ordering temperatures but it has been proposed that the presence of M(II) cations does
not significantly contribute to the magnetic coupling pathways [9].
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Figure 1. Representation of the [Ru2(CO3)4]3− anion.

The influence of chloride and bromide anions on the self-assembling of [Ru2(CO3)4]3− and Co2+

or Cu2+ ions in aqueous solution has been studied. This self-assembling leads to layer structures with
different composition: [{Co(H2O)4}2Ru2(CO3)4(H2O)Cl]n·7.5nH2O, [{Co(H2O)4}2Ru2(CO3)4(H2O)2]n·
[{Co(H2O)4}2Ru2(CO3)4Br2]n·10.5nH2O [10] and K2Li[Cu(H2O)2Ru2(CO3)4X2]·5H2O [X = Cl, Br) [11].

Other heterometallic complexes with metals as Co2+ [12], Cd2+ [13], Zn2+ [14] and Mn2+ [14–17]
have been described displaying a great versatility to form different networks. Interestingly, the
complex Mn4(H2O)16H[Ru2(CO3)4]2[Ru2(CO3)4(H2O)2]·11H2O [18] is a soft ferromagnet (Tc = 3 K)
and K[Mg(H2O)4Ru2(CO3)4]·H2O shows magnetic ordering below 3.5 K and its coercivity improves
when the particle size changes from the micrometer to the nanometer scale [19].

However, the number of complexes containing tetracarbonatodiruthenium and lanthanides
species are very scarce. The first heteronuclear complexes of the type Ln[Ru2(CO3)4]·8H2O (Ln =
Gd, Nd, Ho, Yb) were described by Miller et al. [20] although only microcrystalline solids were
isolated. However, very recently the formation of single crystals of the complexes [Ln(OH2)4]
[Ru2(CO3)4(OH2)]·xH2O [Ln = Gd, Eu, Yb] and K3[Gd(H2O)4]2[Ru2(CO3)4]3·3.5H2O has been
achieved. The resolution of the crystal structures of these compounds shows in all cases the formation
of 3D coordination polymers [21].

In order to block some coordination positions and to obtain polymers with lower dimensionality
than the previous 3D-compounds, we used dimethyl sulphoxide, which is a solvent with a strong
donor character. Thus, using this solvent we prepared two-dimensional coordination polymers of the
type [Pr(DMSO)2(OH2)3][Ru2(CO3)4(DMSO)(OH2)]·5H2O (Prα) and [Ln(OH2)5][Ru2(CO3)4(DMSO)]
·xH2O (Ln = Sm (Smβ), Gd (Gdβ)). Moreover, we also prepared [Ln(OH2)4][Ru2(CO3)4(OH2)]·xH2O
(Ln = Pr (Pr3D), Sm (Sm3D)) for comparative reasons. These complexes display a 3D polymeric
structure and they are isostructural to the Gd, Eu and Yb derivatives that were previously reported
by our research group [21]. The magnetic properties and crystal structures of the new complexes are
described in this paper.
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2. Materials and Methods

2.1. Materials and Physical Measurements

K3[Ru2(CO3)4]·4H2O was prepared following a published procedure [2]. The rest of the reagents
were purchased from commercial sources and used as received without further purification. Elemental
analyses were done by the Microanalytical Services of the Universidad Complutense de Madrid. FTIR
spectra were measured using a Perkin–Elmer Spectrum 100 with a universal ATR accessory in the
4000–650 cm−1 spectral range. Thermogravimetric measurements were perfomed using a PerkinElmer
Pyris 1 TGA instrument under nitrogen atmosphere with a heating rate of 5 ◦C min–1. A Quantum
Design MPMSXL Superconducting Quantum Interference Device (SQUID) magnetometer was used
to obtain the variable temperature magnetic susceptibility data of finely ground crystals in the
temperature range 2–300 K under 1 T. Magnetization measurements were collected at 2 K from
−5 to 5 T. All data were corrected taking into account the signal of the sample holder and the
diamagnetic contributions of the samples. The molar diamagnetic corrections were calculated on
the basis of Pascal’s constants. Single crystal X-ray diffraction measurements were carried out with
a Bruker Smart-CCD diffractometer at room temperature using a Mo Kα (λ = 0.71073 Å) radiation
and a graphite monochromator. CCDC 1894711-1894714 contain the crystallographic data for the new
compounds described in this work. These data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. A summary of some crystal
and refinement data are shown in Table 1. Powder X-ray diffraction (PXRD) measurements were
carried out by the X-ray service of the UCM using a PANalytical X’Pert MPD diffractometer.

Table 1. Crystal and refinement data for Prα, Smβ, Gdβ and Sm3D.

Crystallographic
Parameters Prα Smβ Gdβ Sm3D

Formula PrRu2C10H26O19
S3·5H2O

SmRu2C6H16O18
S·3H2O

GdRu2C6H16O18
S·2H2O

SmRu2C4H12O18
2H2O

fw 979.62 814.80 803.67 736.67
Space group P-1 P-1 P-1 C2/c

a/Å 8.4508(4) 9.7951(5) 9.7687(6) 25.063(2)
b/Å 12.4403(6) 9.8502(5) 9.8237(6) 9.8420(8)
c/Å 15.5262(8) 12.8759(6) 12.8403(7) 14.0568(12)
α/◦ 78.243(1) 75.608(1) 75.657(1) 90
β/◦ 89.339(1) 70.296(1) 70.560(1) 95.092(2)
γ/◦ 72.147(1) 73.885(1) 73.951(1) 90

V/Å3 1518.81(13) 1107.0(10) 1100.07(11) 3453.7(5)
Z 2 2 2 8

d calc/g·cm−3 2.142 2.447 2.426 2.833
µ/mm−1 2.857 4.151 4.517 5.185

R indices (all
data)

R1 = 0.0743
wR2 = 0.0974

R1 = 0.0504
wR2 = 0.1100

R1 = 0.0553
wR2 = 0.1241

R1 = 0.0585
wR2 = 0.0983

GooF on F2 1.082 1.039 1.073 1.052

2.2. Synthesis

2.2.1. Synthesis of [Pr(DMSO)2(OH2)3][Ru2(CO3)4(DMSO)(OH2)]·5H2O (Prα)

Brownish yellow crystals were obtained after a few days by slow diffusion of a 15 mL
water solution of 0.095 mmol (0.06 g) of K3[Ru2(CO3)4]·4H2O into a solution of 0.11 mmol of the
corresponding Ln(NO3)3·6H2O in 15 mL of DMSO. The water and DMSO solutions were separated by
10 mL of water. The crystals were filtered, washed with acetone (3 × 15 mL) and dried under vacuum:
Yield: 0.04 g (43%). Anal. Calcd (%) for PrRu2C10H26O19S3·5H2O (979.62 g·mol−1): C, 12.26; H, 3.70.

www.ccdc.cam.ac.uk/data_request/cif
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Found (%): C, 12.01; H, 3.53. FT-IR (cm−1): 1672sh, 1639w, 1504s, 1415sh, 1326m, 1314m, 1251m, 1058m,
1010m, 991sh, 965m, 935m, 813m, 715m.

2.2.2. Synthesis of [Ln(OH2)5][Ru2(CO3)4(DMSO)]·3H2O (Ln = Sm (Smβ), Gd (Gdβ))

Orange crystals of these compounds were prepared following a similar procedure to that
employed to prepare Prα using 0.11 mmol of the corresponding Ln(NO3)3·6H2O. (Smβ): Yield: 0.07 g
(90%). Anal. Calcd (%) for SmRu2C6H16O18S·3H2O (814.80 g·mol−1): C, 8.84; H, 2.72; S, 3.94. Found
(%): C, 8.45; H, 2.74; S, 3.78. FT-IR (cm−1): 1659w, 1629w, 1498sh, 1449s, 1346m, 1291m, 1261m, 1054m,
985s, 920m, 812m, 708m. (Gdβ) Yield: 0.04 g (51%). Anal. Calcd (%) for GdRu2C6H16O18S·3H2O
(821.68 g·mol−1): C, 8.77; H, 2.70; S, 3.90. Found (%): C, 8.48; H, 2.74; S, 3.68 FT-IR (cm−1): 1654w,
1626w, 1500sh, 1449s, 1347m, 1291m, 1261m, 1055m, 985m, 921m, 813m, 708m.

2.2.3. Synthesis of [Ln(OH2)4][Ru2(CO3)4(OH2)]·xH2O (Ln = Pr (Pr3D), Sm (Sm3D))

Method a: A solution of 0.32 mmol (0.20 g) of K3[Ru2(CO3)4]·4H2O in 20 mL of water was
added dropwise to a solution of 0.35 mmol of the corresponding Ln(NO3)3·xH2O in 20 mL of water.
The mixture was stirred overnight and the brown solid obtained was filtered, washed with water,
methanol and diethyl ether and dried under vacuum. (Pr3D): Yield: 0.14 g (60%). Anal. Calcd (%) for
PrRu2C4H12O18·2H2O (727.207 g·mol−1): C, 6.61; H, 2.22. Found (%): C, 6.24; H, 2.13. (Sm3D) Yield:
0.20 g (85%). Anal. Calcd (%) for SmRu2C4H12O18·2H2O (736.65 g·mol−1): C, 6.52; H, 2.19. Found (%):
C, 6.20; H, 2.15.

Method b: Pr3D and Sm3D were obtained after a few days by slow diffusion of a solution of
0.05 mmol (0.03 g) of K3[Ru2(CO3)4]·4H2O in 20 mL of water into a solution of 0.07 mmol of the
corresponding Ln(NO3)3·xH2O in 15 mL of water. The two solutions were separated by 10 mL of
water. The crystals were washed with water, methanol and diethyl ether. (Pr3D): Yield: 0.02 g (54%).
Anal. Calcd (%) for PrRu2C4H12O18·3H2O (745.223 g·mol−1): C, 6.45; H, 2.43. Found (%): C, 6.14; H,
2.28. (Sm3D) Yield: 0.035 g (93%). Anal. Calcd (%) for SmRu2C4H12O18·3H2O (754.665 g·mol−1): C,
6.37; H, 2.40. Found (%): C, 6.15; H, 2.19.

Pr3D: FT-IR (cm−1): 1651w, 1597w, 1494s, 1461s, 1320w, 1252m, 1051m, 814w, 762w, 716w. Sm3D:
FT-IR (cm−1): 1649w, 1598w, 1503s, 1463s, 1255m, 1051w, 814w, 716w.

3. Results and Discussion

3.1. Synthesis

As previously reported, the equimolecular reaction of K3[Ru2(CO3)4]·4H2O and Ln(NO3)3·xH2O
in water under different conditions (direct mixture, layering synthesis or solvothermal
synthesis with or without microwave radiation) leads to the formation of 3D structures with
[Ln(OH2)4][Ru2(CO3)4(OH2)]·xH2O composition [21]. This approach has been also successfully
employed to prepare Pr3D and Sm3D in this work. In order to reduce the dimensionality of that
structure, the same reaction was assayed by dissolving the lanthanide salts in a strong donor solvent
such as dimethyl sulphoxide (DMSO) with the aim of blocking some coordination positions of the
metals. The layering method was selected to prepare the new compounds because it was successfully
used to obtain single crystals of [Ln(OH2)4][Ru2(CO3)4(OH2)]·xH2O. Changing the solvent of the rare
earth salt solutions was sufficient to form two other structures, one with LnRu2(CO3)4·3DMSO·9H2O
composition for the lighter lanthanide (Pr) and LnRu2(CO3)4·DMSO·8H2O composition for the heavier
ones (Sm, Gd and Dy). The decrease of the lanthanide radius could be the explanation of that change.

Before adding the water solution of K3[Ru2(CO3)4]·4H2O, 10 mL of neat water was added to
avoid the precipitation of the compounds at the interface of both solutions. This procedure permits
the slow diffusion of the reactants leading to the direct formation of single crystals, suitable for X-ray
diffraction analysis, with acceptable yields. It should be also taken into account that the insolubility of
the compounds prevents their recrystallization. Powder X-ray diffraction measurements show that
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a single phase is obtained; α structure in the case of Prα and β structure in the case of Smβ and Gdβ
(Figure 2). The IR spectra of Prα, Smβ and Gdβ are shown in Figures S1 and S2.
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The direct mixing of the reagents, K3[Ru2(CO3)4]·4H2O in water and Ln(NO3)3·xH2O in DMSO,
instantaneously produces precipitation of a solid that presents the same single phase for Pr, Sm and
Gd, as demonstrated by powder X-ray diffraction analysis (Figure 3). This phase is the same as
the one obtained for praseodymium by the layering method (α structure). However, no completely
satisfactory elemental analyses have been obtained for these samples. Nevertheless, these results point
out that LnRu2(CO3)4·3DMSO·9H2O is the kinetic compound, whereas LnRu2(CO3)4·DMSO·8H2O is
thermodynamically more stable, as least when Ln = Sm and Gd.
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crystal data of Prα (green). Experimental powder X-ray diffraction pattern obtained for the bulk sample
prepared by direct mixing of a 15 mL water solution of 0.095 mmol (0.06 g) of K3[Ru2(CO3)4]·4H2O
into a solution of 0.11 mmol of the corresponding Ln(NO3)3·6H2O in 15 mL of DMSO (Pink: Ln = Pr.
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3.2. Structural Description

The crystal structure of Prα, Smβ and Gdβ was determined from single crystal X-ray
diffraction. They crystallize in the P-1 space group but two types of structures were found:
[Pr(DMSO)2(OH2)3][Ru2(CO3)4(DMSO)(OH2)]·5H2O (Prα) (α structure) and [Ln(OH2)5][Ru2(CO3)4

(DMSO)]·xH2O (Ln = Sm (Smβ), Gd (Gdβ)) (β structure). The α structure has a significantly
lower density (2.142 g·cm−3) than the β structure (2.447, 2.426 g·cm−3, Table 1). The structure of
[Sm(OH2)4][Ru2(CO3)4(OH2)]·2H2O (Sm3D) was determined by single crystal X-ray diffraction and is
isostructural to the previously reported Gd, Eu and Yb derivatives (See Figures S3–S5) [21]. The PXRD
of [Pr(OH2)4][Ru2(CO3)4(OH2)]·2H2O (Pr3D) shows that it is isostructural with Sm3D (See Figure S6).

The structure of Prα (α structure) is formed by [Ru2(CO3)4(OH2)2]3−, [Ru2(CO3)4(DMSO)2]3−

and [Pr(DMSO)2(OH2)3]3+ units in a 1:1:2 ratio giving a neutral 2D net (Figure 4). The two types
of diruthenium units display a paddlewheel structure with two ruthenium atoms bridged by four
carbonate ligands and two water or two DMSO molecules at the axial positions (Figure 4, left and
center). Each carbonate ligand of the [Ru2(CO3)4(OH2)2]3− units is also coordinated to a Pr3+ ions in
such a way that two of the carbonates, in trans disposition, display a µ3-1κO,2κO′,3κO” coordination
mode while the other two carbonates display a µ3-1κO,2:3κ2O′O”,3κO” coordination mode
(Figure 4, left). Two of the carbonate ligands, in trans disposition, of the [Ru2(CO3)4(DMSO)2]3− bridge
a Pr3+ ion and two ruthenium atoms with a µ3-1κO,2κO′,3κO” coordination mode (Figure 4, center).
The Ru–Ru distances are 2.264 and 2.258 Å, which are in the range 2.238–2.272 Å found for other
tetracarbonatodiruthenium compounds [2,10,13,16,18,20,21]. The Pr3+ ions have a coordination
number of nine and are surrounded by the three oxygen atoms of water molecules, two oxygen
atoms of DMSO molecules and 4 oxygen atoms of 3 carbonate ligands (Figure 4, right).
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[Ln(OH2)4][Ru2(CO3)4(OH2)]·xH2O (Ln = Nd, Eu, Gd, Yb), Pr3D and Sm3D [21] that display a 3D net 
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Figure 4. Representation (50% probability ellipsoids) of the coordination environments of the Ru2
5+

(left and center) and Pr3+ (right) units that form the structure of Prα. Ruthenium: turquoise and black;
praseodymium: pale green; oxygen: red; carbon: gray; sulfur: yellow; hydrogen: white. Ellipsoids of
the hydrogen atoms are omitted for clarity.

The combination of the building blocks that form the structure of Prα gives rise to a 2D
polymeric structure (Figure 5). If each type of Ru2

5+ unit and the Ln3+ units are considered
as nodes, the resulting net is built by triconected (Pr3+ ions, Figure 4 right), biconnected (Ru2

5+

ions, Figure 4 center), and tetraconnected (Ru2
5+ ions, Figure 4 left) nodes with a (2-c)(3-c)2(4-c)

stoichiometry (Figure 5, bottom). Interestingly, the polymeric 2D structure of Prα is related to that of
[Ln(OH2)4][Ru2(CO3)4(OH2)]·xH2O (Ln = Nd, Eu, Gd, Yb), Pr3D and Sm3D [21] that display a 3D net
formed by mono and dimetallic nodes that are tri-, tetra- and hexaconnected (Figure S7).
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Figure 5. (Top): Ball and stick representation of the 2D structure of Prα. Ruthenium: turquoise and
black; praseodymium: pale green; oxygen: red; carbon: gray; sulfur: yellow. Hydrogen atoms are
omitted for clarity. (Bottom): Simplification of the 2D net. Turquoise: [Ru2(CO3)4(DMSO)2]3− units;
black: [Ru2(CO3)4(OH2)2]3− units; pale green: [Pr(DMSO)2(OH2)3]3+ units.

Five water molecules per formula that do not belong to the 2D network have been found in the
crystal structure of Prα. These water molecules establish multiple hydrogen bonds with neighbor
water molecules and carbonate, DMSO and water ligands belonging to the 2D network. Interestingly,
the thermogravimetric analysis of Prα (heating rate of 5 ◦C min–1, Figure S8) shows a weight loss
in the 35–65 ◦C range that corresponds to ca. five water molecules per formula. Then, a plateau is
observed until 90 ◦C, when a loss that corresponds to 3–4 water molecules is observed. The framework
is stable until 190 ◦C when it begins to decompose.

The neutral layers that form the structure of Smβ and Gdβ are built with paddlewheel
[Ru2(CO3)4(DMSO)2]3− and [Ru2(CO3)4]3− units and [Ln(OH2)5]3+ units combined in a 1:1:2
ratio. The ruthenium atoms in the two types of diruthenium fragments are bridged by four
carbonate ligands and the axial positions are occupied by DMSO molecules or two carbonate ligands
(Figure 6, left and center). Two trans carbonate ligands of the [Ru2(CO3)4(DMSO)2]3− units are also
coordinated to a Ln3+ ion displaying a µ3-1κO,2:3κO′O”,3κO” coordination mode while the other trans
carbonate ligands are coordinated to a Ru atom of the [Ru2(CO3)4]3− units with a µ3-1κO,2κO′,3κO”
coordination mode (Figure 6, left). Two equatorial trans carbonate ligands of the [Ru2(CO3)4]3−

units are also coordinated to a Ln3+ ion with a µ3-1κO,2:3κO′,3κO” coordination mode while the
other two equatorial carbonate ligands do not bridge any additional metal ions (Figure 6, center).
The Ru–Ru distances are in the 2.260–2.272 Å range, similar to other Ru–Ru distances reported for
tetracarbonatodiruthenium compounds as mentioned above. The Ln3+ ions have a coordination
number of nine with 5 oxygen atoms of 5 water molecules and 4 oxygen atoms of 2 carbonate ligands
that belong to a [Ru2(CO3)4(DMSO)2]3− and a [Ru2(CO3)4]3− unit (Figure 6, right).
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Smβ and Gdβ display a grid-like structure, formed by biconnected nodes, [Ln(OH2)5]3+, and two
types of tetraconnected nodes, [Ru2(CO3)4(DMSO)2]3− and [Ru2(CO3)4]3− units, with a (2-c)(3-c)2(4-c)
stoichiometry (Figure 7).

Three crystallization water molecules per formula have been found in the structure of Smβ,
while only two have been found in the structure of Gdβ. These water molecules form hydrogen bonds
with neighbour water molecules and with carbonate and water ligands of the polymeric structure.
The thermogravimetric analyses of Smβ and Gdβ (heating rate of 5 ◦C min–1, Figures S9 and S10)
show a gradual decomposition in the 35–200 ◦C range.
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Figure 7. (Top): Ball and stick representation of the 2D structure of Gdβ. Ruthenium: turquoise
and black; gadolinium: pale green; oxygen: red; carbon: gray; sulfur: yellow. Hydrogen atoms are
omitted for clarity. (Bottom): Simplification of the 2D net. Turquoise: [Ru2(CO3)4]3− units; black:
[Ru2(CO3)4(DMSO)2]3− units; pale green: [Gd(OH2)5]3+· units.
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3.3. Magnetic Properties

The temperature dependence of the magnetic susceptibility of Prα, Smβ, Gdβ, Pr3D and Sm3D
was measured between 300 and 2 K at 1 T. The plots of the χMT vs. temperature are displayed
in Figure 8. Compounds with identical lanthanide present approximately the same χMT values at
room temperature despite their different crystal structure. Those values (4.10, 2.56, 10.40, 3.89 and
2.76 emu mol−1 K for Prα, Smβ, Gdβ, Pr3D and Sm3D, respectively) are slightly higher than the
value expected from the sum of independent Ru2

5+ and Ln3+ ions (3,48, 1.97 and 9.76 emu mol−1 K,
respectively, for Pr3+, Sm3+ and Gd3+ with Ru2

5+).
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Figure 8. Plots of the χMT vs. temperature for compounds Prα, Smβ, Gdβ (left) and Pr3D, Sm3D and 
[Gd(H2O)4][Ru2(CO3)4(H2O)2]·2.5H2O (Gd3D) [21] (right). 

The χMT values for Prα, Smβ, Pr3D and Sm3D descend smoothly until ≈80 K. Below this 
temperature a sharper decrease is observed until 2 K for Prα and until 18, 12.6 and 12.7 K for Smβ, 
Sm3D and Pr3D, when the χMT values increase and a maximum in the curves is observed at 5 K. 
However, there is almost no variation in the χMT values for Gdβ until 60 K, even a slight increase can 
be detected. Then, the χMT values decrease until 30 K and at lower temperatures they increase to 
reach a maximum of 12.10 emu mol−1 K at 5.4 K. Finally, χMT values abruptly descend. This is the 
same pattern observed for [Gd(H2O)4][Ru2(CO3)4(H2O)2]·2.5H2O (Gd3D) [21] although the χMT 
maximum is 10.43 emu mol−1 K at 4.6 K (Figure 8). 
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The field dependence of the magnetization at 2 K between −5 and 5 T of compounds Smβ and 
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the magnetization is far from saturation at 5 T for Smβ. These measurements suggest the existence of 
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Figure 8. Plots of the χMT vs. temperature for compounds Prα, Smβ, Gdβ (left) and Pr3D, Sm3D
and [Gd(H2O)4][Ru2(CO3)4(H2O)2]·2.5H2O (Gd3D) [21] (right).

The χMT values for Prα, Smβ, Pr3D and Sm3D descend smoothly until ≈80 K. Below this
temperature a sharper decrease is observed until 2 K for Prα and until 18, 12.6 and 12.7 K for Smβ,
Sm3D and Pr3D, when the χMT values increase and a maximum in the curves is observed at 5 K.
However, there is almost no variation in the χMT values for Gdβ until 60 K, even a slight increase
can be detected. Then, the χMT values decrease until 30 K and at lower temperatures they increase
to reach a maximum of 12.10 emu mol−1 K at 5.4 K. Finally, χMT values abruptly descend. This is
the same pattern observed for [Gd(H2O)4][Ru2(CO3)4(H2O)2]·2.5H2O (Gd3D) [21] although the χMT
maximum is 10.43 emu mol−1 K at 4.6 K (Figure 8).

The decrease of χMT has been observed in other heteronuclear tetracarbonatodiruthenium(II,III)
derivatives in which the Ru2

5+ centers are the sole magnetic species [7,9,13,14,19] and it has been
ascribed to a large zero field splitting (ZFS) associated with the Ru2

5+ species [7]. In Prα, Smβ, Pr3D
and Sm3D this decrease is due to the sum of the ZFS of the Ru2

5+ units and the depopulation of the
MJ sublevels of the Ln(III) ions produced by the splitting of the ground state by the ligand field [22].

The Gdβ compound does not present an important temperature dependence of χMT until low
temperatures and, therefore, the contribution of Gd(III) to χMT at high temperatures comes basically
from the 7 unpaired electrons of the lanthanide ion that arise a 8S7/2 ground state, without first order
spin-orbit coupling [23].

Intramolecular exchange coupling in lanthanide compounds is usually very weak due to the
radially contracted nature of 4f orbitals [24]. Therefore, the increase in χMT values at low temperatures
could be ascribed to a canted ferrimagnetism produced by the diruthenium species. Actually,
this phenomenon has been reported for several tetracarbonatodiruthenium compounds without
other magnetic centers [7,9,13,14,19,21]. Interestingly, it was only observed for compounds in which
two Ru2

5+ species are connected by a carbonate ligand in the same fashion found in Smβ, Gdβ, Pr3D
and Sm3D. However, a continuous lowering of χMT values with temperature was observed when the
axial position of the diruthenium species was occupied by other ligands. This is also the case for Prα.

The field dependence of the magnetization at 2 K between −5 and 5 T of compounds
Smβ and Gdβ (Figures S11 and S12) shows almost saturation of the magnetization for Gdβ
while the value of the magnetization is far from saturation at 5 T for Smβ. These measurements
suggest the existence of predominant ferromagnetic interactions in Gdβ as in Mn4(H2O)16H
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[Ru2(CO3)4]2[Ru2(CO3)4(H2O)2]·11H2O and predominant canted ferrigmagnetism in Smβ as in
KxH1−x[M(H2O)4][Ru2(CO3)4]·zH2O (M = Mg, Mn, Fe, Co, Ni) [18] and other tetracarbonatodiruthenium
compounds without other magnetic centers [7,9,13,19,21]. In fact, Ru–O–Gd–O–Ru fragments with Ru–Gd
distances of 4.352 and 4.445 Å are found in the structure of Gdβ.

The magnetic behavior of Gdβ has been fitted with Equation (1) [21], considering the sum of
the contribution of the lanthanide ions following the free ion approximation, the contribution of
diruthenium species taking into account a ZFS parameter (D) and a Weiss constant (θ) to consider
intermolecular interactions. A TIP has also been added:

χ = χRu + χLn + TIP (1)

where

χRu =
Ng2

Ruµ2
B

3k(T − θ)

 1 + 9e
−2D

kT

4
(

1 + e
−2D

kT

) +
2 + 3kT

2D

(
1− e

−2D
kT

)
1 + e

−2D
kT


and

χLn =
Ng2

Lnµ2
B

3k(T − θ)
J(J + 1)

where N, g µB and k have the usual meanings.
The magnetic behavior of Smβ and Sm3D were fitted following a similar approach but

considering the presence of excited states that can be thermally populated in the lanthanide ion.
Thus, a spin-orbit parameter (λ) was considered for the Sm3+ ions as follows [23]:

χSm =
Nµ2

B
3kTx [a1x + b1 + (a2x + b2)e−7x/2 + (a3x + b3)e−8x

+(a4x + b4)e−27x/2 + (a5x + b5)e−20x

+(a6x + b6)e−55x/2]/[3 + 4e−7x/2

+5e−8x + 6e−27x/2 + 7e−20x + 8e−55x/2]

with
a1 = 2.143 b1 = 7.347
a2 = 42.92 b2 = 1.641
a3 = 283.7 b3 = −0.6571
a4 = 620.6 b4 = −1.9400
a5 = 1122 b5 = −2.835
a6 = 1813 b6 = −3.556

where x = λ/kT.
The equation to simulate the magnetic contribution of Pr3+ ions in Prα or Pr3D should consider the

depopulation of the MJ sublevels which requires too many Hamiltonian Crystal Field parameters [22].
Therefore, we have used as an approximation the same model above employed for the Gd3+ derivatives.

The best data obtained from the fits are shown in Table 2 and the figures can be found in the
SI (Figures S13–S18). The fits were made with the χMT values from room temperature until the
minimum of the χMT vs. T curves. The gRu and D values obtained from the fits are within the normal
range observed for diruthenium(II,III) compounds and are close to those for K3[Ru2(CO3)4]·4H2O,
which were estimated to be 2.20 and 70 cm−1 [7]. However, the D value obtained for Gdβ was lower
(39 cm−1) than expected. For this reason, a new fit was done with a fixed D value of 70 cm−1. In these
cases, a higher θ and a lower g values were obtained.
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Table 2. Magnetic parameters obtained for the fit of the magnetic data.

Compound gRu gLn
1 D [cm−1] λ [cm−1] θ [K] TIP [emu/mol] σ 2

Gdβ 2.28 2.00 39 0.92 2.17 × 10−4 1.12 × 10−2

Gdβ 2 2.10 2.00 70 1.98 4.14 × 10−12 7.11 × 10−3

Smβ 2.18 0.29 73 256 1.73 5.27 × 10−11 5.12 × 10−5

Sm3D 2.17 0.29 77 270 1.11 7.76 × 10−4 4.88 × 10−5

Prα 2.07 0.80 78 −5.73 2.20 × 10−3 9.14 × 10−3

Pr3D 2.08 0.80 73 −7.09 3.27 × 10−3 7.95 × 10−4

1 These values were fixed in the fits. 2 Fixed D value.

4. Conclusions

The use of different solvents allows one to control the dimensionality of coordination polymers
made from the reaction between K3[Ru2(CO3)4]·4H2O and Ln(NO3)3·xH2O (Ln3+ = Pr, Sm and Gd).
The use of neat water leads to the formation of 3D coordination polymers while a H2O/DMSO mixture
leads to the formation of 2D structures. A different 2D phase can be obtained depending of the reaction
method. Thus, slow diffusion of the reagents gives a net made by triconnected Ln3+ nodes and two
different Ru2

5+ units that are bi- and tetraconnected when the Ln3+ ion is Pr3+ (α-structure, Prα).
A grid-like net formed by biconnected Ln3+ nodes and two different tetraconnected Ru2

5+ is obtained
when the Ln3+ ions are Sm or Gd (β structure, Smβ and Gdβ). Direct mixing of the reagents leads to
the α-structure in all cases.

The magnetic behavior of the complexes is consistent with the sum of the individual contributions
of diruthenium and lanthanide species. The increase in χMT at low temperatures is associated with
a weak canted ferrimagnetism from the diruthenium species and weak ferromagnetic interaction
between Ru2

5+ and lanthanide ions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/3/426/s1.
Figure S1: IR spectrum of Prα. Figure S2: IR spectra of Smβ and Gdβ. Figure S3: View of the structure of Sm3D
showing the different coordination environments. Figure S4: View along the b axis of a 1 × 1 × 1 packing of the
structure of Sm3D. Figure S5: View along the c axis of a 1 × 1 × 1 packing of the structure of Sm3D. Figure S6:
Experimental powder X-ray diffraction pattern obtained for Pr3D and calculated powder X-ray diffractogram
simulated from the single crystal data of Sm3D. Figure S7: Simplification of the 2D net of Prα and simplification of
the 3D net of [Ln(OH2)4][Ru2(CO3)4(OH2)]·xH2O (Ln = Nd, Eu, Gd, Yb), Pr3D and Sm3D. Figure S8: Thermogram
of Prα. Figure S9: Thermogram of Smβ. Figure S10: Thermogram of Gdβ. Figure S11: Magnetization versus
magnetic field between −5 T to 5 T for Smβ. Figure S12: Magnetization versus magnetic field between −5 T to 5
T for Gdβ. Figures S13–S18: Fits of the temperature dependence of the molar susceptibility χM and χMT for all
the compounds.
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