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Abstract: Indentation size effects in poly(methyl methacrylate) (PMMA) were studied through
nanoindentation. Two factors of indentation size effects in PMMA, namely yield criterion and
shear transformation-mediated plasticity, were analysed in detail. The yield criterion that considers
strength differential (SD) effects and pressure sensitivity was constructed by performing the combined
shear-compression experiments. The relationship between hardness and normal stress can then be
obtained based on Tabot’s relation. Shear transformation-mediated plasticity was also applied to
model the measured hardness as a function of the indentation depth at different strain rates. Results
show that the yield criterion contains the terms of SD effects and pressure sensitivity gives the best
description of the yielding of PMMA. Additionally, the volume of single shear transformation zone
calculated through the presented criterion agrees well with simulation and exhibits increases with
increasing strain rate. Indentation size effects in PMMA under different strain rates were discussed
and an appropriate indentation depth range was suggested for calculating the hardness and modulus.

Keywords: Pressure-sensitive polymer; indentation size effects; SD effects; yield criterion; shear
transformation-mediated plasticity

1. Introduction

Poly(methyl methacrylate) (PMMA) is a widely used material in the field of aircraft and
automotive industries due to its excellent properties such as transparency, low density, and high impact
resistance [1–4]. Therefore, the mechanical behaviour of PMMA is an important property that should be
clarified prior to its usage. Many studies have been conducted to investigate the macroscopic [5,6] and
mesoscopic [7,8] mechanical properties of PMMA such as compression, tension, and nanoindentation.
The yield strength and modulus of PMMA were found to be sensitive to strain rate and both properties
exhibit increases with strain rate. From the compressive and tensile tests of PMMA, the strength of
compression was found different from that of tension [9]. This phenomenon is the so-called strength
differential (SD) effects, which results from the different deformation mechanisms (flow or fracture
of molecular chain, crazing or formation of micro cavities), indicating that the yielding of PMMA
is sensitive to the sign of normal stress. Furthermore, glass polymers (GPs) always exhibit pressure
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sensitivity of their yield and flow as metallic glasses (MGs) [10]. For MGs, if shear stress is applied,
then collective rearrangement of clusters of small numbers of atoms, namely, shear transformation
zone (STz). Then, some dilatation (irreversible volume increase) occurs at the microscopic level, which
leads to the pressure sensitivity of yield. GPs are macromolecular materials with chain entanglement,
they do not possess any long-range order and their plastic deformation is mediated by shear bands as
MGs [11]. Therefore, the yield of GPs is also affected by pressure. Owing to the absence of long-range
structural order in glassy solids, their flow and plastic response mechanism in the microstructure level
are different from that of crystal plasticity, wherein dislocations are the main carriers of plasticity. These
glide processes are only shear driven: neither significant dilatation nor any pressure sensitivity are at
risk. Hence, the dislocations-mediated plasticity is inadequate for describing the yield and flow of GPs.
As previously mentioned, STz mediates plasticity (the cooperative localised rearrangement of atomic or
molecular clusters in small distinct regions). STz, which is a widely accepted mechanism for the plastic
deformation in GPs, is initially applied to explain the highly localized heterogeneous deformation
by formation of MG shear bands. Oleinik [12,13] has experimentally observed the formation of STz
in GPs. Materials constantly used as a structural component in complex stress conditions, generally
demands an overall understanding of the mechanical behaviour of material under complex stress states.
Hence, investigating the mechanical properties of materials under combined loadings has drawn
research interests for decades [14–18] and several test methods have been developed. Nie et al. [19]
proposed to study the mechanical behaviour of material under combined shear–compression loading
by conducting the uniaxial compression on a tilted specimen to obtain the additional shear stress.
Analogously, Hou et al. [20,21] designed a combined shear–compression loading device comprising a
short cylindrical bar system with one bevelled end (to acquire the additional shear stress) and used it
to investigate the failure behaviour of aluminium honeycomb.

A constitutive equation is a powerful tool to describe or predict the mechanical behaviour of
material under different stress states. However, some recent experiments on non-uniform plastic
deformation have shown a size effect at the micro/nano scale [22]. A torsional experiment of copper
wire with micron–diameter showed that the shear strength increases with reducing diameter [23], and
the bending experiment of thin beam displayed that thinner beams have higher strength [24]. These
experiments showed the evident size dependence of mechanical behaviour of materials. Therefore,
the classical continuum plasticity cannot explain this situation because the constitutive equation
of classical mechanics does not include constituent internal length as a deformation parameter [22].
Small–scale mechanical behaviour of materials is at the cutting edge of research in materials science and
applied mechanics [25]. Nanoindentation testing is a widely used method for testing the mechanical
properties of materials at small scales due to the improvements of instruments and the requirement of
an understanding of how materials perform at small scales [26]. Moreover, the test method is usually
non–destructive which means that it is promising for mechanical field testing. Many investigations
have reported that the indentation hardness of materials exhibits a strong size dependence [27–29].
Nix and Gao [30] proposed a law for strain gradient plasticity to explain the indentation size effects in
crystalline materials based on the approach of geometrically necessary dislocations and statistically
stored dislocations. However, the deformation mechanism of PGs is different from that of crystalline
materials as previously mentioned. Therefore, the size-dependent behaviours of PGs cannot be
explained by dislocation-mediated plasticity. Some efforts have been made to attempt to explain the
indentation size effects in GPs. Lam et al. [31] developed a strain gradient plasticity law on the basis of
molecular theory of yield for GPs to model the depth dependence of hardness for thermosetting epoxy
resin. By assuming the approach of statistically random kink pairs and geometrically necessary kink
pairs, kink-pair yield theory, which is similar to the Nix and Gao model. Given that the main carrier
of plasticity deformation in GPs is STz, the shear transformation-mediated plasticity is the widely
accepted approach to model the indentation size effects in GPs as developed by Voyiadjis et al. [32].

Based on the two previously described aspects, two issues should be addressed before modelling
the size effect behaviour of PMMA. On the one hand, a yield criterion, which reflects the multiaxial
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mechanical responses of PMMA, should be constructed. The criterion should have definite physical
meaning to reflect the plastic deformation mechanism of amorphous materials as previously mentioned.
In addition, the SD effects and pressure sensitivity should be independently introduced into the
criterion. Thus, the effects of SD and pressure must be decoupled to avoid confusion unlike that
in the previous investigation [15]. The combined loading tests should be conducted to identify the
parameters in the criterion, and the method of tilted specimens without complex loading device [20,21]
was selected for convenience. On the other hand, the volume of single STz should be calculated
by applying the yield criterion and Tabor’s relation according to the shear transformation-mediated
plasticity. The calculated volume of single STz clearly varies with the yield criterion, and constructing
a reasonable criterion is crucial for the reliability of results. The indentation size effects of PMMA can
then be modelled with comprehensive considerations of practical situation [32]. Consequently, the
major aim of the present study can be summarised as modelling the indentation size effects in PMMA
which can be divided into two main contents. Firstly, the yield criterion of PMMA, which contains
the SD effects and pressure sensitivity, is constructed through combined loading tests. Secondly,
the hardness and normal stress are correlated based on the criterion, and the volume of STz is then
calculated to model the indentation size effects based on shear transformation-mediated plasticity. The
experiment procedure of combined loading and nanoindentation is presented firstly in Section 2. The
model of yield criterion and shear transformation-mediated plasticity of PMMA accompanied by some
theoretical considerations is then introduced in Section 3. Section 4 displays the experimental results
(combined loading and nanoindentation) and the derivation of model parameters (yield criterion
and STz) from the experimental data and discusses of the indentation size effects in PMMA. Finally,
conclusions are given in Section 5.

2. Experiment Procedure

2.1. Materials and Specimens

Commercial grade of the material was purchased from Degussa AG Plexiglas® PMMA (Shanghai,
China). The PMMA sheet is produced through a traditional cell cast method, thus, no molecular chain
orientation exists in the as-cast sheet.

The 20 × 20 mm square samples with thickness of 5 mm were used in the nanoindentation tests.
The cube specimen, double shear specimen, and combined shear–compression specimens, that is,
cube specimens with different tilting angles θ (10◦, 15◦, 20◦ and 25◦) were applied in the quasi–static
loading to obtain the yield loci of PMMA under different stress states as shown in Figure 1 This
figure reveals the specified dimensions of PMMA specimens. The complex stress states (combined
shear–compression) can be obtained due to the geometric effects which can be attributed to the
existence of the tilting angle. Notably, the influence of the tilting angle of the PMMA specimens on the
overall compressive response was investigated with a constant thickness of 5 mm.
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Figure 1. Force-displacement curves and schematic of poly(methyl methacrylate) (PMMA) specimens
used in quasi-static loading.

2.2. Nanoindentation Tests

A nanoindenter test system (G200, Agilent Technologies, CA, USA) equipped with triangular
pyramid Berkovich diamond indenter was employed to conduct the nanoindentation tests. The
continuous stiffness measurement (CSM) technique was used in the nanoindentation tests. The
continuous hardness and elastic modulus throughout the indentation process can then be obtained

and the indentation tests were performed at different
.
P
P of 0.05, 0.1, 0.2 and 0.3 s−1. Based on the CSM

technique, an additional harmonic movement with a driving frequency of 45 Hz and an amplitude of
2 nm was applied on the indenter. The maximum indentation depth was 2000 nm and the indenter
remained at the corresponding peak load for 10 s as long as the maximum indentation depth was
achieved to release creep deformation. The load then dropped to 0.1Pmax for thermal drift correction
during the unloading stage. Furthermore, each test was performed at room temperature (25 ◦C) and
repeated three to four times to exclude uncertain experimental results. For CSM technique, the contact
stiffness S is expressed as [8,33,34]:

S =

 1
Famp
hamp

cos φ− (Ks −mω2)
− 1

K f

−1

(1)

where Famp and hamp represent the amplitude of harmonic excitation force and the response
displacement amplitude (~2 nm), respectively, φ is the phase shift that harmonic displacement lags
behind the harmonic excitation force, ω = 2π f is the angular frequency (f = 45 Hz), Ks is the spring
constant in the vertical direction, Kf is frame stiffness, m is the mass of compression bar connected to
the indenter. A perfect Berkovich diamond indenter was used in this study, and the projected contact
area Ac and contact depth hc can be respectively expressed as:

Ac = 24.56h2
c (2-1)

hc = h− ε
P
S

(2-2)

where ε = 0.75 is a constant for the Berkovich indenter. Then the hardness can be expressed as:

H =
P
Ac

(3)
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where P represents the contact load. The elastic modulus of the indented material is obtained from the
following equation [17]:

1
Er

=
1− ν2

E
+

1− ν2
i

Ei
(4)

where Ei, νi are the modulus and Poisson’s ratio of the indenter tip (diamond), E, ν are the modulus
and Poisson’s ratio of the tested material and Er is the reduced elastic modulus and written as:

Er =

√
π

2β

S√
Ac

(5)

where β = 1.034 is the shape constant of the Berkovich tip. Consequently, the elastic modulus and
hardness of indented material can be acquired.

In nanoindentation, the indentation strain rate is defined as
.
εi =

dh
hdt and can be controlled by

setting a constant
.
P
P . Then the indentation effective shear strain rate can be calculated by the following

equation [1,32]:
.
γ =
√

3C
.
εi (6)

where the parameter C = 0.09 [35–37].

2.3. Combined Shear-Compression Tests

Uniaxial compression, shear and combined shear-compression tests were conducted on PMMA
specimens for obtaining its failure loci under different stress states through a universal testing machine
(CMT5150A, SUNS, Shenzhen, China). The uniaxial compression and shear tests are traditional test
methods and the normal/shear stresses can be easily obtained. However, directly obtaining the stress
components of combined loading is difficult through one-dimensional loading. Based on the analysis
of the stress state and static equilibrium conditions in the tilted specimen, the normal and shear stress
can be respectively expressed as [2,19]:

τs = tan θ·σn (7-1)

σn =
F0

A
(7-2)

where τs is the shear stress in the tilted specimen, and σn is the compressive normal stress on the tilted
specimen/compression plates interface. With regard to the shear–compression specimens, the stress
distribution on the specimen/compression plate interface is no longer uniform and the normal stress
is the average stress calculated by dividing the applied load by the original specimen area [19]. The
stress components of PMMA can then be obtained at the yielding point under different stress states,
and the yield loci of PMMA can be plotted in stress space for the investigation of its yield criterion.

3. Theory

3.1. Yielding of PMMA

A yield criterion is a useful tool to describe the mechanical behaviour of materials especially
during the plastic segment. Many studies have reported that the yielding of polymers is always
affected by different factors, such as hydrostatic pressure, Lode angle and the sign of normal
stress [2,10,14,18,38–40]. Therefore, the yield behaviour of PMMA under various stress states should
be clarified to decompose the contribution of each factor to polymer yielding. The yield criterion can
then be constructed based on the physical aspects by considering the quantified parameter effects.
Moreover, the physical significance of the parameter may be revealed by degenerating the criterion
into a sample stress state such as uniaxial state. Similarly, a parameter can also be determined by
substituting the yield stresses of material under a certain stress state into the yield criterion. The
von–Mises criterion can be written as: √

3J2 = τ0 (8)
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where J2 and τ0 represent the second invariant of deviatoric stress tensor sij and yield strength of
materials under pure shear, respectively. J2 is defined as:

J2 =
tr(s2

ij)

2
(9)

Based on the description of von-Mises criterion, the relation of σn =
√

3τs can be acquired between
the normal and shear stress. Without considering the relation between the normal and shear stress, an
elliptic criterion [2,3]:

σ2
n

σ2
0
+

τ2
s

τ2
0
= 1 (10)

was proposed to describe the yield behaviour of polymers. The predicted yield strength was found
to agree well with the experimental results. σ0 is the experimental compression strength. Given the
effects of hydrostatic pressure on the yielding of polymers, the first invariant of stress tensor, that is, I1,
should be considered whilst building the yield criterion of polymers. I1 is defined as:

I1 = tr(σij) (11)

where σij is the stress tensor. As indicated by previous studies [9,41], the PMMA exhibits evident
strength differential due to the different yield mechanisms. which indicates that the yielding of PMMA
is sensitive to the sign of the normal stress. In other words, the plastic deformation of PMMA is
sensitive to the sign of the stress, and the macroscopic yield criterion must be represented by an odd
function of the principal values of the stress deviator sij [42]:

J3/2
2 − cJ3 = τ3

0 (12)

where J3 is the third invariant of the deviatoric stress and defined as:

J3 =
tr(s3

ij)

3
(13)

The parameter c is a material constant which characterises the SD effects of a material. By
introducing the effects of hydrostatic pressure into the criterion, the following equation can be
obtained as:

f =
(

J3/2
2 − cJ3

)1/3
= τ0 + bP (14)

where b is the pressure sensitivity index, which was found to be equal to 0.23 for PMMA [10] and P is
hydrostatic pressure and defined as:

P = −1
3

I1 = −1
3
(σ1 + σ2 + σ3) (15)

where σ1, σ2 and σ3 are the maximum, intermediate and minimum principal stress, respectively. The
aforementioned criterion can then be described based on principal stresses as:

f =

(
( 1

3 (σ
2
1 + σ2

2 + σ2
3 − σ1σ2 − σ1σ3 − σ2σ3))

3/2

− c
27 (2σ1 − σ2 − σ3)(2σ2 − σ1 − σ3)(2σ3 − σ1 − σ2)

)1/3

= τ0 − b
3 (σ1 + σ2 + σ3) (16)

For the two-dimension stress state, the intermediate principal stress can be ignored and the
criterion can be simplified to:

f =

(
( 1

3 (σ
2
1 − σ1σ3 + σ2

3 ))
3/2

− c
27 (2σ3

1 + 2σ3
3 − 3(σ1 + σ3)σ1σ3)

)1/3

= τ0 −
b
3
(σ1 + σ3) (17)
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Regarding the combined shear-compression stress state in the present study, the principal stresses
can be calculated by using the following equation:

σ1

σ3

}
=

σn

2
±
√(σn

2

)2
+ τ2

s (18)

Then, the criterion can be presented by stress components:

f =

(
(

1
3
(σ2

n + 3τ2
s ))

3/2
− c

27
(2σ3

n + 9σnτ2
s )

)1/3

+
b
3

σn = τ0 (19)

For compression, σn = −σ0, τs = 0 and Equation (18) can be rewritten as:

f =

(
(

1
3

σ2
0 )

3/2
− 2c

27
σ3

0

)1/3

− b
3

σ0 = τ0 (20)

The relationship between σ0 and τ0 can then be derived as follows:

σ0 =
1[(√

3
9 + 2c

27

)1/3
− b

3

]τ0 (21)

For materials such as glassy polymers, the yield strength σ0 can be converted to the hardness
obtained from the nanoindentation tests by using Tabor’s factor of 3 [30,31,43]:

H = 3σ0 =
3[(√

3
9 + 2c

27

)1/3
− b

3

]τ0 (22)

The size effects on the hardness can be analysed based on preceding equation.

3.2. Size-Dependent Hardness

Shear transformation-mediated plasticity is a modern understanding regarding the flow of
polymers and is based on the deformation mechanism of formation of discrete shear transition areas
that locally encompass glide, slip, or shear rotation of chains [32]. Shear transformation zone (STz) has
been widely employed to study the deformation of amorphous materials [44]. By applying Arrhenius
function [45,46], the relationship between the shear strain rate

.
γ and shear yield stress τs [32] is:

.
γ = ∅ssγTυG exp

(
−∆F0

kBT

)
sinh

(
γTΩτs

2kBT

)
(23)

where kB and T are Boltzmann constant and absolute temperature, respectively. ∆F0, Ω and γT are
activation energy, volume and shear strain of STz, respectively; γT= 0.04. ∅ss is a parameter and set to
be 0.5 for plastic state, and υG = 1010 s−1 is attempt frequency. The activation energy is expressed as:

∆F0 = f (υ, β)µ(γT)
2
Ω (24)

where f (υ, β) has a value close to 0.5 for polymer, and µ is shear modulus and expressed as µ = E
2(1+υ)

,
in which υ is Poisson’s ratio and is equal to 0.38 for PMMA. Then the shear stress τs can be derived as:

τs =
2kBT
γTΩ

[
ln
(

2
.
γ

.
γ0

)
+

f (υ, β)µ(γT)
2Ω

kBT

]
(25)
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Voyiadjis et al. [32] divided the total shear stress τtot into two portions, namely, the shear stress
associated with formation of a single STz τst and the shear stress associated with the plastic deformation
of the highly stressed region τlocal :

τtot = χτst + (1− χ)τlocal (26)

where χ is the total probability of finding a fertile zone that can undergo discrete shear transformation
within the deformation zone. The τtot can then be obtained by confirming the volume of STz Ωst

and volume of the plastic deformation of the highly stressed region Ωlocal . For a 3 sided pyramidal
Berkovich tip of 65.3◦ half angle, Ωlocal is equal to 164h3 (h is indentation depth). Therefore, the total
shear stress can be expressed as:

τtot =
2kBT

γT


χ

Ωst

(
ln
(

2
.
γ

.
γ0

)
+ f (υ,β)µ(γT)

2Ωst
kBT

)
+ (1−χ)

164h3

(
ln
(

2
.
γ

.
γ0

)
+ f (υ,β)µ(γT)

2164h3

kBT

)
 (27)

The detailed derivation process of the preceding equation can be found in Section 3.2 of Ref. [32].
Considering Equation (21), hardness can be expressed by indentation depth h:

H =
3[(√

3
9 + 2c

27

)1/3
− b

3

] 2kBT
γT


χ

Ωst

(
ln
(

2
.
γ

.
γ0

)
+ f (υ,β)µ(γT)

2Ωst
kBT

)
+ (1−χ)

164h3

(
ln
(

2
.
γ

.
γ0

)
+ f (υ,β)µ(γT)

2164h3

kBT

)
 (28)

Then χ can be derived as:

χ =

H·γT

3[(√
3

9 + 2c
27

)1/3
− b

3

] ·2kBT
− 1

164h3

(
ln
(

2
.
γ

.
γ0

)
+ f (υ,β)µ(γT)

2164h3

kBT

)

1
Ωst

(
ln
(

2
.
γ

.
γ0

)
+ f (υ,β)µ(γT)

2Ωst
kBT

)
− 1

164h3

(
ln
(

2
.
γ

.
γ0

)
+ f (υ,β)µ(γT)

2164h3

kBT

) (29)

4. Results and Discussion

4.1. Yield Loci of PMMA

Figure 1 shows the force–displacement curves of PMMA under compression, combined
shear-compression and shear. The yield force is found to decrease with increasing tilting angle
due to the introduction of shear force. The force component in shear direction can be controlled by
the tilting angle. In addition, the shear force component increases with tilting angle. This finding
indicates that the stress states of PMMA varies with the tilting angle of specimens. In another word,
the mechanical behaviours of PMMA under different combined shear-compression are obtained, and
the yield loci of PMMA under different stress states can also be captured as shown in Figure 1. The
definition of ‘yielding’ should be explicated firstly, and then the yield strength of PMMA can be
obtained. The nominal maximum stress for polymers before the load drop is defined as the yield stress.
Therefore, the yield strengths of PMMA studied in the present paper under various stress states as
well as the invariants of stress tensor or deviator calculated through the equations in Section 3.1 can be
obtained and listed in Table 1.

Equation (13) has two parameters, and parameter b = 0.23 has been experimentally clarified by
Prasad [10]. Hence, only parameter c remains unknown. Therefore, the stress components (I1,J2,J3) of
compression strength were selected to solve the parameter c in Equation (13). Moreover, c was found
to be −1.36 within the numerical range of

[
−3
√

3
2 , 3

√
3

4

]
to ensure that the yield criterion satisfies

convex analysis [42]. Then the yield loci of PMMA can be plotted in the shear−normal stress space as
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shown in Figure 2 The yield criterion which considers the pressure sensitivity and SD effects evidently
provides the best description of the mechanical behaviour of PMMA. The von−Mises and elliptic
criterion underestimate the yield strength of PMMA under combined shear−compression. The yield
criterion was plotted in 3−dimension principal stress space and π plane as shown in Figure 3 to
intuitively understand this criterion. The surface is closed in the positive direction of σ1 = σ2 = σ3,
whereas the opposite is true in the negative direction. This finding implies that pure hydrostatic
compression cannot lead to the yielding of PMMA but affects the yield strength linearly. Moreover, the
yield strength exhibits increases with decreasing I1. Cutting off the yield surface using three planes
with different I1 (m > 0 > n) values leads to three closed curves as displayed in Figure 3b The size of
the closed curve evidently increases with decreasing I1 as previously mentioned, thereby indicating
the pressure sensitivity. The criterion represents a ‘triangle’ with rounded corners in deviatoric plane
which reflects the SD effects. For uniaxial tension strength |AO|, a positive I1 can be obtained, and
the corresponding yield point A is located at the plane of σ1 + σ2 + σ3 = m. However, for uniaxial
compression |BO|, a negative I1 can be calculated which indicates that the corresponding yield point
B is located at the plane of σ1 + σ2 + σ3 = n. Owing to the existence of pressure sensitivity of the
yielding, the difference between |AO| and |BO| is the result of the compound action of hydrostatic
pressure and SD effects. Therefore, the exact SD effects should be described as |BO| − |AO| − |AC|,
and the |AC| represents the pressure sensitivity which can be expressed as: b

3 (|BO|+ |AO|). Thus, the
effects of I1 and J3 on the yielding of materials, which prove the rationality of the model (Equation (13))
established in Section 3.1 of the present study, must be independently analyzed.

Table 1. Stress components and invariants of PMMA under different loading conditions at yielding.

Stress
Component

Compression
(MPa)

Combined Shear-Compression (MPa)
Shear (MPa)

10◦ 15◦ 20◦ 25◦

σn −120.92 −118.85 −115.72 −107.70 −95.61 –
τs – 20.96 30.01 39.20 44.58 45.31
σ1 – 3.59 7.78 12.76 17.56 45.31
σ2 – – – – – –
σ3 −120.92 −122.44 −123.50 −120.46 −113.17 45.31
s1 40.31 43.20 46.36 48.66 49.43 45.31
s2 40.31 39.62 38.57 35.90 31.87 0
s3 −80.61 −82.82 −84.93 −84.56 −81.30 −45.31
I1 −120.92 −118.85 −115.72 −107.7 −95.61 0√
J2 69.81 71.75 73.65 73.50 70.95 45.31

3
√
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4.2. Nanoindentation Measurements of PMMA

Figure 4 shows the nanoindentation force–depth curves and the relation of hardness and

indentation depth under different
.
P
P . The force–depth curve is typical and contains the loading,

hold and unloading processes. Then, the indentation strain rate
.
εi =

dh
hdt can be calculated through the

recorded indentation depth–time data as plotted in Figure 5 The indentation strain rate is evidently not
a constant value and decreases as the indentation depth increases. However, all indentation strain rates

converge to a constant value, that is, 0.004, 0.008, 0.016 and 0.024 s−1 corresponding to different
.
P
P sets

of 0.05, 0.1, 0.2 and 0.3 s−1, respectively. Based on the CSM, the continuous hardness and modulus can
be obtained as shown in Figures 4 and 6, respectively. The hardness and modulus exhibit indentation
size effects and decrease with increasing depth. The hardness shows remarkable size dependence with
values at small depth up to 1.3–2 times of those for deep indentation whereas the ratio for modulus is
less than about 1.2. Therefore, the reliability issue in term of hardness and modulus arises from the size
effects of indentation measurement. Nanoindentation is known to be a nondestructive method to test
the mechanical properties (hardness and modulus) of tested materials, and the properties are obtained
by averaging the values of the set indentation depth range based on CSM. Hence, an appropriate
indentation depth range should be set for calculating the hardness and modulus.
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4.3. Comparison Between the Yield Models

Based on the shear transformation-mediated plasticity, the size of STz Ωst should be obtained
firstly. Then, the χ can be calculated at each indentation depth under a certain strain rate and then the
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modelled hardness can be obtained through Equation (28). Taken together, the indentation size effects
of materials can be investigated through the following steps:

1. Correlate the hardness and shear stress, considering the SD effects and hydrostatic pressure,
a yield criterion f (I1, J2, J3) was proposed to describe the yield behaviour of PMMA based on the
von-Mises criterion f (J2).

2. Calculate the size of STz, Ωst, The Ωst can be calculated directly using Equation (26) by setting
χ equal to 1 represents the total shear stress comprising τst results from the formation of STz. By
applying different yield criteria, different values of Ωst would be calculated. Therefore, an appropriate
yield model should be selected.

3. Obtain the relation between χ and indentation depth, By substituting the calculated Ωst into
Equation (26), the χ at each indentation depth during the entire indentation process can be calculated
based on an appropriate yield model.

4. Modelled hardness can be calculated with increasing indentation depth, Based on the preceding
steps, the necessary parameters, that is, χ and Ωst, can be confirmed and then the hardness can
be modelled.

The von-Mises criterion was selected to calculate the Ωst to study the difference results from
different yield criteria and then compared them with those applied in the proposed model in the
present study. The calculated Ωst are shown in Figure 7 and listed in Table 2, Ωst calculated through
f (J2) are evidently below that calculated from f (I1, J2, J3). The Ωst calculated through f (I1, J2, J3) are
all around 120 nm3, whereas Ωst calculated through f (J2) are significantly higher than 120 nm3. As
mentioned by Voyiadjis et al. [1] if PMMA monomers were assumed as the cylinders with radius
of 2.85 Å and length of 1.55 Å [47], then the single STz with the Ωst of 120 nm3 is found to contain
approximately 3000 monomers, which agrees well with the simulations [48]. Both Ωst calculated from
two criteria exhibit increass with strain rate which indicates the rate sensitivity of Ωst. The activation
energy ∆F0 of STz can then be obtained based on Equation (23), and 1kBT corresponds to the activation
energy of 0.0258 eV. The activation energy of STz can be obtained as displayed in Figure 7 and listed in
Table 2. The activation energy evidently increases with strain rate, which is similar to Ωst. Refer to the
formula of ∆F0, the activation energy is related to elastic modulus and Ωst. Moreover, Ωst has been
found to have a positive correlation with the strain rate and the elastic modulus as shown in Figure 6
f (υ, β) and γT are constant, hence, ∆F0 also has a positive correlation with the strain rate.

Table 2. Parameters of indentation size effects under different strain rate.

Strain Rate/s−1 STz-Size f(J2)/nm3 STz-Size f(I1,J2,J3)/nm3 Activation Energy/eV

0.004 154 125 1.182
0.008 183 141 1.295
0.016 206 147 1.370
0.024 211 147 1.395

Figure 8 shows the comparison of the total probability χ of finding a fertile zone that can undergo
shear transformation in the deformation zone with depth at the strain rate of 0.004 s−1 for different
yield criteria of f (J2) and f (I1, J2, J3). Both χ for f (J2) and f (I1, J2, J3) exhibit an increase at first and
then converge to 1. The major difference between the two curves is the rate of χ increases before
convergence (the indentation depth of approximately 500 nm), which can be attributed to the different
calculated Ωst. At shallow depths, the τtotal mainly comes from τlocal with a small value of χ. As the
indentation depth increases, the contributions to the τtotal of STz (τst) increase, which results in the
increasing χ until the indentation depth reaches 500 nm. At this stage, the τtotal mainly comes from
τst and χ converges to 1. Figure 9 displays the comparison of the modelled hardness with depth for
different yield criteria of f (J2) and f (I1, J2, J3). Both modelled hardness show excellent agreement
with the experimental results. Thus, the forecasting performance of the hardness is inadequate for the
evaluation of the reasonability of the selected yield criterion. Therefore, a yield criterion that fully
considers the factors influence the yielding of materials should be applied.
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4.4. Influence of Strain Rate on PMMA Indentation Size Effects

The indentation measurements exhibit evident indentation size dependence. From Equation (25),
the size effects on the indentation measurements can be attributed to the different ratios of τst and
τlocal to τtotal . At shallow depths, τlocal occupies a high proportion in τtotal and shows up as a lower χ.
As indentation depth increases, τst provides additional contribution value to τtotal which represents
a growing proportion χ of τtotal until a certain indentation depth is reached. This specific dsp depth
means τlocal almost has no effect on τtotal anymore. In other words, dsp marks the minimum depth that
tested hardness and modulus and could represent its bulk properties. As previously discussed, the
Ωst increases with strain rate. For a large Ωst under high strain rate, additional depth is needed for
a material with a large Ωst approach its bulk value that size effects disappears. This finding can be
attributed to the value of χ for a large Ωst is smaller than that for a smal Ωst at the same indentation
depth [32]. The dsp can be reasonably inferred to increase with strain rate. Based on the experimental
hardness–depth results and calculated Ωst at different strain rates, the relation of χ and depth at each
test with different strain rates can be obtained as shown in Figure 10. Moreover, the modelled hardness
agrees well with the experimental results at different loading conditions, which indicates that the
model proposed by Voyiadjis et al. [32] shows an excellent performance in describing the indentation
size-dependent behaviour of GPs.

Figure 10 evidently shows that dsp increases with strain rate as previously analysed. On the
other hand, this indicates that the size effects in amorphous materials can be attributed to the
activity of discrete shear transformation units in the deformation zone under indenter. And the
discrete shear transformation units are sensitive to strain rate (loading conditions). This means
that different depth ranges should be determined under different strain rates for obtaining the
reasonable indentation measurements without the size effect. As previously mentioned (Section 4.2),
an appropriate indentation depth range should be set for calculating the hardness and modulus
based on CSM. Therefore, the average modulus and hardness values (Table 3) from different depth
ranges (200–2000 nm, 400–2000 nm, 500–2000 nm, 600–2000 nm, 700–2000 nm, 1000–2000 nm and
1400–2000 nm) under four strain rates were calculated to analyse the effects of depth range. Figure 11
shows the three-dimensional relationship of elastic modulus against strain rate and depth range. The
negative correlation between modulus and initial depth for modulus calculation can be observed. This
directly reflects the importance of selecting an appropriate indentation depth range for elastic modulus
calculation. A parameter η is introduced to describe the difference between the calculated modulus to
display the influence of depth range on the modulus intuitive, and η is expressed as:

η =

∣∣∣∣ED,S − E1400,S

E1400,S

∣∣∣∣× 100 (30)

where ED,S is the average value of modulus obtained through the depth range of D–2000 nm and
strain rate of S. Additionally, the average value of modulus E1400,S obtained through depth range
of 1400–2000 nm was selected to represent the bulk modulus (Reference modulus) as shown in
Figure 11. η clearly decreases with increasing D, whereas the opposite tendency is found with strain
rate. This phenomenon illustrates the size effects in polymer indentation measurements and the
strain rate dependence of indentation size effects. If an error of 1% or 2% is allowed, then the depth
range should be set as 1000–2000 nm or 500–2000 nm, respectively, to obtain a responsible elastic
modulus. Analogous circumstance can be found in hardness and the three-dimensional illustration
of the relationship of hardness against strain rate and depth range is shown in Figure 12. From an
overall perspective, the hardness increases with strain rate and decreases with increasing initial depth
for hardness calculation. A parameter marked as ψ can be used to characterise the difference between
the values of hardness obtained from different depth ranges under four strain rates and expressed as:

ψ =

∣∣∣∣HD,S − H1400,S

H1400,S

∣∣∣∣× 100 (31)
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where HD,S is the average value of hardness obtained through the depth range of D–2000 nm and
strain rate of S. Additionally, the average value of hardness H1400,S obtained through the depth
range of 1400–2000 nm was selected to represent the bulk hardness (reference hardness) as shown in
Figure 12. The parameter ψ shows evident negative correlation to D which indicates the significant
size effects in PMMA hardness. The phenomenon of ψ increases with strain rate, which indicates
that size effects in hardness is also strain rate sensitive. The depth range can then be set based
on ψ under different conditions. For example, the depth range should be set as 1000–2000 nm
corresponding to the error of 1%. Taken together, the indentation size effects in PMMA is inevitable
and exhibits strain rate dependence. Hence, an appropriate indentation depth range should be selected
for obtaining reasonable measurements. Within the range tested in the present study, the initial depth
for modulus/hardness calculation should be set as 1000 nm.
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Figure 10. Relation of χ and depth and comparison of modelled hardness and experimental hardness
with depth for the yield criteria of f (I1, J2, J3) at different strain rates of 0.004 s−1 (a), 0.008 s−1 (b),
0.016 s−1 (c) and 0.024 s−1 (d).

Table 3. Average modulus and hardness values calculated from different depth ranges under four
strain rates.

Depth
Range/Nm

Elastic Modulus/GPa Hardness/GPa

0.004 s−1 0.008 s−1 0.016 s−1 0.024 s−1 0.004 s−1 0.008 s−1 0.016 s−1 0.024 s−1

200–2000 5.090 5.240 5.298 5.558 0.289 0.324 0.351 0.392
400–2000 5.060 5.188 5.277 5.385 0.286 0.317 0.343 0.375
500–2000 5.059 5.175 5.257 5.327 0.286 0.351 0.343 0.372
600–2000 5.066 5.152 5.254 5.308 0.286 0.314 0.342 0.368
700–2000 5.070 5.145 5.246 5.327 0.286 0.313 0.342 0.365
1000–2000 5.073 5.105 5.197 5.325 0.287 0.312 0.342 0.359
1400–2000 5.068 5.079 5.182 5.306 0.288 0.310 0.342 0.355
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5. Conclusions

An indentation size effect model is proposed in the present study based on the yield criterion
involving SD effects, pressure sensitivity, and shear transformation-mediated plasticity. Through the
combined loading experiments, the yield behaviour of PMMA is found to be sensitive to the sign of
normal stress and hydrostatic pressure. The SD effects are characterised by applying an odd function
of the principal values of the stress deviator. Pressure sensitivity is characterised by introducing P and
controlled by parameter b. By adopting the shear transformation-mediated plasticity to indentation
results, the size dependence behaviour of PMMA under different strain rates is modelled. The size
effects in amorphous materials can be attributed to the activity of discrete shear transformation
units in the deformation zone under indenter. Additionally, the volume of single STz is found to
increase with strain rate, which results from the increasing indentation depth, represents the bulk
properties (size effects disappear) as strain rate increases. An appropriate indentation depth range
(approximately 1000 nm) is suggested for calculating the hardness and modulus based on the analysis
of the indentation test results.
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