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Abstract: We study shear banding in a planar 4:1 contraction flow using our recently developed
two-fluid model for semidilute entangled polymer solutions derived from the generalized bracket
approach of nonequilibrium thermodynamics. In our model, the differential velocity between the
constituents of the solution allows for coupling between the viscoelastic stress and the polymer
concentration. Stress-induced migration is assumed to be the triggering mechanism of shear banding.
To solve the benchmark problem, we used the OpenFOAM software package with the viscoelastic
solver RheoTool v.2.0. The convection terms are discretized using the high-resolution scheme
CUBISTA, and the governing equations are solved using the SIMPLEC algorithm. To enter into the
shear banding regime, the uniform velocity at the inlet was gradually increased. The velocity increases
after the contraction due to the mass conservation; therefore, shear banding is first observed at the
downstream. While the velocity profile in the upstream channel is still parabolic, the corresponding
profile changes to plug-like after the contraction. In agreement with experimental data, we found
that shear banding competes with flow recirculation. Finally, the profile of the polymer concentration
shows a peak in the shear banding regime, which is closer to the center of the channel for larger inlet
velocities. Nevertheless, the increase in the polymer concentration in the region of flow recirculation
was significantly larger for the inlet velocities studied in this work. With our two-fluid finite-volume
solver, localized shear bands in industrial applications can be simulated.

Keywords: contraction flow; polymer solutions; shear banding; two-fluid model; nonequilibrium
thermodynamics

1. Introduction

Contraction flow is of great importance in many processing operations, such as molding and
extrusion of viscoelastic materials. Furthermore, the 4:1 planar contraction is a suitable benchmark
problem for the evaluation of new models or codes. Different types of vortices, namely, salient and
lip vortices, can appear in this geometry. The lip vortex originates from the re-entrant corner and
dominates the flow by vortex enhancement and growth [1]. Experimental evidence has revealed that
the vortex enhancement is absent for Boger fluids while it is apparent for shear-thinning fluids [2,3].
Comparisons between strain-hardening low-density polyethylene (LDPE) and strain-softening
polystyrene suggest that the size and strength of the vortices are influenced by both extensional
and shear properties [4,5]. With increasing flow rate, the vortex size increases if the ratio of the
extensional to the shear viscosity increases and vice versa [6].

Numerical simulations of viscoelastic contraction flow use constitutive models according to the
material under investigation. Olsson [7] observed the lip vortex of a shear-thinning fluid for the first
time using the Giesekus model. In several works, the Oldroyd-B and Phan-Thien/Tanner (PTT) models
were utilized to describe the behavior of Boger and shear-thinning fluids, respectively. The Oldroyd-B
model predicts that the size of the salient vortex decreases, and the lip vortex appears and further
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grows with increasing flow rate [3,8]. The results of Aboubacar et al. [6,9] revealed that by increasing
the elasticity, the Oldroyd-B model and both the linear and exponential versions of the PTT model with
a small value of the parameter simultaneously controlling shear-thinning and strain hardening exhibit
vortex reduction. The PTT model reverts to the Oldroyd-B model if the value of this parameter reduces
to zero. However, the size of the vortex increases for the PTT model with stronger shear-thinning
behavior. Thompson et al. [10] proposed a new constitutive equation that can predict the increase in
the corner vortex size with strain hardening. The idea of their model was that the stress tensor is an
isotropic function of the strain rate and the relative rotation rate. White and Baird [11] used the PTT
model and suggested that extension hardening increases the size and intensity of the vortex, and this
proposition was in agreement with their flow visualization and birefringence data [12]. The Pom-pom
model is an appropriate model to describe contraction flows due to shear-thinning and bounded strain
hardening-softening properties. Many works have adopted this model and showed that the size of
the vortex increases with the ratio of the extensional to shear stresses [13–15]. Ferrás et al. [16] used
the PTT model along with slip boundary conditions. Increasing the slip enlarges the lip vortex until
it absorbs the salient vortex. The new single vortex grows in size and intensity with the value of the
slip coefficient.

Many features of a planar contraction flow cannot be observed in the 4:1 geometry. Alves et al. [17]
used the linear PTT model to numerically study the effects of the contraction ratio (CR) and the
Deborah number (DE). They illustrated in a map that the lip vortex appears at De ≈ 1− 2, the vortex
enhancement starts at De/CR ≈ 0.5 − 1, and the lip vortex becomes completely dominant for
De/CR ≥ 1− 2. Their results are in qualitative agreement with the visualizations of Evans and
Walters [18]. The material properties of a fluid also affect the vortex enhancement; for instance, no lip
vortex was experimentally found at CR = 4 for Boger fluids (1.0 wt/wt% polyacrylamide dissolved in
maltose syrup and water) or for 0.3 and 0.5 wt/wt% shear-thinning aqueous polyacrylamide solutions
observed by Evans and Walters [19]. However, a lip vortex was observed for the lower concentration
of 0.2 wt/wt%. This result was numerically confirmed using the finite extensible nonlinear elastic with
Peterlin’s closure (FENE-P) model [20].

Shear banding is a ubiquitous phenomenon observed in soft materials, such as semidilute
entangled polymer solutions, and is defined as the formation of localized bands with different shear
rates. However, limited information is available about its origin and the impact on processing.
Hemminger et al. [21] experimentally studied a 4:1 rounded-corner contraction flow of 75 kbp DNA
solutions with concentrations from 0.1 to 1.0 wt/wt% over a wide range of Deborah numbers (up to
2× 104 for the most concentrated solution). They observed that the vortex flow dominates for the
non-shear-banding solutions with concentrations of 0.1 and 0.5 wt/wt%. However, shear banding
was found for the higher concentrations of 0.7 and 1.0 wt/wt% at the entrance of the contraction with
a high flow rate at the centerline and a low flow rate at the corner. The authors found that in this
regime, reduction in slip length, obtained by, for example, increasing the solvent viscosity, causes
the vortex flow to become dominant again. As the phenomenon of shear banding was studied in the
converging zone before the contraction, the flow velocities were much higher than those examined in
the present article.

A kinetic theory model [22,23] and a nonequilibrium thermodynamic model [24] were recently
proposed for shear banding polymer solutions. These models are built on the hypothesis that shear
band formation is associated with shear-induced migration. As opposed to the standard one-fluid
polymer models, not only steady-state velocity banding but also banded concentration profiles can
be predicted if a realistic constitutive equation for the conformation/stress tensor is used. In the
two-fluid framework employed by Hooshyar and Germann [24], the differential velocity is treated as a
state variable. This description is advantageous since it simplifies the specification of the boundary
conditions. However, an explicit expression is better for convergence in some cases. The behavior of
this model was analyzed in a cylindrical Couette flow [24] and a pressure-driven channel flow [25].
The results confirmed that the steady-state banded solution is caused by shear-induced migration,
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unique for different initial conditions, and independent of deformation history. The profile of the
volumetric flow rate along the channel calculated for different values of the pressure gradient shows
a spurt. Because the steady flow curve is monotonic under homogeneous conditions, no hysteresis
was observed for the ramp-up and ramp-down tests. More details about the theoretical foundations of
these two models are provided in our previous two papers [24,25]. Recent theoretical and experimental
developments in the area of shear banding entangled polymer solutions were comprehensively
reviewed in [26].

Hitherto, no two-fluid model for shear banding polymer solutions has been solved for 4:1 planar
contraction flow. The goal of this work is to study the new model in this geometry and to investigate
the influence of the shear bands on the vortices. The remainder of this paper is organized as follows.
In Section 2, we provide the model equations. Section 3 introduces the flow problem and numerical
procedure. In Section 4, we analyze the computational results. The conclusion is presented in Section 5.

2. Polymer Model

In this section, we present the two-fluid model developed by Hooshyar and Germann [24] for
semidilute entangled polymer solutions. For the polymer species, the state variables are the mass
density ρp; the momentum density mp = ρpvp, with vp being the velocity; the number density
np = (ρp/Mp)NA, where Mp is the molecular weight of the polymer and NA is the Avogadro constant;
and the conformation density tensor C = npc, with c representing the average second moment of the
end-to-end connection vector of the polymeric constituents. The state variables of the model for the
solvent are defined as the mass density ρs and the momentum density ms = ρsvs, with vs being the
velocity. The time evolution equations of the state variables are as follows:

ρ
∂v
∂t

= −ρv ·∇v−∇p +∇ ·σ, (1)
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Equation (1) is the Cauchy momentum balance, where v is the total average velocity of the
solution, t is the time, ρ = ρp + ρs is the total mass density, p is the pressure, and σ is the extra
stress. Equation (2) is the time evolution equation of the differential velocity ∆v. Here, kB is the
Boltzmann constant, T is the absolute temperature, ηs is the viscosity of the solvent, and σp is the extra
stress associated with the polymer. The divergence of σp accounts for the stress-induced migration.
The spatial gradients of the variables np and ns describe the Fickian diffusion. The local diffusivity
constant D controls the diffusion between the polymeric constituents and the solvent. The value of
D does not affect the steady-state solution. As the variation in the polymer concentration is very
small here, Equation (2) is difficult to solve with a lower-order discretization method. Therefore,
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we neglected the left-hand side and used the value of the previous iteration for the calculation of the
Laplacian term. Equation (3) is the time evolution equation of the polymer number density. The terms
of this equation constitute a material derivative, which accounts for the fact that the profile of the
polymer concentration can be inhomogeneous. Equation (4) is the time evolution equation for the
conformation density tensor C. The left-hand side and the first three terms on the right-hand side
form the upper-convected time derivative. To have better convergence, we reformulated the model
equations in terms of the conformation density tensor. This results in a convective term of divergence
form, which can be discretized using finite volumes in a straightforward manner. The fourth term
on the right-hand side of Equation (4) is the Giesekus relaxation, with α being the anisotropy factor.
The fifth term on the right-hand side is an additional nonlinear relaxation term. This term is similar to
the one used in the Rolie-Poly model accounting for convective constraint release (CCR) and chain
stretch [27]. The power-law pre-factor [K/(npkBT)trC− 3]q, where K is the Hookean spring constant
of the polymer, captures the upturn of the flow curve at high shear rates. This term is a scalar function
of the trace of the conformation tensor and thus a measure for polymer stretch [24]. The last term on
the right-hand side of Equation (4) controls the smoothness of the profiles and guarantees a unique
solution, where Dnonloc is the nonlocal diffusivity constant.

The preceding set of time evolution equations is closed by an explicit expression for the extra stress:

σ =σp + σs = KC− npkBTI + ηs

[
∇vs + (∇vs)T

]
, (5)

where the first term on the right-hand side accounts for the viscoelastic contribution of the polymer,
and the second term accounts for the viscous stress of the solvent. To calculate the phase velocities of
the polymer and the solvent, the total average and differential velocities can be used as follows:

vp =v +
ρs

ρ
∆v, (6)

vs =v−
ρp

ρ
∆v. (7)

In the equilibrium state of rest, where v = 0 and ∆v = 0, the analytical solution of np = n0
p and

C =
(

n0
pkBT/K

)
I can be obtained.

3. Numerical Method

We solved the model equations (Equations (1)–(5)) for a steady, laminar, incompressible,
two-dimensional flow through a 4:1 planar contraction. A schematic sketch of the flow geometry is
given in Figure 1. The half-width of the downstream channel is denoted by the characteristic height H.
As required by the problem, the half-width of the upstream channel is 4H. Inlet and outlet effects can
be neglected since we assume 100H for both the lengths of the upstream and downstream channels.
The Deborah number is defined as De = λ1Uout/H, where Uout is the mean velocity at the outlet.
The Reynolds number is defined as Re = ρUoutH/η0 = E−1/De, with E and η0 being the elasticity
number and the zero shear viscosity, respectively, defined below. The Cartesian coordinate system was
used as the reference frame. Any dependence on the z-direction was ignored for simplicity.

In the following, we work with non-dimensional quantities. The location is scaled by the
characteristic height, ỹ = y/H; the time is scaled by the characteristic relaxation time, t̃ = t/λ1;
the extra stress is scaled as σ̃ = σ/G0; and the conformation tensor associated with the polymer is
scaled as C̃ = (K/npkBT)C. The number densities of the polymer and the solvent are normalized
using the values at equilibrium as ñp = np/n0

p and ñs = ns/n0
p, respectively. The dimensionless

parameters with respect to these scalings are the elasticity number E = G0λ2
1/ρH2; the ratio of the

molecular weight of the solvent to that of the polymer, χ = Ms/Mp; the viscosity ratio β = ηs/η0,
with η0 = G0λ1 being the zero shear viscosity; and the ratio of the characteristic relaxation times
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ε = λ1/λ2. The total polymer concentration corresponds to the initial uniform polymer concentration
and is given in weight percent by µ = ñ0

p/(ñ0
p + χñ0

s ). The dimensionless diffusion coefficients are
D̃ = Dλ1/H2 and D̃nonloc = Dnonlocλ1/H2. The non-dimensional form of the model equations can be
found in Appendix A.

Figure 1. Planar 4:1 contraction geometry.

The OpenFOAM v4.0 finite volume package, together with the viscoelastic solver rheoTool
v.2.0 [28], was used to solve the flow problem. To add our model to the solver, we implemented
the two-fluid description by using the differential velocity as an intermediate variable, similar
to the approach of Guo et al. [29]. In our simulations, the convection term was discretized
using the high-resolution Cubista scheme following a component-wise and deferred correction
approach. The diffusion term and the gradients of the velocity and pressure were discretized
using the Gauss linear scheme. The Crank–Nicolson method was employed for time discretization.
The discretized flow problem was iteratively solved using the semi-implicit method for the pressure
linked equations-consistent algorithm with 10 inner iterations per time step. The conjugate gradient
method with a diagonal incomplete-Cholesky preconditioner was used for solving the continuity
and momentum equations and the biconjugate gradient solver with an incomplete lower-upper
decomposition for the remaining linear equations. The absolute tolerance for the variables was
1.0× 10−7 for the steady-state test simulations.

At the inlet boundary, a uniform profile of the polymer number density and a uniform velocity
field Uin were imposed, resulting in a zero tensorial value for the stress and unity for the polymer
conformation. At the outlet boundary, we assumed a vanishing pressure field and fully developed
flow with Neumann conditions for the total velocity, the polymer number density and conformation,
and the extra stress. At the solid walls, we utilized no-slip and no-flux conditions for the total velocity.
For the polymer number density, we used the Neumann condition. The conformation and stress
tensors were linearly extrapolated along the walls using the linearExtrapolation boundary available in
rheoTool. The differential velocity must be zero for the conditions specified above. Since no asymmetry
was observed relative to the channel centerline in our preliminary calculations, we solved the flow
only for the upper half of the channel to avoid unnecessary computations, and we correspondingly
used symmetry boundary conditions for the centerline.

The flow was solved using the four meshes reported in Table 1. The coarsest mesh M1 is obtained
by considering the upper half of the mesh M1 utilized by Pimenta and Alves [30]. Their mesh is
generated so that the resolution is higher near the walls and the corners. We doubled and tripled the
number of faces of our mesh M1 in both spatial directions to obtain meshes M2 and M3, respectively.
The number of faces of M3 is doubled in both directions to generate the mesh M4.



Polymers 2019, 11, 417 6 of 16

Table 1. Mesh characteristics.

Mesh ∆xmin/H = ∆ymin/H Number of Cells

M1 0.0042 6051
M2 0.0021 24,204
M3 0.0014 54,459
M4 0.0007 217,836

4. Results

To validate the numerical scheme, we first checked the consistency of the implemented terms of
the new model by comparison with the numerical solution obtained for steady homogeneous Couette
flow [24]. Afterward, we solved the benchmark problem for the Oldroyd-B model and compared our
results with those of Pimenta and Alves [30]. The dimensionless size of the corner vortex, χ̃R, is shown
in Figure 2a for Deborah numbers up to 4, where Re was kept constant at 0.01. As the Deborah number
increases, the corner vortex becomes smaller. We find that the agreement is excellent. The streamlines
displayed for De = 4 in Figure 2b also closely match with those published for the same condition
in Pimenta and Alves [30]. After the grid independence test, subsequent simulations were performed
using mesh M3.

Figure 2. Solution of Oldroyd-B model for 4:1 contraction: (a) size of dimensionless corner vortex for
different Deborah numbers and (b) streamlines at De = 4 and Re = 0.01. The results are compared
with those of Pimenta and Alves [30] for validation.

The planar contraction flow is a combination of a simple shear flow and a uniaxial extension.
The predictions of our model for these flows under homogeneous flow conditions are shown in Figure 3.
The values are the same as those used in our previous two papers [24,25]. The model parameters were
determined by fitting the flow curve of the shear stress against the shear rate with shear experiments of
a 10 wt/wt% 1.6 M shear-banding polybutadiene solution [31]. The parameters are the mobility factor
α = 0.73, the ratio of the characteristic relaxation times ε = 0.0025, the power-law factor q = 1.46,
the viscosity ratio β = 10−4, and the ratio of the molecular weight of the solvent to that of the polymer
χ = 10−1. A moderate non-dimensional nonlocal diffusion coefficient D̃nonloc = 10−3 was selected
to remove the sharp kink in the banded profiles, and a moderate non-dimensional local diffusion
constant D̃ = 10−3 was used to avoid long running times since the value of this coefficient does not
affect the steady-state solution. In homogeneous simple shear (Figure 3a), both the shear stress and the
first normal stress difference increase monotonically with the shear rate. In homogeneous uniaxial
extension (Figure 3b), the extensional viscosity shows a plateau followed by mild extension thickening
and thinning.
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Figure 3. (a) Dimensionless shear stress and first normal stress difference vs dimensionless shear rate
in homogeneous simple shear flow. (b) Dimensionless viscosity vs dimensionless extension rate in
homogeneous uniaxial extension.

In Figure 4a,b, we show the size of the corner vortex, χ̃R, and the maximum value of the vortex
intensity, ψ̃R, respectively, for the Deborah numbers 0.1, 0.5, 1, 1.5, and 2. The corner vortex size
increases with De due to shear-thinning as expected [6,32]; however, it decreases as the shear banding
starts to occur at De = 1, which is in agreement with the experimental data [21]. The vortex intensity
follows the trend of the vortex size.
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Figure 4. (a) Corner vortex size normalized by characteristic height H and (b) corner vortex intensity
normalized by Uout H versus Deborah number.

In Figure 5, we see the profiles of the axial velocity ṽx, the polymer number density ñp, the shear
stress σ̃xy, and the first normal stress difference Ñ1 = σ̃xx − σ̃yy at x̃ = −75. The selected cross-section
is so that the effects of the inlet and the contraction region can be neglected. In these plots, ỹ = 0 and
4 represent the centerline and the wall, respectively. In Figure 5a, the profiles of the axial velocity
are shown. Note that the value of De is evaluated at the outlet; therefore, the Deborah number
calculated at the upstream using the inlet velocity and the inlet width is only 1/16 of the written
value. This explains why there is no evidence of shear banding for these small values of De before
the contraction. The profiles of the polymer number density are shown in Figure 5b. The overshoot
generated at larger De is due to the Fickian diffusion, which moves toward the wall as De is increased.
In Figure 5c, the profiles of the shear stress are depicted. The value of σ̃xy is zero at the centerline and
increases linearly to the maximum value at the wall, as typically observed for pressure-driven channel
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flow [25]. The absolute wall shear stress is larger for larger De numbers. In Figure 5d, we show the
first normal stress difference, which is larger for a flow with increasing values of De. The value of Ñ1

is zero at the centerline and quadratically increases for larger De as the wall is approached.
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Figure 5. Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal
stress difference evaluated at x̃ = −75 for different Deborah numbers.

Figure 6 shows the results of the channel far away from the contraction at x̃ = 75. The velocity
profiles shown in Figure 6a deviate from the typical parabolic profile of channel flow and form plug-like
flow for De > 1. This phenomenon is related to shear banding. The kink separating the bands move
toward the center of the channel as De increases. The profiles of the polymer number density are
illustrated in Figure 6b. For De > 1, we can see clear bands where the band near the centerline forms
a plateau, and the other band shows a strong decrease near the wall. The effect of shear banding is
much smaller than the effect of recirculation for the De values considered in this work (Figure 6b).
However, at very large De values, the opposite trend may be found. Figure 6c shows that the profiles
of the shear stress increase from zero at the centerline to the extremum at the wall. The overlap of
these profiles in the shear banding regime is expected from the plug-like velocity profiles, where the
similar shear rates of the bands result in similar stress profiles in the plateau regime of the flow curve.
The small difference in the bands arises from the relatively narrow range of De examined. The profile
of the shear stress in the shear banding regime shows nonlinearity near the wall if the resolution of the
mesh is not high enough; therefore, we used the mesh M4 to obtain Figure 6c.
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Figure 6. Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal
stress difference evaluated at x̃ = 75 for different Deborah numbers.

Figure 7 shows the streamlines and the contours of the flow for De = 0.5. We can see a vortex at the
corner in Figure 7a. The contour of the polymer number density is shown in Figure 7b. We note a huge
increase in ñp as a result of flow recirculation. At the re-entrant corner, there is a concentrated zone of
large absolute shear stress values (Figure 7c). The first normal stress difference (Figure 7d) becomes
negative as a result of a large σ̃yy value. It must be noted that σ̃zz is nonzero in the channel, although
the values are much smaller than the other normal components of the shear stress. Our viscoelastic
flow predictions depicted in Figures 7–9 qualitatively agree with the velocity and stress calculations of
the Giesekus, PTT, and FENE-P models [33,34].

Figure 8 shows the results for the flow De = 0.5 at different vertical cross-sections before and
after the contraction. We see in Figure 8a how the axial velocity profile adapts itself to the narrow
channel. The velocity strongly increases due to the requirement of the mass conservation. However,
the shear rate is still not large enough for De = 0.5 to form a banded plug-like curve. Figure 8b shows
the profiles of the polymer number density in the vertical sections. The strong overshoot of the profile
at x̃ = −0.5 corresponds to the recirculation region depicted in Figure 7b. In Figure 8c, we can see
that the value of the shear stress changes its sign in the recirculation region, while this profile is linear
further away (x̃ = −10 and 5). The profiles of the first normal stress difference are shown in Figure 8d.
The negative sign of Ñ1 in the recirculation zone suggests that the σ̃yy-component dominates in this
region. The large values of the first normal stress difference after the contraction region is due to the
larger local De after the contraction.
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Figure 7. Contours of (a) stream function, (b) polymer number density, (c) shear stress, and (d) first
normal stress difference for De = 0.5.
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Figure 8. Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal
stress difference for De = 0.5 at vertical cross-sections x̃ = −10, −1.5, −0.5, 1.0, and 5.0.
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Figure 9 shows the profiles in cross-sections parallel to the centerline. Since the important changes
happen in the contraction region, we only depict the part of the channel in the range −10 6 x̃ 6 10.
There is strong shearing near the walls and significant uniaxial extension along the centerline. As the
flow approaches the contraction, the increasing extension rate increases the velocity for ỹ = 0 and 0.5
(Figure 9a). It is evident from Figure 9b that ñp increases in the recirculation region at ỹ = 2.5 and
overshoots at ỹ = 3.5, which matches with the shape of the vortex. We can see in Figure 9c that σ̃xy

undershoots and overshoots before and after the contraction, respectively. The maximum of Ñ1 occurs
close to the contraction (Figure 9d).
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Figure 9. Profiles of (a) axial velocity, (b) polymer number density, (c) shear stress, and (d) first normal
stress difference for De = 0.5 at horizontal cross-sections ỹ = 0, 0.5, 1.5, 2.5, and 3.5.

The streamlines and contours are shown for De = 2 in Figure 10 and are compared with the
information of Figure 7. The vortex size is larger, and the accumulation of the polymer particles in
the recirculation zone is closer to the wall. The contours of the shear stress and first normal stress
difference are qualitatively similar, but the magnitudes are larger.

Figure 11 shows the profiles for De = 2 at different vertical cross-sections of the channel before and
after the contraction region. The results are compared with those obtained from Figure 8. In Figure 11a,
we can see the transition from parabolic flow to plug-like flow as the fluid flows from small deformation
regime at the wide channel to the shear banding regime at the narrow channel. The increased polymer
number density in the contraction region (Figure 11b) is closer to the wall because of the larger De
value. The shear stress profiles (Figure 11c) qualitatively follow the same trend; however, the values
are larger. The sharp profile of Ñ1 (Figure 11d) is due to the shear band formation.

Figure 12 shows how the profiles change near the contraction region in different horizontal
cross-sections. There is an overshoot of the axial velocity, as shown by Kim et al. [35] for larger De.
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We see in Figure 12c that σ̃xy undershoots before the contraction and overshoots after it, as already
seen in Figure 9 for De = 0.5.

Figure 10. Contours of (a) stream function, (b) polymer number density, (c) shear stress, and (d) first
normal stress difference for De = 2.0.
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Figure 11. Cross-sectional profiles of (a) axial velocity, (b) polymer number density, (c) shear stress,
and (d) first normal stress difference for De = 2.0. The selected x̃-values are the same as in Figure 8.
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Figure 12. Cross-sectional profiles of (a) axial velocity, (b) polymer number density, (c) shear stress,
and (d) first normal stress difference for De = 2.0. The selected ỹ-values are the same as in Figure 9.

5. Conclusions

We studied shear banding of semidilute entangled polymer solutions in 4:1 planar contraction flow
using our recently developed two-fluid model. The model was derived using the generalized bracket
approach of nonequilibrium thermodynamics. It is based on the hypotheses that diffusional processes
trigger the observed steady-state shear banding. As opposed to the standard one-fluid polymer models,
our model can predict not only steady-state velocity banding but also banded concentration profiles.
We expect that standard one-fluid models with/without polymer migration could also predict the
velocity bands in the 4:1 geometry. However, because of the missing velocity-concentration-stress
coupling, concentration banding could not be predicted. This quantity is of major relevance to
industrial processing as it directly affects the texture of the material.

The results of the contraction flow reveal that the size and the intensity of the corner vortex
increase with the Deborah number as a result of shear-thinning, but they decrease after the onset of
shear banding; these findings are in agreement with experiments. The axial velocity profile forms
a plug-like shape in the shear banding regime after the contraction, where the local De number is
much larger because of the increased velocity. The kinks separating the velocity bands move toward
the centerline as De increases. For the De values investigated in this work, the concentration of the
polymer in the recirculation region is strongly increased. However, there is an increased effect of shear
banding on ñp at larger De, typically encountered in industrial processing flows.

The simplicity of the new model and the results encourage us to study more complex phenomena,
such as die swell of the polymer solutions in extrusion flow. Furthermore, additional experiments are
needed to quantitatively compare their results with the predictions of the new model.
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Appendix A

The dimensionless forms of Equations (1)–(7) using the scalings introduced in Section 2 are
as follows:

E−1 ∂ṽ
∂t̃

= −E−1ṽ · ∇̃ṽ− ∇̃ p̃ + ∇̃ · σ̃ , (A1)

∆̃v =
1
D̃

[ χñs

ñp + χñs

{
−∇̃

(
ñp
)
+ ∇̃ · σ̃

}
+

ñp

ñp + χñs
{∇̃ (ñs) + β∇̃2ṽs}

]
, (A2)

∂ñp

∂t̃
= −∇̃ ·

(
ṽpñp

)
, (A3)

∂C̃
∂t̃

= −∇̃ ·
(

ṽpC̃
)
+ C̃ · ∇̃ṽp + (∇̃ṽp)T · C̃

− [(1− α)I + αC̃](C̃− I)

+ ε(trC̃− 3)q(C̃− I)

+ D̃nonloc

(
C̃ · ∇̃

(
∇̃ · σ̃p

)
+
[
∇̃
(
∇̃ · σ̃p

)]T
· C̃
)

, (A4)

σ̃ = C̃− ñpI + β

[
∇̃ṽs +

(
∇̃ṽs

)T
]

, (A5)

ṽp = ṽ +
χñs

ñp + χñs
∆̃v , (A6)

ṽs = ṽ−
ñp

ñp + χñs
∆̃v. (A7)
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