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Abstract: The kinetic behaviors of ethylene and propylene polymerizations with the same
MgCl2-supported Ziegler–Natta (Z–N) catalyst containing an internal electron donor were compared.
Changes of polymerization activity and active center concentration ([C*]) with time in the first 10 min
were determined. Activity of ethylene polymerization was only 25% of that of propylene, and the
polymerization rate (Rp) quickly decayed with time (tp) in the former system, in contrast to stable
Rp in the latter. The ethylene system showed a very low [C*]/[Ti] ratio (<0.6%), in contrast to a
much higher [C*]/[Ti] ratio (1.5%–4.9%) in propylene polymerization. The two systems showed
noticeably different morphologies of the nascent polymer/catalyst particles, with the PP/catalyst
particles being more compact and homogeneous than the PE/catalyst particles. The different kinetic
behaviors of the two systems were explained by faster and more sufficient catalyst fragmentation
in propylene polymerization than the ethylene system. The smaller lamellar thickness (<20 nm) in
nascent polypropylene compared with the size of nanopores (15–25 nm) in the catalyst was considered
the key factor for efficient catalyst fragmentation in propylene polymerization, as the PP lamellae
may grow inside the nanopores and break up the catalyst particles.
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1. Introduction

After rapid and continuous growth in the last sixty years, the industrial production of polyolefins
(polyethylene, polypropylene, and olefin copolymers) has become one of the most important branches
of modern chemical industry, and MgCl2-supported Ziegler–Natta (Z–N) catalysts are playing
dominant roles in polyolefin production. Despite extensive fundamental studies in this field over the
past decades, there are still many unsolved problems concerning the polymerization mechanism and
relationships between catalyst structure and polymerization behaviors. The kinetics and mechanism
of ethylene and propylene polymerizations with Z–N catalysts have been studied in a broad span
of reaction durations ranging from less than 1 s to more than one hour [1–23]. When ethylene and
propylene polymerizations with the same catalyst are compared, several peculiarities in the reaction
kinetics have been reported. Y.V. Kissin reported that ethylene polymerization with a TiCl3-based
classical Z–N catalyst and MgCl2-supported Z–N catalyst both presented build-up type rate curves
with a rather long induction period (10–30 min), in which the reaction rate gradually grew to the
stationary level. However, propylene polymerization with the same catalyst presented decay type rate
curves, in which the reaction rate quickly rose to the maximum and then began descending over a
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long period [19,20]. Considering the similar chain initiation and propagation mechanisms of the two
monomers and the very fast formation process of the polymerization active centers, it is hard to explain
such different kinetic behaviors by a unified mechanistic model [16,24]. It is even more puzzling
that ethylene polymerization activity was much lower than that of propylene polymerization when
some supported Z–N catalysts containing an internal electron donor were used [25,26]. The activity
of ethylene polymerization was found to be markedly enhanced by introducing a small amount of
propylene before ethylene (so-called prepolymerization) [25,27,28]. Because the intrinsic reactivity of
ethylene polymerization is evidently higher than that of propylene on the same catalyst [22,25], it is
hard to attribute such a phenomenon to certain kinds of chemical activation effect.

V.A. Zakharov et al. studied ethylene and propylene polymerizations with a Ti-based supported
Z–N catalyst containing a dibutylphthalate internal donor [25]. They found that the fraction of active
centers ([C*]/[Ti]; here, C* denotes active center) was larger in ethylene polymerization than in
propylene polymerization, and chain propagation rate constants (kp) were also larger in the former.
The ethylene polymerization activity was markedly enhanced by using a similar catalyst with higher
porosity; meanwhile, the activity of the propylene polymerization was not very sensitive to catalyst
porosity. The occurrence of diffusion limitation in ethylene polymerization was proposed as the reason
for its sensitivity to catalyst porosity. In our previous works, significant enhancement of [C*]/[Ti] with
reaction time in the initial stage of ethylene (co)polymerization was observed, and fragmentation of
the catalyst particles by hydraulic force of the growing polymer chains was considered the reason for
the enhancement of active center numbers [21,22]. According to these results, fragmentation of the
catalyst particles significantly influences the [C*]/[Ti] fraction in the initial stage and its changes with
time, and thus determines the polymerization kinetics. To explicitly disclose origins of the different
reaction kinetics of ethylene and propylene polymerizations, it is thus necessary to directly compare
the [C*]/[Ti] versus time profiles of the two systems.

In this work, the microkinetics of ethylene and propylene polymerizations with a supported
Z–N catalyst containing a phthalate type internal donor was systematically studied, including tracing
the changes of [C*]/[Ti] in the polymerization processes and characterizing the structure of nascent
polymer/catalyst particles formed in different reaction periods. The method of counting active centers
by quench-labeling the propagation chains with 2-thiophenecarbonyl chloride (TPCC) was used.
This method was developed in our laboratory and applied to various olefin polymerization systems
catalyzed by both heterogeneous and homogeneous catalysts [21–23,29–34]. The collected results
provide new evidence that clearly shows the crucial importance of catalyst particle fragmentation in
determining the polymerization kinetics and catalyst efficiency. The knowledge produced through the
research can promote an in-depth understanding of olefin polymerization kinetics and mechanism,
and guide further optimization of the polymerization process, as well as catalyst development.

2. Materials and Methods

2.1. Reagents

A commercial supported Z–N catalyst TiCl4/Di/MgCl2 (Ti content = 2.7 wt%, Di =
dibutylphthalate, provided by SINOPEC Group, Nanjing, China) was used for the polymerization.
Triethylaluminum (TEA) was purchased from Albemarle (Charlotte, NC, USA) and used as 2M solution
in n-heptane. 2-thiophenecarbonyl chloride (TPCC, >98%), purchased from Alfa Aesar Co. (Shanghai,
China), was distilled and diluted to 2M solution in n-heptane before use. n-Heptane was dried over
4 A molecular sieves under dry nitrogen and refluxed over Na before use. Ethylene and propylene
(polymerization grade, supplied by Minxing Gas Co., Hangzhou, China) were purified by molecular
sieves and manganese-based deoxygen agent in a gas purification system made by Dalian Samat
Chemicals Co., Ltd. (Dalian, China). All other chemicals were obtained commercially and used without
further purification unless otherwise stated.
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2.2. Polymerization and Quenching Reaction

All operations were carried out under a dry nitrogen atmosphere using standard Schlenk line or
glove box techniques. Polymerization runs were conducted in 250 mL glass reactor equipped with a
magnetic stirrer and gas inlet, which was immersed in thermostat bath of 40 ◦C. After evacuating the
reactor and refilling it with monomer gas (ethylene or propylene) three times, the planned amount
of n-heptane was added to the reactor under the monomer atmosphere. Then, the TEA solution
(Al/Ti = 40) was added, and the calculated amount of catalyst was flushed to the reactor by n-heptane
to launch the polymerization. Ethylene or propylene flow of 1 atm pressure was continuously supplied
to the reactor for the stipulated polymerization time (tp). In the experiments, for the kinetic study,
TPCC (TPCC/Al = 2.5) was quickly injected into the reactor after the designed tp in order to quench
the polymerization. After 5 min of quenching reaction, acidified ethanol was added to decompose
the catalyst and quencher, and the produced polymer was precipitated with an excess of ethanol.
The collected polymer samples were further purified according to the procedures mentioned in our
previous work to remove all sulfur-containing impurities [29,30]. In the experiments, for studying
morphology (SEM observation) and pore size distribution (Brunauer–Emmett–Teller (BET) analysis) of
the polymer/catalyst particles, when the calculated tp was reached, the reactor was quickly immersed
in liquid nitrogen to stop the reaction, and then CO2 was bubbled to the reactor to convert TEA into
unreactive chemicals, so as to preserve the morphology of nascent catalyst/polymer particles. The
particles were vacuum dried at room temperature after removing the solvent, and then stored under
nitrogen for SEM and BET analysis.

2.3. Characterization

The sulfur content of the quenched polymer was measured with a YHTS-2000 fluorescence UV
sulfur analyzer (Jiangyan Yinhe Instrument Co., Jiangyan, China, detection limit = 0.05 ppm). The
polymer sample for the analysis was solid powder (2–4 mg, weighed to ± 0.01 mg), and the average
value of three parallel measurements was recorded for each sample.

Molecular weight and molecular weight distribution of the polymer samples were measured by
gel permeation chromatography (GPC) in a PL 220 GPC instrument (Polymer Laboratories, Shropshire,
UK) with three PL mixed B columns (500 ~ 107) at 150 ◦C in 1,2,4-trichlorobenzene. Universal
calibration against polystyrene standards was adopted.

Differential scanning calorimetry (DSC) analysis of the polymers was conducted using a TA Q200
DSC instrument under N2 atmosphere. Then, 2–3 mg of each sample was sealed in an aluminum
sample pan, and melting endotherm in the first heating scan was recorded at a heating rate of
10 ◦C/min by scanning from 40 to 180 ◦C.

Scanning electron microscope observations of the PE and PP particles were made with a
Hitachi-4800 SEM. Micrographs was taken at 3 kV acceleration voltage. Before SEM observations, all
the sample surfaces were vacuum sputtered with a thin layer of gold.

Nitrogen adsorption–desorption isotherms and pore-size distributions of the polymer particles
were measured using an AUTOSORB-1-C instrument (Quantachrome, Boynton Beach, FL, USA) at
77 K. Prior to the experiments, the samples were degassed in vacuum at 90 ◦C for 24 h. Their specific
surface areas were determined on the basis of the BET (Brunauer–Emmett–Teller) adsorption model.
The total pore volumes and average pore sizes were also calculated. The pore size distributions
were statistically obtained by using a Quantachrome software following BJH theory according to the
desorption isotherms.

3. Results and Discussion

3.1. Polymerization Kinetics

A series of ethylene polymerization, as well as propylene polymerization, was conducted under
the same conditions for different durations, and each polymerization run was quenched by adding
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TPCC when the planned reaction time was reached. The reaction products were analyzed for sulfur
content, and the fraction of active centers ([C*]/[Ti]) of each polymer sample was determined based
on its sulfur content. The polymerization rate Rp was determined from differentiation of the curve
of polymer yield versus time. According to the rate equation Rp = kp[C*][M], which has been well
established for most catalyzed olefin polymerizations, the apparent chain propagation rate constant
kp was calculated using the Rp and [C*]/[Ti] data, as well as equilibrium monomer concentration in
the reaction system. GPC analysis on the polymer samples was also carried out to determine their
molecular weight distribution and average molecular weight. The results are shown in Table 1 and
Figure 1, respectively.

Table 1. Kinetic parameters and polymer properties of ethylene and propylene polymerizations a.

Run tp
b (s)

mP/mCat
c (g/g)

Activity (kg/g
Ti·h)

Mw
d

(105) Đ d Rp (10−3

mol/L·s)
[C*]/[Ti]

(%)
kp

(L/mol·s)

E1 30 0.17 0.76 3.34 10.6 - e - e - e

E2 60 0.35 0.78 3.71 8.1 0.32 0.20 2035
E3 120 0.65 0.72 4.26 16.7 0.48 0.25 2410
E4 180 1.12 0.83 5.79 12.6 0.54 0.49 1380
E5 240 1.67 0.93 5.51 9.5 0.45 0.51 1103
E6 480 2.38 0.66 5.67 14.0 0.04 0.55 85
E7 600 2.39 0.53 6.21 10.8 0.01 0.59 17
P1 30 0.36 1.61 1.51 5.3 2.27 0.37 1433
P2 60 1.56 3.48 1.57 5.7 2.27 1.50 356
P3 120 5.44 6.05 1.59 6.2 2.27 3.10 172
P4 180 8.05 5.97 1.49 5.3 2.27 3.25 164
P5 240 11.17 6.20 1.24 5.6 2.27 3.35 160
P6 480 25.12 6.98 1.25 5.3 2.27 4.51 118
P7 600 30.34 6.74 1.27 5.5 2.27 4.87 110

a, polymerization conditions: runs E1–E7 were ethylene polymerization and P1–P7 were propylene polymerization;
[Ti] = 1.0 mmol/L; triethylaluminum (TEA)/Ti = 40 (mol/mol); pressure of ethylene and propylene = 1 atm;
polymerization temperature = 40 ◦C. Conditions of quench-labeling: 2-thiophenecarbonyl chloride (TPCC)/Al = 2.5
(mol/mol); quenching time = 5 min; b, duration of polymerization; c, yield of polymer based on unit catalyst weight;
d, weight average molecular weight (Mw) and polydispersity index (Đ); e, not determined because of insufficient
sample weight.Polymers 2019, 11, x FOR PEER REVIEW 5 of 15 
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Figure 1. (a) Influence of polymerization time on the fraction of active centers and apparent propagation
rate constant of ethylene polymerization; (b) influence of polymerization time on the fraction of active
centers and apparent propagation rate constant of propylene polymerization.

It is seen that the activity of ethylene polymerization was noticeably lower than that of propylene
polymerization in the 10 min reaction period. The former system experienced a moderate rise of
reaction rate in the first 3 min, but then the rate quickly decreased and fell to nearly zero activity
after 10 min. In contrast, the propylene system showed a much higher reaction rate at the very
beginning and maintained it in the following 10 min. As shown in Figure 1, the lower activity of
ethylene polymerization in the first 4 min can be mainly attributed to its lower fraction of active centers
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compared with that of propylene polymerization. In the later stage (tp = 6–10 min), the kp value of
ethylene polymerization decreased to very low level, resulting in even lower polymerization rate.

In our previous study on ethylene polymerization kinetics with an industrial supported Z–N
catalyst designed for polyethylene production, similar growth of [C*]/[Ti] with polymerization time
was observed, and the growth of [C*]/[Ti] was correlated with gradual disintegration of the catalyst
particles in the reaction process [21,22,33]. Hydraulic forces of the growing polymer phase were
considered as the dominant factor in the particle fragmentation. By comparing the changes of [C*]/[Ti]
with mass ratio of polymer to catalyst (mP/mCat) in the two polymerization systems (see Figure 2),
it is seen that both systems showed a two-stage increase of [C*]/[Ti] with mP/mCat, where the first
stage showed rapid growth of [C*]/[Ti], which slowed down but continued in the second stage. The
main difference between the two systems was the much higher efficiency of particle fragmentation by
polymer in the propylene system than that of the ethylene system. This means that the same amount
of polymer in the ethylene system caused particle fragmentation to a much lesser extent than the
propylene polymerization.
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Figure 2. Changes of the fraction of active centers with polymer/catalyst mass ratio in ethylene and
propylene polymerizations.

The rapid decrease of kp value in the polymerization processes can be explained by the increase of
diffusion barrier with the increase of mP/mCat ratio, because the polymer layer surrounding the catalyst
fragments where the active centers are anchored can retard mass transfer inside the polymer/catalyst
particles, and reduce local monomer concentration in the particles [35–38]. For this reason, it can be
assumed that the kp value is reversely proportional to the mP/mCat ratio. In fact, such correlation does
exist when the mP/mCat ratio increased from 0 to about 2 (see Table 1 and Figure S1 of Supplementary
Materials). In propylene polymerization, the kp value gradually leveled off after about 2 min of
polymerization, but in ethylene polymerization, the kp value decayed continuously until reaching zero.

The weight average molecular weight of polyethylene evidently increased with reaction time,
which can be explained by the decay of a part of active centers producing low molecular weight
polymer [19]. However, the molecular weight of polypropylene was kept nearly constant during the
reaction period.

3.2. Morphology of the Polymer/Catalyst Particles

The remarkably different kinetic behaviors of ethylene and propylene polymerizations prompted
us to search for more evidence that can disclose the mechanism behind the phenomena. As discussed
above, the changes of [C*]/[Ti] and kp in the polymerization process are all closely related with
the polymer/catalyst particles, because these are the actual places in which the reactions take
place. Research into the morphology of nascent polymer/catalyst particles may provide important
information on the polymerization process. Several experimental methods have been reported in such
studies. Di Martino et al. developed a quenched-flow method, in which olefin polymerization of very
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short duration is “quenched” with a poison without destroying the polymer/catalyst particles [39].
T. Taniike et al. used a similar method to fix the nascent morphology of the particles and trace their
development in the polymerization process [40]. In this work, a method similar to that adopted
by M. Terano et al. [41] was used to collect nascent polymer/catalyst particles and condition them
for SEM observation. Typical SEM pictures of PE/catalyst and PP/catalyst particles collected at
different polymerization times are shown in Figures 3 and 4, respectively. More SEM pictures of the
polymer/catalyst particles are shown in Figures S3 and S4 of Supplementary Materials. SEM pictures
of the original catalyst particles are shown in Figure S2 of Supplementary Materials.
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As shown in Figure S2, the catalyst particles have a regular spherical shape with a diameter
ranging from 10 to 50 µm. The enlarged picture of the internal part of a particle showed that the whole
particle was composed of sub-particles of 150–500 nm in size, which are clearly divided by tiny cracks
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between them. Totally speaking, the catalyst particle has a rather compact solid structure, besides the
presence of broad cracks (width > 0.1 µm) on the outer surface and the internal part.

When ethylene polymerization was conducted for short time, the nascent PE/catalyst particles
presented a rather loose and porous morphology, and a part of spherical particles was seriously broken
into irregular fragments. When the polymerization was extended to 3 min, the roughly spherical
particles can be found to be composed of irregular small particles of about 0.3–1.5 µm. By comparing
with the sub-particles in the original catalyst, and considering the rather low PE/catalyst mass ratio
(1.12 at tp = 180 s), it is likely that these small particles are composites of PE that cover the sub-particles,
where the PE chains were formed by active centers of the sub-particles. Platelet structures in the small
particles (see Figure 3f) can be attributed to PE crystalline lamellae.

The morphology of PP/catalyst particles (Figure 4) was noticeably different from that of
PE/catalyst particles. As propylene polymerization proceeded from 0 to 3 min, the spherical shape
of the catalyst particles was well preserved. Similar phenomena have been well reported in the
past [42–46]. After only 30 s of polymerization, the particle’s outer surface looked like a mixture of
tiny irregular polymer particles and large (1 to 2 µm) grains with smooth surfaces. The latter could
be the solid phase of the catalyst, or an inorganic component covered by a thin polymer layer. As
the polymerization continued to 60–120 s, most of these micrometer-sized hard particles disappeared,
meaning that they were disintegrated by the growing PP chains. Though there are domains with
sizes of 0.5 to 2 µm on the outer surface, they were intimately interconnected with each other. As
the polymerization proceeded for 180 s, the outer surface became smoother. If the micrometer-sized
plateaus on the particle’s outer surface seen at tp = 180 s were originated from the sub-particles
of the catalyst granule, merging of their boundaries means that a large proportion of the catalyst’s
sub-particles underwent severe disintegration in the later stage of polymerization. By comparing
Figures 3d–f and 4f–h, it is clear that the PE/catalyst particles are loose aggregates of sub-particles
of about 0.3–1.5 µm, while the sub-particles in PP/catalyst particles are intimately merged with
each other.

Nitrogen adsorption–desorption isotherms of the catalyst and typical polymer/catalyst nascent
particles (E3, E4, P1, and P2) were measured to determine their pore size distribution curves (see
Figure 5 and Figure S5 of Supplementary Materials). As seen in Figure 5a, the catalyst particles
presented a strong peak at about 20 nm in the pore size distribution. Because the sub-particles
(150–500 nm) in the catalyst are much larger than 20 nm, it is likely that these tiny pores are mainly
located inside the sub-particles. In the PE/catalyst particles, the number of pores around 20 nm was
noticeably reduced to 1/3–1/4 of those in the catalyst, but the number of larger pores (>50 nm) was
reduced further. This is especially evident in sample E3, which has a PE/catalyst mass ratio of only
0.645. A possible explanation is that most large pores with size >50 nm were filled up by the PE chains,
but only a relatively smaller proportion of 20 nm pores were filled up after ethylene polymerization.Polymers 2019, 11, x FOR PEER REVIEW 9 of 15 
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In sharp contrast with the PE/catalyst particles, in the PP/catalyst particles, the volume of the
20 nm pores was reduced to only about 1/1000 of that in the catalyst particles when mP/mCat was only
0.36 (sample P1), and it was further reduced to nearly zero when mP/mCat increased to 1.56 (sample
P2). The volume of larger pores in the PP/catalyst particles was also noticeably smaller than that in the
PE/catalyst particles and the original catalyst. As shown in Table 2, the specific surface area and total
pore volume decreased in the following order: catalyst particle > PE/catalyst particle >> PP/catalyst
particle; meanwhile, the average pore size presented a reversed order. The PP/catalyst particles are
far less porous than the PE/catalyst particles. This could be correlated to the higher [C*]/[Ti] ratio
reached in propylene polymerization than in ethylene polymerization. The greater extent of catalyst
fragmentation in the former system could have caused the disappearance of most of the 20 nm pores,
and released more active sites on the exposed surfaces. PP chains produced by these active sites can
than cover the exposed surfaces, forming rather compact polymer/catalyst particles.

Table 2. Structural parameters of catalyst and nascent polymer/catalyst particles.

Sample Specific Surface Area (m2/g) Total Pore Volume (cm3/g) Average Pore Size (nm)

Cat. 281.55 0.320 22.37
E3 34.84 0.065 37.95
E4 51.85 0.090 33.36
P1 2.79 0.013 95.80
P2 1.55 0.009 117.44

3.3. Polymer Aggregation State in Nascent Polymer Particle

The aggregation state of the just-formed polymer phase was analyzed by recording the first DSC
heating scan on nascent polymer particles that had not been heated to melting before. As shown in
Table 3 and Figure S6 of the Supplementary Materials, PE in the nascent polymer particles had a rather
high melting temperature and crystallinity, while the melting temperature of the nascent PP samples
was not much different from that of PP crystallized from melt. The melting temperature of the PE
sample was noticeably higher than that of the same sample crystallized from melt (see Table S1 of the
Supplementary Materials). Lamellar thickness distributions of the polymer samples were calculated
according to the Thomson–Gibbs equation:

Tm = Tm
◦[1 − 2σe/( L × ∆Hf

◦)], (1)

where Tm
◦ is equilibrium melting temperature, L is lamellar thickness, σe is free surface energy

of the end faces at which the chains fold, and ∆Hf
◦ is melting enthalpy of a perfect crystal. For

calculation of the polyethylene samples, the following parameters were applied: Tm
◦ = 145.8 ◦C [47],

σe = 90 × 10−7 J/cm2 [48], and ∆Hf
◦ = 289.4 J/cm3 [49]. For calculation of the polypropylene samples,

the following parameters were applied: Tm
◦ = 208.0 ◦C [50], σe = 70 × 10−7 J/cm2 [51], and ∆Hf

◦ =
154 J/cm3 [52]. The results are shown in Figure 6.
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Table 3. Thermal properties of nascent polymer particles.

Run Polymer Tm
a (◦C) ∆Hf

b (J/g) Xc
c (%)

E1

PE

139.5 228.8 79.4
E2 140.1 208.5 72.4
E3 139.9 201.1 69.8
E4 141.8 200.7 69.7

P1

PP

161.0 86.7 56.3
P2 161.6 83.4 54.2
P3 161.0 79.8 51.8
P4 161.1 69.2 44.9

a, melting temperature; b, melting enthalpy; c, degree of crystallization calculated based on 100% defect free
polyethylene crystal with a 289 J/g fusion heat [49] and polypropylene crystal with a 154 J/g fusion heat [52].
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The two series of polymers showed significantly different lamellar thickness distributions.
Lamellar thickness of the PE samples was distributed in the size range of larger than 20 nm, with
the peak values appearing at about 40 nm. However, the PP samples showed rather narrow lamellar
thickness distributions, with the peak values appearing at about 9 nm. There were almost no lamellae
thicker than 11 nm in the PP samples. By comparing with pore size distributions of the catalyst and
polymer/catalyst particles (Figure 5), we can find that formation of PP lamellae inside the 20 nm pores
of the catalyst particles is possible, but PE lamellae cannot grow inside these small pores because of
their much larger thickness.

On the basis of the results of polymerization kinetics, solid structure of polymer/catalyst particles,
and polymer aggregation state in the nascent particles, we can propose a mechanistic model to
reasonably explain the distinct kinetic behaviors between ethylene and propylene polymerizations
with the same supported Z–N catalyst, which is described in the following points:

1. Changes of active center concentration in the initial stage (0–10 min) clearly show that the lower
rate of ethylene polymerization compared with that of propylene can be attributed to a much
slower build-up of [C*] in the former system.

2. Both polymerization systems experienced a similar degree of diffusion limitation in the first
0–3 min, as shown by the larger apparent propagation rate constant in ethylene polymerization
and similar slopes of the kp versus mP/mCat curves. The porosity of PE/catalyst particles was
larger than that of the PP/catalyst particles. The lower activity of ethylene polymerization cannot
be attributed to its stronger diffusion limitation.

3. The catalyst particles have rather compact solid structure, though they are composed of
sub-particles with a size of about 200–500 nm, and there are cracks with widths ranging from
100 nm to 5 µm. Pore size distribution, determined by the nitrogen adsorption method, shows
that the nanometer pores in the catalyst are concentrated in the range of 15–25 nm. There is a
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huge number of such small pores, which renders the catalyst a very large specific surface area
(282 m2/g) and high porosity (0.32 cm3/g). These 20 nm pores should be uniformly scattered
in the solid phase of the catalyst. Assuming that the sub-particles are dense cubes with edges
of 200 nm and a density of 2.34 g/cm3 (density of MgCl2 crystal), their aggregate will have a
specific surface area of 13 m2/g, which is far lower than the measured specific surface area. The
measured value of 282 m2/g will correspond to MgCl2 crystallite size (length of cube edges) of
about 9 nm. This size is quite close to that of MgCl2 crystallites (7 nm) in supported Z–N catalysts
determined by E. Redzic et al. [53]. Therefore, the 200–500 nm sub-particles cannot be dense solid,
but rather aggregates of smaller MgCl2 crystallites containing many nanopores. It is likely that
there is a large number of pores and cracks of about 20 nm in the sub-particles.

4. Because the sizes of PE lamellae formed by the growing polymer chains are far larger than the
size of nanopores in the catalyst’s sub-particles, these lamellae cannot grow inside the nanopores,
leaving the porous sub-particles basically intact during ethylene polymerization. Only the active
sites exposed on the outer surface of the sub-particles can be activated and work as catalytic
centers, but a large proportion of active site precursors is buried in the sub-particles and thus
becomes unavailable to the polymerization reaction, resulting in a low [C*]/[Ti] ratio of ethylene
polymerization. With the proceeding of polymerization, the PE layer covering the sub-particle
will form a diffusion barrier that grows quickly with the increase of the mP/mCat ratio, and finally
leads to ceasing of the polymerization.

5. In the propylene polymerization system, the PP lamellae with a size of 6–11 nm can enter the
20 nm pores in the sub-particles. Growth of these PP lamellae in the pores can exert hydraulic
forces strong enough to break up the sub-particles and release their buried active site precursors.
Subsequently, the 20 nm pores in the sub-particles will disappear, and the exposed surfaces
carrying active sites will be covered by PP chains. After a short period of time, the whole
polymer/catalyst particle will become rather compact, and the texture of the particle becomes
rather smooth. Though the PP layer covering the MgCl2 crystallites (carrier of the active sites)
can also cause serious diffusion barrier, for the much higher density of active sites in this system
compared with the ethylene polymerization, the dynamically renewed carrier surface can allow
for the presence of tiny pores in the PP layer. This will enable slow but stable diffusion of
monomer stream in the PP layer, and a stable polymerization rate supported by a high [C*]/[Ti]
ratio and low apparent rate constant.

This explanation is still far from comprehensive, but as we believe, it is the most reasonable
one based on the present experimental results. According to this mechanism, fragmentation of the
catalyst particles in the initial stage of polymerization is the decisive factor that determines the
[C*]/[Ti] fraction, and thus the catalyst’s productivity, reachable in the main reaction stage. In the
case of olefin polymerizations forming crystalline polymers, the difference between lamellar thickness
of the polymer phase and pore size in the catalyst particle is also a key factor. Growth of thin
polymer lamellae inside the nano-sized pores can cause further fragmentation of the sub-particles
and exposure of more active sites. When the polymer chains form lamellae thicker than the pore
size in the sub-particles, the lamellae tend to grow in space out of the nanopores in order to avoid
the space confinement effects that require extra energy. It is thus expected that factors leading to
reduction of lamellar thickness will promote fragmentation of the catalyst particles and enhance
the catalytic activity. Enhancement of ethylene polymerization activity by prepolymerization with
propylene can be explained by enhanced particle fragmentation in the prepolymerization stage. The
comonomer activation effect in ethylene/α-olefin copolymerization [31] can also be explained by
enhancement of particle fragmentation, because lamellar thickness of copolymer is evidently smaller
than that of ethylene homopolymer [53,54]. On the other side, MgCl2-supported Z–N catalysts with
average pore size far larger than 20 nm are found to have a rather high [C*]/[Ti] ratio in ethylene
polymerization [23], or show ethylene polymerization activity much higher than the level reported
in this work [55]. However, the presence of the soft amorphous phase (which is always present in



Polymers 2019, 11, 358 12 of 15

PE or PP particles) in the nascent polymer will make the real mechanism more complicated than the
simplified mechanism discussed here. J. Loos et al. found that catalyst fragmentation in propylene
polymerization with the Z–N catalyst was slowed down by introducing ethylene as a comonomer [56].
It seems that the hard crystalline lamellae, for their low mobility, are more effective than the amorphous
phase in expanding the nanopores and breaking the catalyst. More experimental and theoretical studies
are expected to fully disclose the mechanism of initial polymerization kinetics and fragmentation of
catalyst particles.

4. Conclusions

Homopolymerizations of ethylene and propylene with the same MgCl2-supported Z–N catalyst
containing an internal electron donor showed remarkably different kinetic behaviors. Activity of
ethylene polymerization was about 75% lower than that of propylene, and the polymerization rate
quickly decayed with time in the former system, in contrast to a stable Rp versus time profile in
the latter. The ethylene system showed a very low [C*]/[Ti] ratio (<0.6%) in the 10 min reaction
process, in contrast to a much higher [C*]/[Ti] ratio (1.5%–4.9%) in propylene polymerization. The
two systems showed noticeably different morphologies of the nascent polymer/catalyst particles,
with the PP/catalyst particles being more compact and homogeneous than the PE/catalyst particles.
On the basis of the observed phenomena, the different kinetic behaviors of the two reaction systems
can be explained by faster and more sufficient catalyst fragmentation in propylene polymerization
than in the ethylene system. In the propylene system, a large proportion of active sites was exposed
through catalyst particle fragmentation in the polymerization process, but the degree of particle
fragmentation was remarkably lower in the ethylene system. The larger thickness of PE lamellae in
the nascent polymer than the average size of nano-pores in the catalyst is considered the main reason
for the low efficiency of particle fragmentation in the ethylene system. In contrast, for the smaller
lamellar thickness (<20 nm) of PP compared with the size of nanopores (15–25 nm) in the catalyst,
PP lamellae may grow inside the nanopores and break up the catalyst particles by their hydraulic
forces. The importance of catalyst fragmentation in fully releasing active site precursors in the catalyst
and realizing high polymerization activity is clearly manifested in this work. Matching between the
polymer’s lamellar thickness and size of the catalyst’s nanopores is an important factor that determines
the efficiency of catalyst fragmentation.
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