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Abstract: To reduce the intense terahertz (THz) wave absorption of water and increase the signal-
to-noise ratio, the THz spectroscopy detection of biomolecules usually operates using the nanofluidic
channel technologies in practice. The effects of confinement due to the existence of nanofluidic
channels on the conformation and dynamics of biomolecules are well known. However, studies of
confinement effects on the THz spectra of biomolecules are still not clear. In this work, extensive
all-atom molecular dynamics simulations are performed to investigate the THz spectra of the glycine
oligopeptide solutions in free and confined environments. THz spectra of the oligopeptide solutions
confined in carbon nanotubes (CNTs) with different radii are calculated and compared. Results
indicate that with the increase of the degree of confinement (the reverse of the radius of CNT),
the THz absorption coefficient decreases monotonically. By analyzing the diffusion coefficient and
dielectric relaxation dynamics, the hydrogen bond life, and the vibration density of the state of the
water molecules in free solution and in CNTs, we conclude that the confinement effects on the THz
spectra of biomolecule solutions are mainly to slow down the dynamics of water molecules and
hence to reduce the THz absorption of the whole solution in confined environments.

Keywords: terahertz spectroscopy; oligopeptide; carbon nanotube; confinement; dielectric constant;
molecular dynamics

1. Introduction

Terahertz (THz) wave is one of the electromagnetic radiations lying between the millimeter
and far-infrared waves with a frequency range from 0.1 to 10 THz [1]. Since the energy level of the
biomolecular low-frequency motions including vibration, rotation, and translation of the molecular
skeleton largely falls into the energy level of a THz wave, a THz wave can well provide vibration
information of these motions and thereby be capable of being a unique spectroscopy technology to
detect biomolecules without the requirement of markers [2,3]. When the THz wave is used to detect
biomolecules, the radiation energy is relatively low with a value of ~4 meV per photon, which will
hardly cause ionizing damage to the structure of biomolecules. Meanwhile, there are several notable
features of the biomolecular THz spectroscopy that differentiate it from traditional spectroscopies.
Firstly, the spectral intensity of a THz wave is generally 1~2 orders of magnitude lower than those of
the infrared and Raman, which makes testing THz signals difficult. Secondly, absorption peaks are not
related to specific functional groups, but with the all-structure motions of biomolecules. Thirdly, there
is no THz spectroscopy database, which makes the quantitative spectral analysis difficult. Fourthly,
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besides the intrinsic structural properties of the biomolecule, the THz spectrum is more related to the
interaction between the biomolecule itself and its surrounding water molecules. Due to these features,
THz spectroscopy detection of biomolecules in aqueous solution is full of challenges. The characteristic
fingerprint signals of biomolecules are not prominent or can, in some cases, not be observed [4–7] due
to the strong absorption of water in solution.

With the emerging applications of THz spectroscopy in biomedicine, THz spectroscopy detection
of biomolecules is essential as biomolecules are the basic elements of biological cells and tissues.
Since all biomolecules in vivo are almost in aqueous environments, THz spectroscopy detection of
biomolecules in solution has become a hot topic in the last decade. To overcome the strong absorption
of water and improve the detection sensitivity, micro/nano-channels are widely utilized for THz
spectroscopy measurements of biomolecular solutions. George et al. [8] found the microchannel device
could improve the THz spectral sensitivity of the bovine serum albumin (BSA) protein solution and
the detected concentration of BSA solution could be as low as 1 pM. Brown et al. [9,10] measured the
THz spectrum of RNA molecules in solution using a 600-nm-wide and 500-nm-deep SiO2 nanochannel
array and found the signal-to-noise ratio was greatly promoted and the spectral resolution improved
to 10 GHz. Xia et al. [11] anticipated the potential applications of nanochannel biochips applied in
THz spectroscopy detection in their review article. Moreover, the nanochannel chips have prominent
advantages in manipulating the conformation [12], the motion, and the interaction process [13] of
biomolecules, which will provide the feasibility of THz detection on a single-molecule level. With
the continuous upgrade of nano-manufacturing technologies, e.g., the electron beam lithography,
nanoimprint, and focus ion beam, more and more nanochannels will be employed for THz spectroscopy
detection of biomolecules.

Despite the above progress on applying nanochannels to enhance the THz detection signals
and to improve the measurement accuracy and sensitivity, the question how the nanochannel will
influence the THz spectra of biomolecules has not attracted attention. Confinement will occur
when the motion of polymers is restricted in a space with a size comparable to the hydrodynamic
radius of the polymer due to the conformation entropy reduction of the polymer according to
the prediction of the classical theories from Odijk [14] and de Gennes [15] and the experimental
observation [16]. Confinement universally exists in the biological system, for example, the cell is
a natural confinement environment for DNA and protein molecules. Confinement effects on the
conformation [17], mechanical properties [18], diffusion and folding dynamics [19–23], and hydrogen-
bond interaction [24] of biomolecules have been widely investigated, and the effects of the molecular
conformation [25–28], hydrogen-bond interaction [29,30], and hydration dynamics [7,31–33] on the THz
spectra of biomolecules have also been explored in theory and experiment. However, the confinement
effects on the THz spectra of biomolecules and the underlying mechanism remain unknown to date.

Here, we present all-atom molecular dynamics (MD) simulations to investigate the confinement
effects on the THz spectrum of a glycine oligopeptide solution confined in carbon nanotubes (CNTs)
with different radii. By analyzing the diffusion coefficient, the dielectric relaxation time, hydrogen
bond lifetime, and the vibration density of state of the water molecules in the CNT, the confinement
effects on the THz spectra of biomolecules are discussed in detail. The rest of this paper is organized as
follows. In Section 2, we will describe the simulation model and method. In Section 3, we will present
and discuss the simulation results of the THz spectra of the oligopeptide solution confined in CNTs.
Finally, some key conclusions of this work will be summarized in Section 4.

2. Model and Method

2.1. The Free and Confined Gly23 Solution Systems

The glycine oligopeptide Gly23 (ACE-GLY23-NME) is chosen as the model biomolecule due to
its simple structure and good solubility in aqueous solution. The TIP3P model is used to represent
water molecules. Considering the radius of gyration of the Gly23 molecule in solution, six uncapped
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zigzag single-wall carbon nanotubes of (18,0), (20,0), (23,0), (25,0), (30,0), and (35,0) with different radii
of 7.1, 7.9, 9.1, 9.9, 11.9, and 13.9 Å, respectively, and the same length of 20 repeat units are built to
construct the confined systems. The interaction between the Gly23 and water molecules is described
by the Amber ff03 force field [34] which is widely used for protein simulations. The CNT is modeled
by our recently developed PPBE-G force field [35], a simple and highly efficient molecular force field
for graphene and CNT [36,37]. The C atoms in CNT interacting with Gly23 and water molecules are
modeled as the C in -CH2- of the main chain of a protein described by the Amber ff03 force field.
All simulations are performed using the DL_POLY 2.20 [38] software.

A linear Gly23 oligopeptide was first generated and put into a CNT and simulated for 0.1 ns in a
vacuum at 500 K. When running the MD simulation in a vacuum, the center of the biomolecule was
tethered at the center of the CNT with a spring force of 100.0 Kcal/mol·Å−2 to avoid its escape from
the CNT. Then, the CNT and the encapsulated oligopeptide chain were solvated in a periodic water
box. Initial sizes of the solvation water boxes were set to 32 × 32 × 130, 34 × 34 × 130, 38 × 38 × 130,
42 × 42 × 130, 46 × 46 × 130, and 50 × 50 × 130 Å3, respectively, for different CNTs. After a 5-ns NPT
simulation at a pressure of 1 bar and at the temperature of 298.15 K for the solvated CNT systems,
the sizes of the equilibrated simulation boxes become 29.6 × 29.6 × 120.1, 33.2 × 33.2 × 119.9, 33.3
× 33.3 × 120.2, 37.2 × 37.2 × 111.6, 39.0 × 39.0 × 111.3, and 44.6 × 44.6 × 111.6 Å3, respectively,
and the average numbers of water molecules encapsulated in CNTs are 189, 268, 411, 523, 841, and 1230,
respectively, with a standard deviation of less than 2% in each case. Subsequently, the CNTs and
the encapsulated Gly23 and water molecules were extracted from the above boxes, and then, were
aligned along the z axis in new periodic boxes with a length in the z direction equal to the length
of the nanotubes, as shown in Figure 1. The new simulation boxes have the sizes of 30.0 × 30.0 ×
85.6, 32.0 × 32.0 × 85.6, 34.0 × 34.0 × 85.6, 36.0 × 36.0 × 85.6, 40.0 × 40.0 × 85.6, and 44.0 × 44.0
× 85.6 Å3, respectively, to guarantee that there are vacuum layers of at least 15 Å along the radial x
and y directions. Lastly, a 50-ns NVT simulation at 298.15 K with a timestep of 1 fs was performed
for each system. During the NVT simulation, the tethering of a Gly23 chain in the CNT was released.
The trajectory and velocity of each atom from the last 10-ns NVT simulation were saved every 0.1 ps
for data analysis. For comparison, the Gly23 free solution system comprising a single Gly23 molecule
and 1952 TIP3P water molecules in a periodic simulation box with a size of 36.5 × 36.5 × 45.6 Å3 was
also simulated in the NVT ensemble at 298.15 K for 20 ns and the last 10-ns simulation data were also
saved every 0.1 ps for data analysis.
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2.2. Radius of Gyration and Diffusion Coefficient

To investigate the confinement effect on the Gly23 molecule, the radius of the gyration Rg of the
Gly23 chain in the CNT is calculated as:

Rg =

√√√√ N

∑
i=1

mi[(ri − rcm)2]/
N

∑
i=1

mi, (1)
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where i is the atom index, N is the total atom number of the Gly23 chain, mi is the atom mass, ri is the
atom position vector, and rcm is the center of the mass of the Gly23 chain.

To check the confinement effect on the dynamics of the water molecules, the diffusion coefficient
of the water is calculated via the slope of the mean square displacement using the Einstein relation for
diffusional motion in three dimensions,

D = lim
t→∞

〈
|r(t)− r(0)|2

〉
6t

(2)

where r(t) denotes the position of the oxygen atom in water at time t and 〈. . .〉 represents the average
over all water molecules and ensembles.

2.3. THz Absorption Spectroscopy

The most interesting optical parameter is the absorption coefficient which can be compared with
experiment. In this work, we first calculate the imaginary part of the dielectric constant according to
the following equation [7]:

ε′′ (ω) =
1

6ε0V
2πω

kBT

∫ +∞

−∞
dt〈M(t).M(0)〉 exp(−i2πωt), (3)

where M(t) is the total dipole moment of the Gly23 solution confined in the CNT including the
contributions from Gly23 and water molecules, V is the volume of the CNT, T is the simulation
temperature, kB is the Boltzmann constant, ε0 is the vacuum dielectric constant, ω is the frequency as
the input variable in calculations with a usual frequency range of 0–3.0 THz for most THz spectrometers,
and 〈M(t).M(0)〉 represents the time correlation function of the dipole moment. Once obtaining ε′′ (ω),
the real part of the dielectric constant can be calculated according the Kramers–Kronig relation,

ε′(ω) = 1 +
2
π

P
∫ +∞

0
ds

sε′′ (s)
s2 −ω2 (4)

where P stands for the principal value of the integral. Since the dielectric constant can be expressed as
ε(ω) = ε′(ω)− iε′′ (ω) = [n(ω) + ik(ω)]2, with the connection 4πωk(ω) = cα(ω), where c is the light
speed, n(ω) is the refractive index, and k(ω) is the extinction coefficient, the absorption coefficient
α(ω) can be obtained as,

α(ω) =
2πω

c

√
2
[√

ε′2(ω) + ε
′′2(ω)− ε′(ω)

]
. (5)

3. Results and Discussion

3.1. Confinement Effects on the Size of Gly23 Oligopeptide and the Water Diffusion Dynamics

As shown in Figure 2a, with the increase of the degree of confinement, 1/R, defined as the reverse
of the radius of the CNT, Rg of the Gly23 along the radial directions (Rgx or Rgy) has an obvious
decrease and Rg along the axial direction (Rgz) almost linearly increases, while the diffusion coefficient
of water molecules prominently decreases in comparison with that in the free solution, as shown in
Figure 2b. These results are consistent with many previous studies regarding the polymer [39,40]
and biomolecules [41,42] in confined environments. These results indicate the CNT implements
confinement effects on the Gly23 oligopeptide and water molecules.
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3.2. Confinement Effect on the Terahertz Absorption Spectrum of Gly23

As discussed in the above section, since the size of the oligopeptide and the dynamics of water
molecules are influenced due to confinement, the THz absorption spectrum of the oligopeptide solution
in CNT should be different from that in the free oligopeptide solution. According to Equations (3)–(5),
the THz absorption spectrum of the oligopeptide solution can be obtained via a series of calculations.
To accurately calculate the absorption coefficient, it is key to ensure the convergence of the correlation
function of the dipole moment. Here, we evenly divide the last 10-ns NVT trajectory data into
20 independent blocks and calculate the averaged correlation function of the dipole moment over the
20 blocks. For each block, there are 5000 trajectory frames with a time interval of 0.1 ps, which will
guarantee the generated frequency spectrum via Fourier transform with a frequency resolution of
2 GHz and a frequency range up to 5 THz.

From Figure 3a, we can see that the absorption coefficient of the Gly23 solution increases with
the increase of the frequency and there is no prominent fingerprint signal; observations which are in
good agreement with the THz spectra of most biomolecular solutions [32,43–45]. In Figure 3b, it can
be seen that the absorption coefficient of the Gly23 solution decreases with the increase of the degree
of confinement at different frequencies. As we know from the above analysis, with the increase of the
degree of confinement, the diffusion motions of water molecules are more seriously constrained and
gradually attenuated, which results in a pronounced decrease in the THz absorption coefficient.
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To further look into the confinement effect on the THz spectrum of the Gly23 solution, the variation
of the THz absorption coefficient of Gly23 molecule (αGly23) with the degree of confinement is also
investigated. When only the dipole moment of the Gly23 molecule is considered, not including
that of the water molecules, the THz absorption coefficients of Gly23 in free solution and confined
environments can be approximately calculated in a similar way. It is worth noting that in these cases
the volumes in Equation (3) are not the CNT or the periodic simulation box volume but the occupied
volume of the Gly23 molecule. Here, we use the excluded volume of the Gly23 molecule, Vex, (Vex =
4/3πRe

3, where Re is the end-to-end distance of the Gly23 molecule [46]) to approximately represent
the volume in Equation (3) for Gly23 molecules in free solution and different confined environments.
Figure 4 shows the frequency dependence of αGly23 in different environments. Two remarkable features
can be observed from this figure. Firstly, in comparison with Figure 3a, the THz absorption coefficients
of the Gly23 molecule are an order of magnitude less than those of the corresponding Gly23 solutions
in the same environment. This is because the absorption coefficient of the biomolecular solution
receives the greatest contribution from water and the absorption of water is one order of magnitude
greater than that of most biomolecules. Secondly, αGly23 of the free solution is prominently larger than
those of the confined environments. The decrease of αGly23 in confined environments probably results
from the conformation change of the Gly23 oligopeptide from a flexible coil to a rigid rod, which
coincides with our previous theoretical study [26] and the experimental findings [28,47]. While, with
the increase of the degree of confinement, the THz absorption coefficients of Gly23 changes slightly.
The insignificant change of αGly23 indicates that there is no further conformation transition of Gly23
occurring under the present confined environments.
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Since the decrease of the THz absorption of the Gly23 solution is much more prominent than that
of the Gly23 molecule, the THz absorption change of the water molecules in confined environments
has the largest contribution to that of the whole solution. Therefore, more attention needs to be paid
to the confinement effect on the water molecules. Subsequently, the dielectric relaxation dynamics,
the hydrogen bond dynamics, and the vibration density of state of water molecules are analyzed in
detail below.

3.3. Dielectric Relaxation Dynamics of Water

To determine the hydrogen bond dynamics of the water molecules, the dielectric constants (ε′ and
ε′′ ) of the free and confined Gly23 solutions obtained according to Equations (3) and (4) are analyzed.
The Debye model, which describes the dynamics in terms of collective, diffusive, and reorientational
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motions and has extensively been used for pure liquids and liquid mixtures [48–50], can be used
to establish the relation between the complex dielectric constant of the solution and the relaxation
dynamics of the water molecules by fitting the following equation [51]:

ε(2πω) = ε′(2πω) + iε′′ (2πω) =
ε1 − ε2

1 + i2πωτ1
+

ε2 − ε∞

1 + i2πωτ2
+ ε∞, (6)

where ε1 is the static permittivity, ε2 is the intermediate frequency dielectric constant. ε1 − ε2 and
ε2 − ε∞ are the amplitudes of the two individual processes, respectively, while ε∞ is the permittivity at
an infinitely high frequency. τ1 is the dielectric relaxation time of the slow process, which is assigned
to the cooperative relaxation of the hydrogen-bond network of water [49,52], while τ2 is the dielectric
relaxation time of the fast process, which is usually attributed to the fast reorientation of a few “free”
water molecules in solution [53].

From Figure 5, we can see that τ1 clearly increases with the increase of the degree of confinement,
indicating the retardation of the long-range hydrogen bond interaction due to the confinement
effect. While τ2 almost doesn’t change with the increase of the degree of confinement, implying
the reorientation dynamics of the individual mobile water are not affected by the confinement effect.
These findings are in good agreement with those observed by Qi et al. [54] in their study of water
confined in CNTs. Comparing the relaxation times τ1 and τ2 with the results of Qi et al., we find the
inclusion of the Gly23 oligopeptide further increases the relaxation time of the long-range hydrogen
bond interaction and the reorientation motion of the individual water also becomes slower.
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As we know, the retardation of the long-range hydrogen bond interaction will lead to the reduction
of the absorption coefficient of water molecules, which will result in the reduction of the absorption
coefficient of the whole solution since the absorption coefficient of water is much larger than that of
the biomolecule. This may provide a good interpretation of the mechanism of the confinement effect
on the THz spectra of the biomolecular solution.

3.4. Hydrogen Bond Dynamics

To further explain the variation of the absorption coefficient with the degree of confinement,
the dynamics of the hydrogen bonds formed between water molecules are explored.
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Hydrogen bonds formed between water molecules are counted and their intermittent
rearrangement dynamics are characterized by the hydrogen bond time auto-correlation function
as follows [47,55]:

CHB(t) =
〈h(0)h(t)〉
〈h2(0)〉 , (7)

where the operator h(t) gives 1 if a given hydrogen bond is intact at time t and 0 otherwise. Brackets
denote the ensemble average. Here, the hydrogen bond is defined with a maximum donor–acceptor
distance of 3.5 Å and a minimum donor–H–acceptor angle of 135◦, which is a regular definition in
MD software.

From Figure 6, it can be seen that CHB(t) decays more slowly with the decrease of the radius of
the CNT, which is in good agreement with the previous finding that CHB(t) exhibits slower decay for
water molecules confined in the smaller diameter pore [56]. The retarded hydrogen bond dynamics of
the water molecules around the oligopeptide can be explained by the imposed steric constraints on
the water due to the existence of the wall of the nanotube. Because of the retardation of the hydrogen
bond dynamics of the water molecules, the THz absorption coefficient of the oligopeptide solution
will decrease, which agrees well with our simulation results in Section 3.2.
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3.5. Vibration Density of States

To estimate the absorption contribution from water molecules, the vibration density of states
(VDOS) of water molecules in CNT are investigated. Here, VDOS was obtained via the Fourier
transform of time auto-correlation functions of the atomic velocity v [27,47,57,58],

VDOS(ω) ∼
∫ ∞

0
dtexp(iωt)〈v(0).v(t)〉, (8)

Here, the exact prefactor is omitted to yield the VDOS in arbitrary units. This is feasible because
this quantity is not directly compared to experiments and only the relative intensities and the frequency
shifts are considered. The velocities of the oxygen atoms are chosen for the VDOS calculation because
they dominate the low-frequency vibrational spectrum below 200 cm−1, while the hydrogen atoms
contribute mainly to frequencies above 400 cm−1 [57].

Our calculations revealed that, compared to water molecules in free solution, these bands are
uniformly blue-shifted and the extent of the shifts is more pronounced for the more confined systems,
as shown in Figure 7. These blue-shifts correlate excellently with the slow structural relaxation of the
hydrogen bonds, indicating there is a strong caging effect on the dynamics of the water molecules. They
were also usually observed for water molecules in the hydration shells of DNA and protein [27,29,47,57],
or in the confined pore [56]. It is worth noting that one small sharp peak appears for the most confined
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two systems of cnt18 and cnt23 at the frequency of around 0.5 THz. The appearance of the small peak
denotes a solid-state behavior may exist, indicating the water molecules are closely confined in these
two systems. Therefore, from the VDOS analysis, it is further confirmed that the confinement will
result in the reduction of the absorption coefficient of the biomolecular solution.
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4. Conclusions

In this work, the Gly23 oligopeptide in aqueous solution confined in carbon nanotubes with
different radii was simulated and the confinement effects on the terahertz spectra of the Gly23
solution were explored. With the increase of the degree of confinement, the THz spectral intensity
of the biomolecular solution decreases notably, while the THz spectral intensity of the biomolecule
itself changes slightly. Since water molecules usually contribute greatly to the THz absorption of
the biomolecular solution, we interpreted the reason for the decrease of the THz spectral intensity
according to the diffusion dynamics, the dielectric relaxation dynamics, the hydrogen bond lifetime,
and the vibration density of states of water molecules in confined environments. Our simulation and
calculation results revealed that the retarded hydrogen bond dynamics of water molecules due to the
steric confinement from the wall of the CNT resulted in the decrease of the THz spectral intensity of the
Gly23 solution. The findings in this work will help to explore the water dynamics in the nano-confined
environment and will guide THz spectroscopy detection of biomolecules using nanofluidic channels
in practice.
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