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Abstract: Generally, numerical methods are required to model the non-Newtonian flow of polymer 

melts in single-screw extruders. Existing approximation equations for modeling the throughput–

pressure relationship and viscous dissipation are limited in their scope of application, particularly 

when it comes to special screw designs. Maximum dimensionless throughputs of Π� < 2.0 , 

implying minimum dimensionless pressure gradients Π�,� ≥ −0.5 for low power-law exponents 

are captured. We present analytical approximation models for predicting the pumping capability 

and viscous dissipation of metering channels for an extended range of influencing parameters 

(Π�,� ≥ −1.0, and � �� ≤ 2.4⁄ ) required to model wave- and energy-transfer screws. We first rewrote 

the governing equations in dimensionless form, identifying three independent influencing 

parameters: (i) the dimensionless down-channel pressure gradient Π�,� , (ii) the power-law 

exponent �, and (iii) the screw-pitch ratio � ��⁄ . We then carried out a parametric design study 

covering an extended range of the dimensionless influencing parameters. Based on this data set, we 

developed regression models for predicting the dimensionless throughput-pressure relationship 

and the viscous dissipation. Finally, the accuracy of all three models was proven using an 

independent data set for evaluation. We demonstrate that our approach provides excellent 

approximation. Our models allow fast, stable, and accurate prediction of both throughput-pressure 

behavior and viscous dissipation. 

Keywords: polymer processing; modeling and simulation; extrusion; symbolic regression; power-

law fluid 

 

1. Introduction 

Single-screw extruders are the most important machinery in polymer processing. They are used 

in continuous extrusion lines to produce finished or semi-finished products (e.g., pipes, sheets, films 

and profiles) and in recycling. However, single-screw plasticizing units are not limited to continuous 

processes, but are also used in injection molding and as feeding units in blow molding and 

thermoforming processes. Hence, a majority of the polymers produced pass a single-screw unit at 

least once in their life cycle. The melt-conveying zone—also often referred to as the pumping zone—

is one of the most crucial functional zones in single-screw extruders. It must convey the melt forward 

and provide sufficient pressure to pump it through the die. Especially in smooth-bore single-screw 

extruders, the melt-conveying zone is the rate-limiting zone and must generate most of the pressure 

needed at the screw tip. In grooved-fed single-screw extruders, however, the solids conveying zone 

is already capable of building up most of the required pressure, and the following zones are often 
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over ridden. Hence, the melt-conveying zone can be both pressure-generating and pressure-

consuming. Further, a significant proportion of the total dissipated energy is generated within the 

metering zone, which, therefore, has a major influence on the final melt temperature. 

1.1. Review 

The first analysis of the metering zone was published anonymously in 1922 [1] and further 

improved by Rowell and Finlayson in 1928 [2]. They developed a one-dimensional isothermal 

Newtonian pumping model using the flat-plate model, a widely accepted approach to describing the 

flow channel. Assuming the viscosity to be Newtonian and temperature-independent, an analytical 

model was derived for the melt-conveying behavior where the total flow rate is a linear superposition 

of drag- and pressure-flows, which can be solved independently. Several further studies have 

investigated and extended the theory for Newtonian fluids. Carley et al. [3] included the die 

characteristic and tapered screw channels. However, not only the throughput-pressure relation is of 

interest, but also the power and torque required to drive the screw. Based on the existing Newtonian 

flow theory, an equation for the power consumption was therefore presented by Mallouk and 

McKelvey [4]. The screw drive power is given by the product of the viscous force acting on the barrel 

surface and its area. The cross-channel flow was first included by Mohr et al. [5]. They derived the 

down- and cross-channel velocity profiles independently and superposed them to derive the shear 

imposed on the fluid. In a subsequent study Mohr and Mallouk [6] included the cross-channel flow 

in the calculation of the power requirement. In order to validate the Newtonian pumping model, 

McKelvey [7] performed experiments on a single-screw extruder using a viscous Newtonian fluid 

(corn syrup) and a nearly Newtonian polymer melt. 

These early studies of Newtonian fluids gave first insights into the polymer melt flow in single-

screw extruders. Nevertheless, for more accurate analyses, the non-Newtonian fluid behavior of 

polymer melts must be taken into account. Polymer melts generally exhibit shear-thinning—also 

called pseudo-plastic—fluid behavior. This means that the viscosity decreases with increasing shear 

rate. Hence, drag and pressure flows are no longer independent of each, which results in a non-linear 

relationship for the throughput-pressure characteristics. Additionally, down- and cross-channel 

flows influence each other, albeit not directly but via the shear-rate-dependent viscosity. Taking the 

non-Newtonian fluid behavior into account significantly increases the complexity of the problem, 

and the flow equations can no longer be solved analytically, but require numerical techniques. Even 

for the simplest non-Newtonian case—a one-dimensional, isothermal flow of a power-law fluid 

without flight effects—no exact, closed-form analytical solution has yet been found [8]. Several 

authors [8–12] have presented analytical solutions for the Poiseuille-Couette flow of a power-law 

fluid that require the integration constant to be determined numerically. In principle, all these 

solutions give similar results. Krüger [10] additionally proposed a representative viscosity approach 

that uses the linear Newtonian to approximate the non-linear throughput-pressure characteristic. 

Kroesser and Middleman [11] compared their results with the traditional Newtonian pumping model 

and the superposition introduced by Krüger, applying the representative viscosity. A general and 

detailed derivation of the analytical approach for calculating the throughput-pressure characteristic 

of a one-dimensional flow of a power-law fluid within an infinite channel width was provided by 

Tadmor and Gogos [12]. For accurate predictions, however, the cross-channel flow cannot be ignored, 

because it influences the down-channel flow via the shear-rate-dependent viscosity, and vice versa. 

Hence, the flow rate is also affected by the transverse flow. Addressing this issue, Griffith [13] derived 

numerical results for isothermal and non-isothermal fully developed two-dimensional flows of 

power-law fluids. For the non-isothermal case, a constant fluid temperature is assumed for one 

streamline. Zamodits and Pearson [14] followed a similar approach, reporting results for an 

isothermal flow, as well as a flow with a superposed steady temperature profile of a power-law fluid 

for pseudo-plastic and dilatant fluids. Stellar [15] presented an algebraic solution for the two-

dimensional flow of a power-law fluid. This algebraic solution, however, requires the integration 

constants for the velocity profiles to be solved numerically. An alternative approach was introduced 

by Booy [16], who investigated the effect of the transverse flow on the effective viscosity. Detailed 
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reviews of the traditional melt-conveying models were published by Tadmor and Klein [17] and by 

Fenner [18]. 

All the approaches to modeling the non-Newtonian throughput-pressure relationship of 

polymer melts in single-screw extruders presented above require numerical methods. For practical 

screw design, however, numerical methods are not always desirable, because they are complex, 

require high computational effort, and can be time-consuming and unstable. For this reason, 

Rauwendaal [8,19] introduced correction factors that describe the non-Newtonian behavior. 

Applying these correction factors allows the Newtonian throughput-pressure relationship to be used, 

while avoiding complex numerical calculations. Note that these correction factors only hold for 

pressure-generating zones with the helix angle in the range from 15° to 25°. Potente [20,21] followed 

a similar approach: First, an approximation was presented of the one-dimensional flow of power-law 

fluids for pressure-generating and pressure-reducing melt-conveying zones that is valid for a range 

of the dimensionless throughput rate of 0.55 ≤ Π� ≤ 1.45 [20]. Then, the model was improved with 

regard to the effect of the transverse flow on the throughput-pressure relationship [21]. It was shown 

that the improved two-dimensional model covers the numerical values in the range 0.55 ≤ Π� ≤ 1.0 

for the dimensionless throughput and in the range 0° ≤ �� ≤ 17.65° for the helix angle. A further 

improvement of Potente’s model was developed by Effen [22], who extended the range of the 

dimensionless influencing parameters. Effen’s model is valid for the range 0.1 ≤ Π� ≤ 2.0 for the 

dimensionless throughput, 0.2 ≤ � ≤ 1.0 for the power-law exponent, and 0.8 ≤ � �� ≤ 2.0⁄  for the 

screw-pitch ratio. His model, however, distinguishes between eight different regions with different 

values for the model coefficients. A detailed summary of Potente’s and Effen’s models was given by 

White and Potente [23]. The models described above are all linear or piecewise-linear approximations 

of the throughput-pressure relationship. A generalized two-dimensional model that describes both 

pressure-generating and pressure-consuming melt-conveying zones (0.0 ≤ Π� ≤ 2.0) was presented 

by Pachner et al. [24]. Additionally, it considers wide ranges of the screw pitch ratio ( 0.75 ≤

� �� ≤ 2.0⁄ ) and the power-law exponent (0.2 ≤ � ≤ 0.9). Pachner et al. avoided the traditional 

formulation that superposes the drag- and pressure-flows and developed a closed analytical 

approximation equation for the throughput-pressure relationship, applying symbolic regression 

based on genetic programming. Spalding and Campbell [25,26] provided a correction factor for the 

rotational flow—drag flow—that considers the deviation of the drag flow of power-law fluids in 

finite channels compared to the drag flow for a Newtonian fluid. Their approach, however, does not 

include a shape factor for the pressure-flow. Kim and Kwon [27] introduced a total shape factor to 

include the influence of the flights on the flow rate. This total shape factor gives the ratio between the 

flow rate of the three-dimensional flow to that by the two-dimensional. Nevertheless, an analytical 

approximation is only given for Newtonian fluid. Marschik et al. [28–30] presented a three-

dimensional metering model for polymer melts, taking into account the rate-limiting effect of the 

screw flights on the flow rate. By means of experiments [31] and three-dimensional simulations of 

wave-screws [32] the validity and practicability of the regression models [24,29] in capturing the melt-

conveying zone of single-screw extruders was demonstrated. 

For practical screw design, not only the isothermal throughput-pressure relationship, but also 

viscous dissipation, power-consumption, and melt-temperature development, are of great 

significance. Mallouk and McKelvey [4] demonstrated the power calculation for Newtonian fluids. 

Mohr and Mallouk [6] extended the analysis to include the transverse flow. McKelvey [33] introduced 

the calculation of the adiabatic melt temperature development for a temperature-dependent 

Newtonian fluid leading to a logarithmic melt temperature increase. Tadmor and Klein [17] 

summarized this work, pointing out that the real extrusion process lies between the adiabatic and 

isothermal conditions, and that the adiabatic case defines the maximum melt temperature to be 

expected. Including the non-Newtonian fluid behavior of polymer melts, Potente [21] developed 

approximation equations for the drive power of melt-conveying zones, considering one- and two-

dimensional flows. These models apply in the range 0.55 ≤ Π� ≤ 1.25  for the dimensionless 

throughput. Potente and Obermann [34] further improved these models, performing 2.5D finite-

element (FE) simulations. Application of these equations for non-isothermal throughput-pressure 
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calculations that take into account constant Brinkmann numbers was shown by White and Potente 

[23]. However, the power consumption is not directly responsible for the melt-temperature increase. 

Rather, the screw-drive power is a combination of pressure build-up work and viscous dissipation, 

where the latter is the main source of the melt-temperature increase in a melt-conveying channel. 

Campbell et al. [35] investigated the viscous dissipation of a Newtonian fluid for both barrel- and 

screw-rotation theory. Using a representative viscosity approach, Rauwendaal [8] developed various 

methods for predicting the melt-temperature increase. In his approaches, the pressure and 

temperature development are coupled via a temperature-dependent viscosity. With this 

representative viscosity, the viscous dissipation is approximated simply by pure drag flow. Thus, the 

additional dissipation caused by the pressure flow, as well as the coupling between drag- and 

pressure flows, and the transverse flow are ignored. Derezinski [36–38] presented numerical 

solutions for the axial melt-temperature developments of power-law and Carreau-Yasuda viscosities. 

In his work, heat conduction through the barrel wall was taken into account by heat transfer 

coefficients and a fixed barrel-wall temperature. However, a representative shear rate was used for 

calculating the viscosity. Note that all these models for calculating the axial melt-temperature 

development are based on the lumped energy equation, and therefore predict a bulk melt 

temperature. Using a representative shear rate is insufficient for an accurate prediction of the viscous 

dissipation—the contributions of the pressure flow, the effect of the non-Newtonian fluid behavior, 

and the coupling effect of pressure-, drag-, and transverse flows via the shear-rate-dependent 

viscosity cannot be ignored. To address this matter, previous studies derived numerical results [39] 

and presented generalized symbolic regression models [40] of one- and two-dimensional flows of 

power-law fluids. These models cover a wide range of processing conditions (0.0 ≤ Π� ≤ 2.0) of 

polymeric materials (0.2 ≤ � ≤ 1.0) and screw geometries (0.5 ≤ � �� ≤ 2.0⁄ ). Further, they enable 

fast, simple, accurate, and stable prediction of viscous dissipation in the melt-conveying zone. 

The novelty of recent work [24,29,40] by our research group is that analytical approximation 

equations are generated using symbolic regression based on genetic programming. In contrast to 

classical regression analysis, in symbolic regression based on genetic programming, the structure of 

the model does not have to be predefined. This enables the identification of unknown non-linear 

relationships. Koza [41] was the first who described the principles of symbolic regression in detail. 

Schmidt and Lipson [42] demonstrated that genetic programming is suitable for discovering 

analytical relationships that underlie physical phenomena in nature by automatically searching 

motion-tracking data. In modeling the non-linearity of electric machines, Bramerdorfer et al. [43] 

applied symbolic regression using genetic programming to data derived by finite-element 

simulations. Symbolic regression was shown to achieve the highest accuracies among various other 

modeling strategies. It is not limited to simulation data, but can also be applied to experimental data, 

as shown by Kronberger et al. [44] in modeling wet tribological systems; they first carried out 

extensive experimental tests and then applied symbolic regression. However, data-based modeling 

using experimental data may require data preprocessing. Symbolic regression is also not limited to 

technical contexts, but can be applied in any field, for instance, physics, biology, medicine, and 

economy, as shown in [45] for macro-economic time-series modeling. 

1.2. Overview 

In this work, we present extended symbolic regression models for predicting the pumping 

capability and viscous dissipation of two-dimensional flows in single-screw extrusion. The existing 

models are limited to dimensionless throughput rates of Π� ≤ 2. Especially for polymer melts with 

a distinct shear thinning nature (i.e., with a power law exponent in the range of 0.2 to 0.4), this means 

that the dimensionless pressure gradient is limited to approximately Π�,� ≥ −0.5. However, screw 

calculations of special screw designs, such as wave and energy-transfer screws, have shown heavily 

overridden screw zones, especially in the compression regions. This means that considerably large 

negative dimensionless pressure gradients (up to Π�,� ≈ −0.9 ) can be observed for power-law 

exponents of about 0.2 to 0.4. Since the existing models are not valid in this range, their predictions 

are insufficiently accurate for both throughput-pressure calculation and viscous dissipation. Further, 
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the only general two-dimensional throughput-pressure model, presented by Pachner et al. [24], is 

discontinuous beyond its application range, featuring regions where it becomes infinite and abruptly 

changes the sign, and therefore has limited extrapolation capabilities. In summary, the existing 

models are not suitable for these special screw designs (wave and energy-transfer screws). Because 

wave and energy-transfer screws show interruptions of the screw flights and additionally in the 

sections around the wave peaks the screw channels are very shallow, two-dimensional modeling is 

preferred, which best represents the geometry of these screw channels. 

In order to address these issues, we present general and continuous extended models that also 

consider negative dimensionless pressure gradients of up to Π�,� = −1.0 for power-law exponents 

ranging from � = 0.2  to � = 1.0 . Further, the proposed symbolic regression models cover an 

extended range for the screw-pitch ratio (� �� = 0.6⁄  to � �� = 2.4⁄ ). These models are suitable for 

both general-purpose screws and special screw designs, such as wave and energy-transfer screws. 

Additionally, they cover pressure-generating and pressure-reducing melt-conveying zones. The 

dissipation models can be used to calculate the axial melt-temperature profile and consequently the 

non-isothermal throughput-pressure behavior. First, a fundamental analysis of the governing 

equations was conducted based on the theory of similarity and then a comprehensive numerical 

parametric design study was carried out for the extended application range. Based on these results, 

approximation equations were derived by means of symbolic regression using genetic programming. 

We carried out comprehensive modeling and model pre-selection, analyzing the accuracy of the 

models on training data and on additional test data. These models were further simplified and 

optimized, and subsequently the final models were selected. Finally, we performed an error analysis, 

additionally validating the model with a third, independent validation set. Figure 1 shows a 

schematic of the work flow. 

 

Figure 1. Schematic work flow chart of the extended analyses of throughput-pressure relationship 

and viscous dissipation. 
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2. Flow Analysis 

2.1. Geometric Modeling Approach 

Modeling the melt-conveying zone of a single-screw extruder requires a geometric 

representation of the screw channel. In this work we used the following approach: 

 The flat-plate assumption is applied for modeling the melt-conveying zone of a single-screw 

extruder. To this end, the helical screw channel is unwound and considered as a flat rectangular 

channel. The barrel surface is represented by an infinite flat plate. This approach, which ignores 

the influence of the curvature, is widely accepted in science and industry. Note that the channel 

curvature influences the polymer melt flow, as addressed by Sun and Rauwendaal [46] for 

Newtonian fluids, and by Roland et al. [47] for non-Newtonian fluids. The difference between 

flat-plate and cylindrical systems increases with increasing ℎ ��⁄  ratio. The flat-plate model 

with moving barrel is applicable for channel depth-to-diameter ratios ℎ �� < 0.1⁄ . 

 The kinematics are reversed. This means that the screw is considered to be stationary and the 

barrel to be rotating with circumferential velocity v�, calculated according to Equation (1) with 

the barrel diameter ��  and the screw speed �. The circumferential speed is divided into a 

down-channel velocity v�,�  (Equation (2)) and a cross-channel velocity v�,�  (Equation (3)) 

component depending on the screw pitch angel φ�  (Equation (4)), with barrel diameter �� 

and screw pitch �. 

 The leakage flow over the flight gap � is ignored. Usually, both the flight clearance and the 

flow through the clearance are small [8]. 

 The effect of the flights on the polymer melt flow is omitted. This approach is valid for shallow 

screw channels with ℎ �⁄ < 0.1 [8]. Ignoring the effect of the flight flanks means that a two-

dimensional velocity profile is considered with velocity components in the cross- and down-

channel directions only. 

Finally, this leads to the two-dimensional flat-plate model with moving barrel, as shown in 

Figure 2. 

v� = �� � �. (1) 

v�,� = v�  cos(��), (2) 

v�,� = v�  sin(��), (3) 

with 

�� = ������ �
�

�� �
�. (4) 

 

Figure 2. Flat-plate model of the unwound screw channel, (left) the rectangular flow channel; (right) 

the two-dimensional flat-plate model. 

2.2. Governing Equations 
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Determining the flow rate and viscous dissipation in the melt-conveying zone requires the 

balance equations to be solved by considering the boundary conditions. Detailed information on the 

deviation of the governing equations is provided in [40]. 

In addition to the geometric modeling approach, the following assumptions are made to solve 

the balance equations for the flow rate and viscous dissipation: 

1. The fluid is incompressible; 

2. The flow is stationary, fully developed, and isothermal; 

3. Gravitational forces are ignored; and 

4. The fluid is wall adhering. 

Due to these simplifications, the velocity vector is reduced to Equation (5) with the down- and 

cross-channel velocities being functions of the channel height coordinate y only. 

v = �
v�(�)

0
v�(�)

�. (5) 

With these simplifications, the momentum equations are reduced to Equations (6) and (7) for the 

down- and cross-channel directions, respectively. Considering isothermal conditions uncouples the 

momentum equations from the energy equation. The latter is, therefore, no longer required for 

solving the velocity field. The viscous dissipation term can subsequently be evaluated based on the 

velocity profile derived by the momentum equations. 

��

��
=

����

��
. (6) 

��

��
=

����

��
. (7) 

In order to be able to solve the simplified momentum equations for the down- and cross-channel 

velocity profiles, given a down-channel pressure gradient �� ��⁄ , the boundary conditions must be 

defined. These are given by Equations (8)–(11) for a wall-adhering fluid, which is also well known as 

the no-slip condition. Additionally, it must be taken into account that the net cross-channel 

volumetric flow rate must be zero (Equation (12)), which determines the cross-channel pressure 

gradient. This means that the integral of the cross-channel velocity profile over the channel height 

must be zero. 

v�(� = 0) = 0. (8) v�(� = ℎ) = v�,�. (9) 

v�(� = 0) = 0. (10) v�(� = ℎ) = v�,�. (11) 

�̇� = � v�(�) ∙ ��
�

�

= 0. (12) 

The simplified momentum equations (Equations (6) and (7)) are two non-linear partial 

differential equations coupled via the shear-rated dependent viscosity � . The shear-stress 

components are defined by the constitutive equation for the stress tensor � (Equation (13)), which is 

the product of viscosity �  and rate-of-deformation tensor �  (Equation (14)). The latter is the 

symmetric part of the velocity gradient tensor � (Equation (15)). 

� = 2 � �. (13) 

� =
1

2
(� + ��). (14) 

� = ∇v. (15) 

For most polymer melts, the viscosity decreases with increasing shear rate. This behavior is 

called pseudo-plastic or shear-thinning. We consider this pseudo-plastic, non-Newtonian fluid 

behavior by using the power-law model (Equation (16)) with the consistency � , the power-law 

exponent �, and the magnitude of the shear-rate |�̇|. Using the power-law model, an error might be 
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introduced because many polymer melts have a Newtonian plateau in the very low shear region. 

However, the error introduced by the very low shear-rate is not significant. This is because the high 

shear-rate regions determine flow rate and viscous dissipation [12]. Nevertheless, it is recommended 

to compute the power-law parameters for a representative shear-rate that appears in the screw 

channel to obtain best results. The magnitude of the shear-rate—a scalar quantity—is related to the 

second invariant of the rate-of-deformation tensor � and can be calculated according to Equation 

(17). 

� = � |�̇|���. (16) 

|�̇| = �2 (�: �). (17) 

Given the modeling assumptions, the power-law viscosity is reduced to Equation (18). Further, 

by applying the power-law model, the shear-stress components ���  and ���  are reduced to 

Equations (19) and (20), respectively. 

� = � ��
�v�

��
�

�

+ �
�v�

��
�

�

�

���
�

. (18) 

��� = � ��
�v�

��
�

�

+ �
�v�

��
�

�

�

���
�

 
�v�

��
. (19) 

��� = � ��
�v�

��
�

�

+ �
�v�

��
�

�

�

���
�

 
�v�

��
. (20) 

Now we take the shear-stress components (Equations (19) and (20)) and apply them to the 

simplified momentum equations (Equations (6) and (7)), which leads us to our final momentum 

equations for the cross-channel direction (Equation (21)) and the down-channel direction (Equation 

(22)). 

��

��
=

�

��
��(�) 

�v�

��
� =

�

��
�� ��

�v�

��
�

�

+ �
�v�

��
�

�

�

���
�

 
�v�

��
�. (21) 

��

��
=

�

��
��(�) 

�v�

��
� =

�

��
�� ��

�v�

��
�

�

+ �
�v�

��
�

�

�

���
�

 
�v�

��
�. (22) 

Using these momentum equations, the boundary conditions, and the supplementary constraint 

of zero net cross-channel flow, we can determine the down- and cross-channel velocities by means of 

numerical methods as functions of the channel-height coordinate y and the cross-channel pressure 

gradient �� ��⁄ . The flow rate and the viscous dissipation can be evaluated based on the velocity 

profile. The volumetric flow rate is the integral of the down-channel velocity profile v�(�) over the 

cross-sectional area, as given by Equation (23), with � as the number of parallel screw channels and 

� as the channel width. The specific viscous dissipation per unit volume is given by �̇���� = �: �. The 

simplifications above reduce the specific dissipation to Equation (24). The total dissipation over the 

cross-channel area is the integral of the specific dissipation over the cross-channel area (Equation 

(25)). 
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�̇ = � � � v�(�)
�

�

 ��. (23) 

�̇���� = ���  
�v�

��
+ ���  

�v�

��
= � ��

�v�

��
�

�

+ �
�v�

��
�

�

�. (24) 

�̇���� = � � � �̇����(�) ��
�

�

. (25) 

2.3. Theory of Similarity 

2.3.1. Transformation of Governing Equations into Dimensionless Form 

In the next step, the governing equations are transformed into dimensionless form by applying 

the theory of similarity and dimensional analysis. In the fields of fluid dynamics and heat 

engineering, the theory of similarity is a common tool for transforming phenomena observed at 

laboratory scale to the scale of real-world applications [48]. In this work, we sought to obtain 

generalized results that can be applied to any arbitrary real-world screw design by transforming the 

governing equations into dimensionless form. In fact, our solutions are dimensionless—that is, 

indirect. Generally, two systems that are described by the same dimensionless quantities are similar. 

This means that they are described by the same physics, but can operate under different operating 

conditions. Hence, the dimensionless solution for a specific set of independent dimensionless 

influencing parameters applies to all dimensional variations that result in this particular set of 

dimensionless parameters. Moreover, by applying the theory of similarity, the number of 

independent influencing parameters can be reduced dramatically and the scales of the independent 

and dependent variables are harmonized. 

Scaling partial differential equations (i.e., transforming them into dimensionless form) requires 

the following steps [49]: 

1. Identify the independent and dependent variables. 

2. Introduce characteristic values of the independent and dependent variables and make them 

dimensionless. 

3. Insert the dimensionless variables into the governing equations and derive a model that has 

dimensionless variables only. 

4. Make each term dimensionless. Divide by the coefficient in front of any term (preferably by the 

coefficient in front of the term with the highest derivative). 

5. When not yet fixed, define a characteristic quantity for the characteristic values introduced in 

step (2). 

For the problem under consideration, the down- and cross-channel velocities (v� and v�) are 

the dependent variables and the channel height coordinate y is the independent variable. Hence, we 

introduce the dimensionless down-channel velocity ��  (Equation (26)), the dimensionless cross-

channel velocity �� (Equation (27)), and the dimensionless channel-height coordinate � (Equation 

(28)). The down-channel velocity at the top plate (barrel surface) v�,� is chosen as the characteristic 

velocity, and the channel height ℎ as the characteristic length. 

�� =
v�

v�,�
. (26) 

�� =
v�

v�,�
. (27) 

� =
�

ℎ
. (28) 

In the next step, these dimensionless variables are introduced into our governing equations: 

First, the dimensionless variables are applied to the shear-rate-dependent viscosity � (see Equation 

(18)), which results in Equation (29) for the dimensionless viscosity. 
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�∗ =
� ℎ���

� v�,�
��� = |�̇∗|��� = ��

���

��
�

�

+ �
���

��
�

�

�

���
�

. (29) 

Further, the dimensionless variables are applied to the momentum equations to obtain the 

dimensionless momentum equations in the down-channel (Equation (30)) and cross-channel 

(Equation (31)) direction. Making the remaining terms dimensionless yields the dimensionless down-

channel pressure gradient Π�,�  (Equation (32)) and the dimensionless cross-channel pressure 

gradient Π�,� (Equation (33)). 

6 Π�,� =
�

��
��∗

���

��
� =

�

��
���

���

��
�

�

+ �
���

��
�

�

�

���
� ���

��
�. (30) 

6 Π�,� =
�

��
��∗

���

��
� =

�

��
���

���

��
�

�

+ �
���

��
�

�

�

���
� ���

��
�. (31) 

Π�,� =

��
��

 ℎ���

6 � v�,�
� . (32) 

Π�,� =

��
��

 ℎ���

6 � v�,�
� . (33) 

Similarly, the boundary conditions are made dimensionless, which results in Equations (34) to 

(37). The constraint that the net cross-channel flow must be zero is also transformed into 

dimensionless form (Equation (38)). 

��(� = 0) = 0. (34) ��(� = 1) =
v�,�

v�,�
= tan(��) =

�

�� �
. (35) 

��(� = 0) = 0. (36) ��(� = 1) = 1. (37) 

Π�,� = � ��(�) ∙ ��
�

�

= 0. (38) 

Using the dimensionless equations of motions and numerical methods allows the dimensionless 

down- and cross-channel velocity profiles to be determined for a given down-channel pressure 

gradient. Additionally, the zero net cross-channel flow constraint determines the dimensionless 

cross-channel pressure gradient. Nevertheless, there is an effect of the down-channel flow due to the 

shear-rate-dependent viscosity. Since these results allow the flow rate and viscous dissipation to be 

determined, the flow rate and viscous dissipation are also transformed into dimensionless form. The 

dimensionless flow rate is defined by Equation (39) and can be evaluated according to Equation (40) 

based on the dimensionless down-channel velocity profile. The dimensionless specific dissipation is 

defined and calculated according to Equation (41). In analogy to the flow rate, the dimensionless total 

dissipation is defined by Equation (42) and can be evaluated according to Equation (43). 
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Π� =
2 �̇

� � ℎ v�,�
. (39) 

Π� = 2 � ��(�) ��
�

�

. (40) 

��(�) =
�̇���� ℎ���

� v�,�
��� = �∗  ��

���

��
�

�

+ �
���

��
�

�

�. (41) 

Π� =
�̇���� ℎ�

� � � v�,�
���. (42) 

Π� = � ��(�) �� = � ��
���

��
�

�

+ �
���

��
�

�

�

���
�

 ��
�

�

�

�

. (43) 

In summary, by applying the theory of similarity, the governing equations are transformed into 

dimensionless form, which results in three independent dimensionless influencing parameters: 

1. The dimensionless pressure gradient Π�,�; 

2. The power-law exponent �; and 

3. The screw-pitch ratio � ��⁄ . 

2.3.2. Set-Up of Parametric Design Study 

Taking the findings of the dimensional analysis into account, we created three different sets of 

independent design points by varying the dimensionless input parameters Π�,�, �, and � ��⁄ . The 

first data set was used as training set for symbolic regression, and the second as test set. The first and 

second sets together were used for model selection and post-processing, and the third was used as a 

validation set to obtain a more objective and unbiased evaluation of the final model. The symbolic 

regression is described in detail in the Section Analytical Approximation. For Data Set 1 and Data Set 

2, the ranges of the screw-pitch ratio � ��⁄ , the power-law exponent �, and the dimensionless down-

channel pressure gradient Π�,�  are given in Tables 1 and 2, respectively. Note that Data Set 2 is 

related to a data set used in our previous study [40]. For the present study, the range of the screw-

pitch ratio was extended to � ��,��� = 2.4⁄ . Further, we extended the range of the dimensionless 

down-channel pressure gradient. In previous studies [24,39,40], the lower limit for the dimensionless 

down-channel pressure gradient was chosen to achieve dimensionless throughputs of approximately 

Π�,��� ≥ 2.0. This would mean that the throughput is approximately twice the pure drag flow. For 

polymer melts with distinct shear-thinning nature, it follows that the dimensionless down-channel 

pressure gradient is limited to approximately Π�,� ≥ −0.5. Screw calculations have shown that this 

limit is insufficient for special screw designs, such as wave- and energy-transfer screws. Hence, for 

this work the lower limit of the dimensionless down-channel pressure gradient of Data Set 1 was 

extended and fixed to Π�,�,��� = −1.0 for all combinations of the screw pitch ratio � ��⁄  and power-

law exponents �. The resulting range of Π�,� was divided into 40 equidistant divisions. For Data Set 

2, the limitation remained the same, and the resulting range of Π�,� was divided into 60 equidistant 

divisions. For Data Set 3, an independent validation set was generated. Within the parameter range 

of Data Set 1, nine and six random values were chosen, respectively, for the screw-pitch ratio � ��⁄  

and the power-law exponent � (see Table 3). For each combination of these two parameters, the 

resulting range of dimensionless down-channel pressure gradients was divided into 17 equidistant 

divisions. Table 4 summarizes the number of variations for each dimensionless influencing parameter 

and the resulting total number of independent design points for each data set. The chosen range of 

the dimensionless influencing parameters covers almost all materials, operating conditions, and 

screw geometries possible in polymer extrusion. 
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Table 1. Ranges of variation for � ��⁄ , �, and Π�,� for Data Set 1. 

Variable Min Max Increment 

� ��⁄  0.6 2.4 0.2 

� 0.2 1.0 0.1 

Π�,� -1.0 var. (Π�,��� ≤ 0) var. 

Table 2. Ranges of variation for � ��⁄ , �, and Π�,� for Data Set 2. 

Variable Min Max Increment 

t D�⁄  0.6 2.0 0.1 

n 0.2 1.0 0.1 

Π�,� var. (Π�,��� ≥ 2.0) var. (Π�,��� ≤ 0) var. 

Table 3. Values for � ��⁄ , �, and Π�,� for Data Set 3. 

� ��⁄  0.62 0.88 1.29 1.31 1.37 1.61 1.83 2.19 2.35 

�  0.26 0.39 0.52 0.65 0.78 0.91    

��,�  17 equidistant divisions      

Table 4. Summary of variation for � ��⁄ , �, and Π�,� for all three data sets. 

Data Set Quantity � ��⁄  Quantity � Quantity ��,� Total Number 

1 10 9 41 3690 

2 15 9 61 8235 

3 9 6 18 972 

3. Numerical Calculations 

Applying the theory of similarity reduced the number of influencing parameters dramatically 

to three: (i) Π�,� , (ii) �, and (iii) � ��⁄ . These describe completely the physics of the underlying 

problem. Determining the dimensionless target values—the dimensionless throughput Π�  and 

dimensionless dissipation Π�—first requires the dependent dimensionless variables to be calculated. 

These are the dimensionless down-channel and cross-channel velocities. To this end, the 

dimensionless momentum equations in the down-channel and cross-channel directions (Equations 

(30) and (31)) must be solved. Due to the shear-rate-dependent viscosity, these are two non-linear 

coupled partial differential equations with unknown analytical solution that must be solved by 

numerical methods. Partial differential equations can be solved by various numerical methods, for 

instance, the finite difference method (FDM), the finite element method (FEM), and the shooting 

method. It has been shown that all three methods are suitable for solving this problem [39]. For this 

work, we chose the shooting method to compute the numerical solutions. 

3.1. Numerical Solution 

The basic idea of the shooting method is to transform the boundary value problem into an initial 

value problem. To this end, the momentum equations are transformed into explicit form for the 

velocity gradients. First, both dimensionless momentum equations (Equations (30) and (31)) are 

integrated over the dimensionless channel height, which yields Equations (44) and (45). 

6 Π�,� � + �� = �∗  
���

��
. (44) 

6 Π�,� � + �� = �∗  
���

��
. (45) 

Next, the shear-rate-dependent viscosity is substituted. For this, the two integrated momentum 

equations are first squared and then added to obtain Equation (46). This equation can be re-
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formulated by use of Equation (29) to express the dimensionless viscosity �∗ in the form of Equation 

(47). 

�∗�  ��
���

��
�

�

+ �
���

��
�

�

� = �6 Π�,� � + ���
�

+ �6 Π�,� � + ���
�

. (46) 

�∗  = ��6 Π�,� � + ���
�

+ �6 Π�,� � + ���
�

�

���
��

. (47) 

This expression for the dimensionless viscosity �∗ is used in Equations (44) and (45). By further 

rearrangement, the momentum equations are transformed into explicit form for the down-channel 

and cross-channel velocity gradients: 

���

��
=

1

�∗
 �6 Π�,� � + ���. (48) 

���

��
=

1

�∗
 �6 Π�,� � + ���. (49) 

For a given set of dimensionless input parameters (Π�,�, �, and � ��⁄ ), the integration constants 

�� and �� and the dimensionless cross-channel pressure gradient Π�,�, are unknown and must be 

determined. Physically, this means that the integration constants �� and �� are the dimensionless 

wall shear stresses at the screw surface in the down-channel and cross-channel directions, 

respectively. Determining the unknowns requires initial estimates for ��, ��, and Π�,�, which are 

taken from the Newtonian case given by Equations (50) to (52). 

�� = 1 − 3 Π�,�. (50) 

�� = −2 tan(��) = −2 
�

�� �
. (51) 

Π�,� = tan(��) =
�

�� �
. (52) 

With these initial values, the dimensionless velocity profiles can be computed by integrating the 

velocity gradients over the dimensionless channel height (Equations (53) and (54)). Note that the 

initial values are the boundary conditions at the screw wall. 

��(�) = ��(� = 0) + �
���

��

�

�

 ��. (53) 

��(�) = ��(� = 0) + �
���

��

�

�

 ��. (54) 

The integration is done numerically using the Simpson rule. Unless the initial values are perfect, 

the boundary conditions at the top (barrel) wall and the condition that the net cross-channel flow 

must be zero will not be met, and hence there will be some residuals. We applied a Newton-Raphson 

scheme (Equation (55)) to iteratively solve the unknowns until the solution has converged. 

x��� = x� − J(x�)�� [�(x�) − �(x)]. (55) 

For this problem, the vector of the unknown variables x contains the integration constants �� 

and �� and the dimensionless cross-channel pressure gradient Π�,�  (Equation (56)). The function 

vector � contains both dimensionless boundary conditions at the top wall and the dimensionless 

cross-channel volume flow rate (Equation (57)). J(x�)  is the Jacobian containing all partial 

derivatives of the three functions in f with respect to the three variables in x (Equation (58)). The 

partial derivatives are determined numerically by slightly varying �� , �� , and Π�,�  and re-

computing the velocity profiles and the cross-channel volume flow rate. Finally, the new values of 

the unknown variables are calculated according to Equation (59) for the next iteration. This procedure 

converges rapidly and requires between five to ten iterations, depending on the dimensionless 

influencing parameters. With the converged solution for the velocity profiles, the dimensionless 

volume flow rate Π�  (Equation (40)) and the dimensionless dissipation Π�  (Equation (43)) are 

evaluated using the Simpson rule for all numerical integrations. 
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x = �

��

��

Π�,�

�. (56) 

� = �

��(� = 1)

��(� = 1)
Π�,�

� = �

��,�

��,�

Π�,�

�. (57) 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡

���,�
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���,�

���

���,�
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���,�
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���
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⎥
⎥
⎥
⎥
⎥
⎤

. (58) 

�

��,���

��,���

Π�,�,���

� = �

��,�

��,�

Π�,�,�

� − J(x�)��  ��

��,�,�

��,�,�

Π�,�,�

� − �
1

� (�� �)⁄
0

��. (59) 

The parameter setup chosen for the numerical simulations is given in Table 5. The dimensionless 

channel height was divided into 1000 equidistant segments to obtain a total of 1001 nodes. As 

abortion criterion, the dimensionless volume flow rate was chosen. The solution was considered 

converged if the change in the dimensionless volume flow rate ΔΠ� between two iterations was <

10��. Both the number of nodes and the abortion criterion were proven to be sufficient to reach a 

mesh-independent solution for throughput and dissipation. Furthermore, for numerical reasons, the 

dimensionless viscosity was limited to values between a specified maximum and minimum. These 

limits were also tested and had no influence on Π� and Π�, even for low power-law exponents � 

and high dimensionless pressure gradients Π�,�. 

Table 5. Parameter setup chosen for the numerical simulations. 

Parameter Value 

number of nodes 1001 

abortion criterion ∆Π� < 10�� 

variation of �� for linearization 0.01 

variation of �� for linearization 0.01 

variation of Π�,� for linearization 0.01 

max. dimensionless viscosity �∗ 10� 

min. dimensionless viscosity �∗ 10�� 

3.2. Results of the Numerical Calculations 

The comprehensive parametric design study yielded numerical solutions for the dimensionless 

volume flow rate Π� and dissipation Π� as functions of the dimensionless independent influencing 

parameters Π�,�, �, and � ��⁄ . Additionally, it provided results for the dimensionless cross-channel 

pressure gradient Π�,�. Figure 3 plots the dimensionless volume flow rate over the dimensionless 

down-channel pressure gradient for a screw-pitch ratio of � �� = 1.0⁄  and various power-law 

exponents �. It can be clearly seen that the throughput-pressure relationship becomes increasingly 

non-linear and pressure-sensitive with decreasing power-law exponent. Previous research 

[8,19,22,24] provided results for Π� ≤ 2.0 (highlighted by a dashed red line). Our results for this area 

show very good agreement with the previous two-dimensional analyses. Here, we also present 

results for dimensionless pressure gradients Π�,� ≥ −1.0 for over ridden zones. For polymer melts 

with distinct shear-thinning nature, this can give rise to dimensionless volume flow rates that are 

significantly higher than Π� ≤ 2.0.  Figure 4 shows the dimensionless throughput-pressure 
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relationship for various screw-pitch ratios and a power-law exponent of � = 0.2, and highlights the 

significant increase in dimensionless volume flow rate for strongly over-ridden screw zones. 

Additionally, it can be seen that the dimensionless throughput decreases with increasing screw-pitch 

ratio for both pressure-generating and slightly over-ridden screw zones. For highly over-ridden 

screw zones, the dimensionless throughput increases with increasing screw-pitch ratio. This effect is 

due to the influence of the cross-channel flow on the shear-rate-dependent viscosity. For a distinctly 

negative dimensionless down-channel pressure gradient (exceeding Π�,� ≈ −0.5 for � = 0.2), the 

effect of the screw-pitch ratio on the dimensionless volume flow rate decreases because the down-

channel pressure flow dominates the flow behavior. In Figure 5, the dimensionless flow rate as a 

function of the dimensionless down-channel pressure gradient is given for a power-law exponent 

� = 0.2  and a screw-pitch ratio � �� = 1.0⁄  for the whole range of the dimensionless pressure 

gradient. For a dimensionless down-channel pressure gradient of Π�,� = −1.0, the dimensionless 

volume flow rate exceeds values of Π� = 35. 

 

Figure 3. Dimensionless volume flow Π� over dimensionless down-channel pressure gradient Π�,� 

of a two-dimensional flow for a screw-pitch ratio of � �� = 1.0⁄  and various power-law exponents. 

The dashed red line highlights the limit of previous models at Π� = 2. 

 

Figure 4. Dimensionless volume flow Π� over dimensionless down-channel pressure gradient Π�,� 

of a two-dimensional flow for a power-law exponent of � = 0.2 and various screw-pitch ratios. 

Results are shown up to a dimensionless flow rate of Π� = 5. The dashed red line highlights the limit 

of previous models at Π� = 2. 
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Figure 5. Dimensionless volume flow Π� over dimensionless down-channel pressure gradient Π�,� 

of a two-dimensional flow for a power-law exponent of � = 0.2  and a screw-pitch ratio of 

� �� = 1.0⁄ . The dashed red line highlights the limit of previous models at Π� = 2. 

Figure 6 plots the dimensionless dissipation Π� for various power-law exponents and a screw-

pitch ratio of � �� = 1.0⁄ . Due to the relation between the dimensionless throughput and the 

dimensionless down-channel pressure gradient, the dimensionless dissipation can be given both 

relative to the dimensionless down-channel pressure gradient (see Figure 6a) and relative to the 

dimensionless volume flow rate (Figure 6b). Generally, it can be seen that the dimensionless 

dissipation reaches its minimum for pure drag flow (Π�,� = 0). For moderate dimensionless pressure 

gradients (positive and negative), the dissipation decreases with decreasing power-law exponent. For 

higher magnitudes, the dissipation increases with decreasing power-law exponents. Especially for 

Π�,� ≤ −0.5, the dissipation becomes highly dependent on the dimensionless down-channel pressure 

gradient and the power-law exponent. Considering constant dimensionless volume flow rates, the 

dissipation decreases with decreasing power-law exponent. Figure 6b indicates the limitation of 

Π� ≤ 2.0 of our previous study [40]. Figure 7 shows the dimensionless dissipation for various power-

law exponents �  and � �� = 2.4⁄ . Comparison of the results for � �� = 2.4⁄  with those for 

� �� = 1.0⁄  shows that the influence of the power-law exponent on the dissipation increases with 

increasing screw-pitch ratio. Especially for moderate dimensionless pressure gradients, this effect is 

significant. This is due to the effect of the cross-channel flow on the shear rate and thus on the 

viscosity. With increasing screw-pitch ratio the shear rate increases, which leads to an increased 

influence of the shear-thinning effect on the viscosity. Figure 8 plots the dimensionless dissipation 

for a power-law exponent � = 0.2  and various screw-pitch ratios � ��⁄ . For both constant 

dimensionless down-channel pressure gradient and volume flow rate, dissipation increases with 

increasing screw-pitch ratio. This is due to an increased cross-channel flow that results in an increased 

shear-rate, and thus an increase in viscous dissipation. As already observed for the dimensionless 

volume flow rate, the effect of the screw-pitch ratio on the dissipation decreases for strongly over-

ridden screw zones because the flow behavior is dominated by the pressure flow. Note that in our 

previous study [40] the dimensionless down-channel pressure gradient for � = 0.2 and over-ridden 

screw zones was limited to the range Π�,�,��� ≈ [−0.55; −0.43] depending on the screw-pitch ratio. 

For � = 0.2 and � �� = 1.0⁄ , the dissipation for the whole range of Π�,� is given in Figure 9. For this 

combination, the dimensionless down-channel pressure gradient was limited to Π�,�,��� = −0.44. 

Below this limit the dissipation becomes strongly dependent on the dimensionless down-channel 

pressure gradient, exceeding a dimensionless dissipation of Π� = 100 for Π�,� = −1.0; in contrast, 

the maximum dimensionless dissipation is Π�,��� = 5.75 for the traditional limit. 
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Figure 6. Dimensionless dissipation Π�  over dimensionless down-channel pressure gradient Π�,� 

(a) and over the dimensionless volume flow rate Π� (b) for various power-law exponents � and a 

screw-pitch ratio of � �� = 1.0⁄ . 

 

Figure 7. Dimensionless dissipation Π�  over dimensionless down-channel pressure gradient Π�,� 

(a) and over the dimensionless volume flow rate Π� (b) for various power-law exponents � and a 

screw-pitch ratio of � �� = 2.4⁄ . 

 

Figure 8. Dimensionless dissipation Π�  over dimensionless down-channel pressure gradient Π�,� 

(a) and over the dimensionless volume flow rate Π� (b) for various screw-pitch ratios � ��⁄ . 
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Figure 9. Dimensionless dissipation Π�  over dimensionless down-channel pressure gradient Π�,� 

(a) and over the dimensionless volume flow rate Π� (b) for a power-law exponent of � = 0.2 and a 

screw-pitch ratio of � �� = 1.0⁄ . For the parameter setup shown, the dashed red lines indicate (a) the 

limit for the dimensionless down-channel pressure gradient of the previous study and (b) the limit 

for the dimensionless volume flow rate. 

For small power-law exponents � and large negative dimensionless down-channel pressure 

gradients Π�,� , we observed that the influence of the screw-pitch ratio on the dimensionless 

throughput and dimensionless dissipation becomes minimal and vanishes. This indicates that the 

pressure flow dominates the total flow behavior. Ignoring the cross-channel flow and assuming that 

the down-channel pressure flow dominates the complete flow behavior allows the expression for the 

total dimensionless flow rate Π� to be transformed into Equation (60). This represents a drag-flow 

component and the dimensionless pressure flow component Π�,�  (Equation (61)) for a one-

dimensional flow of power-law fluids. The total dimensionless dissipation Π� can be transformed 

into Equation (62), which represents the dimensionless dissipation of one-dimensional pure pressure 

flow. 

Π� = 1 + Π�,�. (60) 

Π�,� = −sign�Π�,�� 
3

�
� �

2 � + 1
 �Π�,��

�
�. (61) 

Π� =  
3

���
�  �

2 � + 1
 �Π�,��

���
� . (62) 

Figure 10 illustrates the difference between the one-dimensional pressure-flow approach and 

the numerical solutions for negative dimensionless down-channel pressure gradients. It can clearly 

be seen that for n = 0.2 the flow is dominated by the pressure flow for Π�,� ≤ −0.75. With higher 

power-law exponents, the shear-thinning effect decreases, and thus larger negative dimensionless 

down-channel pressure gradients are needed to reach the point where pure pressure flow dominates 

the flow behavior. 
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Figure 10. Difference between numerical data set and limiting approach for large negative 

dimensionless pressure gradients according to Equations (60) to (62), expressed in percentages for 

various power-law exponents: (a) dimensionless throughput Π�, (b) dimensionless dissipation Π�. 

To gain a deeper understanding of the strong influence of the dimensionless pressure gradient 

on the throughput and dissipation for small power-law exponents, Figure 11 plots the down-channel 

velocity (a), cross-channel velocity (b), dimensionless viscosity (c), and dimensionless dissipation (d) 

over the dimensionless channel height for a power-law exponent n = 0.2 and a screw-pitch ratio of 

t D� = 1.0⁄  for various pressure gradients. It can be seen that decreasing the dimensionless down-

channel pressure gradient from Π�,� = −0.4  to Π�,� = −0.6  increases the down-channel velocity 

disproportionately. For Π�,� = −0.6 in the center of the screw-channel, the flow in the down- and 

cross-channel directions resembles plug flow. The shear rate is therefore close to zero and the 

viscosity very high. On the other side, near the walls, the viscosity is close to zero and the shear rate 

very high. This can also be observed in the dimensionless dissipation profile, where dissipation 

increases near the walls and decreases in the center with increasing magnitude of the dimensionless 

pressure gradient. This effect can be attributed to the shear stress distribution of pure pressure flow. 

For pure pressure flow, it follows that the shear stress is linear over the channel height, being 

maximum at the walls and zero in the center. According to the power-law model, the shear-rate is 

related to the shear-stress by |�̇|~�� �⁄ . This means that for low power-law exponents, high shear-

rates (velocity gradients) are expected near the wall and low shear-rates near the center. However, 

the down-channel flow in the metering section is affected by the cross-channel flow. However, with 

increasing dimensionless down-channel pressure gradient, this influence decreases and the down-

channel flow dominates the overall behavior. Following, this almost causes plug flow in the center, 

not only for the down-channel, but also for the cross-channel flow, due to the coupling via the shear-

rate dependent viscosity. 
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Figure 11. Dimensionless channel height �  versus dimensionless down-channel velocity ��  (a), 

dimensionless cross-channel velocity ��  (b), dimensionless viscosity �∗  (c), and dimensionless 

specific dissipation �� (d) for various dimensionless down-channel pressure gradients Π�,�, � = 0.2, 

and � �� = 1.0⁄ . 

Another interesting parameter is the dissipation per throughput. This gives an indication of the 

potential melt temperature increase; for an adiabatic extrusion process with temperature-

independent viscosity, this value would be proportional to the melt temperature increase. Figure 12 

shows the dimensionless dissipation per throughput over the dimensionless down-channel pressure 

gradient for a power-law exponent n = 0.2 and various screw-pitch ratios. As observed above, the 

dissipation increases with increasing screw-pitch ratio because the cross-channel flow increases. 

Above we mentioned that the total dimensionless dissipation is minimal for pure drag flow. The 

dissipation per throughput, however, is minimal for slightly over ridden melt-conveying zones. In 

pressure build-up zones, the dissipation per throughput increases significantly with increasing 

pressure gradient because the throughput decreases and becomes zero, reaching the dam-up 

pressure. Considering the dissipation per throughput, it is even more obvious that the influence of 

the screw-pitch ratio vanishes for strongly over ridden screw zones because the pressure-flow 

component becomes dominating. 
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Figure 12. Dimensionless dissipation per dimensionless volume flow Π� Π�⁄  over dimensionless 

down-channel pressure gradient Π�,� for a power-law exponent of � = 0.2 and various screw-pitch 

ratios � ��⁄ . 

4. Analytical Approximation 

The results presented above provide numerical solutions for the dimensionless throughput Π�, 

and dimensionless dissipation Π�  depending on the independent dimensionless influencing 

parameters identified by applying the theory of similarity. Since numerical solutions are time-

consuming and require considerable expert knowledge, analytical models that describe the 

throughput and dissipation as functions of the influencing parameters are usually desired for 

practical screw design. We have used HeuristicLab [50], an open-source software to derive models 

describing the relationships of target variables and several independent variables by means of 

symbolic regression based on genetic programming. 

4.1. Symbolic Regression—Modeling 

In general, symbolic regression searches for a mathematical expression for the relation between 

the target variable and the influencing variables without specifying the structure of the model. In 

contrast to symbolic regression, conventional regression requires a predefined model structure and 

searches for the coefficients that best fit the data. If the preselected model structure does not fit the 

data well, other functions must be tested until a good model is found. This procedure is time-

consuming and the results of the analysis strongly depend on the functions and models tested. 

Symbolic regression, however, involves finding both the best model structure and its coefficients, 

optimizing them simultaneously [41,51]. Affenzeller et al. [52] provided fundamental theoretical 

background on genetic algorithms and genetic programming. Genetic algorithms are population-

based metaheuristics; the basic principle is to apply evolutionary concepts from natural evolution. 

This means that starting with a random initial population of individual models, the models are first 

evaluated and then selected, and finally a new population of solutions is produced. The most 

important genetic operators for producing a new population are [52]: 

 Parent selection, which means to select parents for “mating” and recombination to generate off-

springs that form the next generation. For producing a new generation the two operations 

crossover and mutation are used. 

 Crossover, also called recombination, basically takes two or more different solutions and 

recombines them to form a new solution. 

 Mutation is a random modification that alters one or more solutions. Since mutation can result 

in a solution that differs completely from the previous solution, it is possible to arrive at even 

better solutions. 
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 Replacement is choosing which of the new candidate solutions generated by crossover and 

mutation operations become members of the next generation and replace some of the old 

solutions. 

Solving a practical problem by using genetic programming requires the following to be specified 

[51]: 

 a terminal set, which is a set of input variables, functions with no argument, and constants; 

 a function set, which consists of functions that are used to generate the symbolic regression 

solution (e.g., arithmetic functions, trigonometric functions, Boolean operations); 

 a fitness function, which is a quality measure for evaluating the generated solutions (e.g., mean 

squared error, mean absolute error); 

 algorithm and control parameters, which include control parameters of the algorithm, such as 

population size, crossover and mutation probability; 

 a termination criterion, which is generally the maximum number of generations or a problem-

specific success criterion. 

The first two specifications basically define the search space for symbolic regression based on 

genetic programming. If the function set were unrestricted, the search space would theoretically be 

infinite. Usually, tree-based genetic programming is used, and the symbolic regression solution is 

given in the form of a symbolic expression tree, as shown in Figure 13. Symbolic regression based on 

genetic programming is well suited to this problem, because firstly, the underlying model structure 

is unknown, and secondly, the result is a mathematical expression that can be manipulated and easily 

implemented into screw-calculation programs. 

 

Figure 13. Symbolic regression model example in mathematical notation and in symbolic expression 

tree form. 

In our case, the aim was to develop three different analytical equations: one for the 

dimensionless throughput Π� as a function of the dimensionless pressure gradient Π�,�, the power-

law exponent � , and the screw-pitch ratio � ��⁄ ; one for the dimensionless dissipation Π�  as a 

function of Π�,� , �, and � ��⁄ ; and a final one for Π�  as a function of Π� , �, and � ��⁄ . Table 6 

summarizes the target and influencing variables for the three approximation equations. 

Table 6. Target and influencing variables for the analytical approximation equations. 

Target Variable Influencing Variables 

Π� Π�,�, �, � ��⁄  

Π� Π�,�, �, � ��⁄  

Π� Π�, �, � ��⁄  

The NSGA-II algorithm [53] was used to derive the analytical approximation equations for the 

throughput model Π� = ��Π�,�, �, � ��⁄ �. For the two dissipation models Π� = ��Π�,�, �, � ��⁄ � and 

Π� = �(Π�, �, � ��⁄ ), we employed the NSGA-II and OSGA algorithms [54]. The NSGA-II is a multi-

objective non-dominated sorting genetic algorithm that simultaneously optimizes model quality and 
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model complexity [55]. The OSGA is the offspring selection genetic algorithm that optimizes model 

quality only. Aside from being accurate, the models to be obtained had to be simple and interpretable. 

Thus, we sought the optimal trade-off between high model accuracy and low model complexity. In 

order to reduce the search space and limit model complexity, we restricted the model size and the 

function set. The model size was limited to a maximum tree length of 100. For the function set, four 

different setups were created with different functions and levels of complexity allowed, as listed in 

Table 7. Note that the argument of more complex functions (square, exponential, logarithm, sine, and 

cosine) were limited in order to avoid nested functions. To account for statistical variations in the 

initial population, each of the four settings was repeated 25 times by conducting an experiment, 

which resulted in a total of 100 models for each target variable. 

Table 7. Mathematical building blocks for the analytical approximation—four different setups. 

Tree grammar Variant (a) (b) (c) (d) 

Constant     

State variable     

Addition     

Multiplication     

Division     

Square     

Exponential     

Logarithm     

Sine     

Cosine     

Model quality was determined by means of the coefficient of determination—Pearson R2 

(Equation (63)). The coefficient of determination ��, with �� as the real values, ��� as the regression 

values, and �� as the mean value of the real values, was optimized by the algorithm searching for 

regression models. The coefficient of determination is in the range between 0 and 1, where �� = 0 

means that the symbolic regression model does not fit the simulation data at all, and �� = 1 means 

that the symbolic regression model fits the simulation data perfectly [52]. 

�� = 1 −
∑ (�� − ���)

��
���

∑ (�� − ��)��
���

. (63) 

For generating the analytical approximation models, Data Set 1 was used as training set of the 

algorithms. These models were then analyzed based on Data Sets 1 and 2, and the most promising 

models were preselected for the subsequent procedure. Combining Data Sets 1 and 2, these 

preselected models were simplified, after which their constants were further optimized. Finally, for 

each analytical approximation equation, the best solution was selected by evaluating the model with 

Data Sets 1 and 2. For the dimensionless throughput model, the coefficient of determination ��, the 

mean absolute error (MAE) (Equation (64)), and the maximum absolute error (Equation (65)) were 

analyzed. For the dissipation models, the mean relative error (MRE) (Equation (66)) and the 

maximum relative error (Equation (67)) were analyzed in addition. 
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��� =
1

�
 �|�� − ���|

�

���

. (64) 

���� = max(|�� − ���|). (65) 

��� =
1

�
 �

|�� − ���|

��

�

���

. (66) 

����� = max �
|�� − ���|

��
�. (67) 

4.2. Symbolic Regression—Results 

We derived three different symbolic regression results by modeling the 3690 design points of 

Data Set 1 and by additionally using the 8235 design points of Data Set 2 for the final optimization 

and selection procedure. One model was developed for the dimensionless throughput Π�, and two 

models were developed for the dimensionless dissipation Π�. 

4.2.1. Dimensionless Throughput Π� 

Our analytical approximation equation predicting the dimensionless throughput Π�  as a 

function of Π� =  ��Π�,�, �,  � ��⁄ �  is given by Equation (68), with the sub-functions ��  to �� 

containing 32 coefficients. The sub-functions and the corresponding coefficients are given in the 

Appendix A1 in Equations (74) to (79) and Table A1, respectively. This developed model predicts the 

two-dimensional throughput-pressure relationship of non-Newtonian fluids for pressure-generating 

and-pressure consuming metering channels, including strongly over-ridden screw zones. The overall 

model structure is relatively simple, consisting only of arithmetic operations and sine and cosine 

functions. Since the model has no nested functions, and as the arguments of sine and cosine are 

constants and variables only, mathematical manipulations such as differentiation are easily possible. 

Additionally, the model is easy to implement in a simulation program, and fast computation can be 

achieved. 

Π��Π�,�, �,  � ��⁄ � = �� + �� +
1

�� + ��
+ �� ��. (68) 

The accuracy of the model was evaluated based on an error analysis. To this end, the coefficient 

of determination, the mean absolute error, and the maximum absolute error were evaluated for both 

data sets: Data Set 1 was used for training the model, and Data Set 2 was additionally used for model 

preselection and final optimization. The results of the error analysis are listed in Table 8. With this 

model, a coefficient of determination of �� = 0.999599  and above can be achieved, the mean 

absolute error is in the range of ��� ≈ 0.01, and the maximum absolute error is ���� = 0.15169 

and ���� = 0.088444, respectively, for Data Sets 1 and 2. Note that the maximum error ���� =

0.15169 for Data Set 1 represents a data point for slightly negative dimensionless throughputs. 

Excluding the design points that are beyond the limit of negative throughputs (Π� ≤ 0) shifts the 

maximum absolute error for Data Set 1 to ����
∗ = 0.086905, which is in the same range as that for 

Data Set 2. Scatter plots showing the approximated solutions versus the exact numerical solutions for 

Data Sets 1 and 2 are given in Figure 14a,b, respectively. The dashed lines indicate an absolute error 

of 0.06. The scatter plot illustrates the excellent accuracy of the presented model. A comparison of the 

dimensionless throughput pressure model with the numerical simulation results is given by Figure 

15 in the form of dimensionless throughput-pressure curves. Again, it can be seen that the extended 

approximation model for Π� =  ��Π�,�, �,  � ��⁄ � fits the simulation results really accurately. 

Table 8. Results of the error analysis of the approximation model Π� = ��Π�,�, �,  � ��⁄ �. 

Quality Measure Unit Data Set 1 Data Set 2 
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Pearson’s R2 - 0.999974 0.999599 

mean abs. error - 0.011689 0.009782 

max. abs. error - 0.151690 0.088444 

 

Figure 14. Scatter plot of the dimensionless throughput model Π� = ��Π�,�, �, � ��⁄ � (a) for Data Set 

1 and (b) for Data Set 2. The dashed red lines indicate an absolute error of 0.06. 

 

Figure 15. Comparison of the approximation model for the dimensionless flow rate Π� as a function 

of Π�,�, �, and � ��⁄ , with the simulation results for various power law exponents and a screw-pitch 

ratio of � ��⁄ = 1.6 (a), and for various screw-pitch ratios and a power-law exponent of � = 0.4 (b). 

4.2.2. Dimensionless Dissipation Π� 

We developed two analytical approximation equations that predict the dimensionless 

dissipation Π� of a two-dimensional flow of power-law fluids in metering channels. Equation (69) 

predicts the dimensionless dissipation Π� as a function of Π� =  ��Π�,�, �,  � ��⁄ �, and Equation (70) 

as a function of Π� =  �(Π�, �,  � ��⁄ ). ��  to ���  are the sub-functions of Π� =  ��Π�,�, �,  � ��⁄ �, 

which contain a total number of 45 coefficients, as given in the Appendix A2 by Equations (80) to (89) 

and Table A2, respectively. �� to �� are the sub-functions of Π� =  �(Π�, �,  � ��⁄ ) and contain a 

total number of 44 coefficients, as given in the Appendix A3 by Equations (90) to (97) and Table A3, 

respectively. Analogously to the throughput models, the overall model structure is also relatively 

simple for the two dissipation models, as they consist only of arithmetic operations and exponential 

and logarithmic functions. Again, no nested functions are present, and the arguments of the 

exponential and logarithmic functions consist of constants and variables only. This enables easy 



Polymers 2019, 11, 334 26 of 37 

 

mathematical manipulation and implementation, as well as fast computation of the dissipation 

models. 

Π��Π�,�, �,  � ��⁄ � = �� + ��(�� + ��) + �� ��  ��� +
��

�� + ���
�. (69) 

Π�(Π�, �,  � ��⁄ ) = �� + ��  ��� +
��

��
+

��

�� + ��
�. (70) 

Our dissipation models predict the two-dimensional dissipation of non-Newtonian fluids for 

pressure-generating and pressure-consuming metering channels, including strongly overridden 

screw zones. The effect of the cross-channel flow, which has a significant impact on the viscous 

dissipation, is accounted for by the screw-pitch ratio � ��⁄ . Predictions are possible for either a given 

pressure-gradient or a given throughput. Both viscous dissipation models exhibit outstanding 

accuracy, as shown by an error analysis using Data Sets 1 and 2, the results of which are listed in 

Table 9. Mean relative errors of ��� ≤ 0.4% and ��� ≤ 0.27% are achieved by the dissipation 

models Π� = ��Π�,�, �,  � ��⁄ � and �� = �(��, �,  � ��⁄ ), respectively. The maximum error of both 

models is ����� = 4.17% , and thus significantly lower than 5% . The excellent quality of the 

dissipation models is also highlighted by scatter plots showing the approximated dissipation versus 

the corresponding simulation results in Figure 16. The dashed lines indicate a maximum relative 

error of ±5%, and, as confirmed by the error analysis, it can be seen that all data points are clearly 

within ±5%. 

Table 9. Results of the error analysis for the approximation model Π� = ��Π�,�, �,  � ��⁄ � and Π� =

�(Π�, �,  � ��⁄ ). 

Quality Measure Unit 
�� = ����,�, �,  � ��⁄ � �� = �(��, �,  � ��⁄ ) 

Data Set 1 Data Set 2 Data Set 1 Data Set 2 

Pearson’s R2 - 0.999997 0.999830 0.999999 0.999934 

mean abs. error - 0.009385 0.007797 0.006564 0.004990 

max. abs. error - 0.109750 0.082440 0.084250 0.043206 

mean rel. error % 0.3571 0.4031 0.2415 0.2696 

max. rel. error % 4.169 4.170 3.530 3.521 



Polymers 2019, 11, 334 27 of 37 

 

 

Figure 16. Scatter plots of the dimensionless dissipation models: Π� = ��Π�,�, �, � ��⁄ � (a) for Data 

Set 1, (b) for Data Set 2; Π� = �(Π�, �, � ��⁄ ) (c) for Data Set 1, (d) for Data Set 2. The dashed red lines 

indicate a relative error of ±5%. 

For both dissipation models developed, Figure 17 shows a comparison between approximated 

and simulated dissipation for a constant screw-pitch ratio and various power-law exponents (a), (c), 

and for constant power-law exponent and different screw pitch ratios (b), (d). Again, it can be seen 

that the results of both extended approximation models Π� = ��Π�,�, �, � ��⁄ �  and Π� =

�(Π�, �, � ��⁄ ) fit the simulation values really accurately. 
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Figure 17. Comparison of approximation models for the dimensionless dissipation Π�  with the 

simulation results for: (a) Π� = ��Π�,�, �, � ��⁄ � for various power-law exponents and � ��⁄ = 1.6; 

(b) Π� = ��Π�,�, �, � ��⁄ �  for various screw-pitch ratios and � = 0.3 ; (c) Π� = �(Π�, �, � ��⁄ )  for 

various power-law exponents and � ��⁄ = 1.6; and (d) Π� = �(Π�, �, � ��⁄ ) for various screw-pitch 

ratios and � = 0.3. 

5. Validation 

To obtain a more objective and unbiased assessment of the accuracy of our models, we tested 

them on a data set that had not been used for training, model selection, and model optimization—

Data Set 3. Variation of the dimensionless influencing parameters for Data Set 3, described above and 

listed in Table 3, resulted in a total of 927 design points for the final model evaluation. The parameter 

range was within the scope of validity defined by Data Set 1. The values of the dimensionless down-

channel pressure gradient Π�,� , the power-law exponent �, and the screw-pitch ratio � ��⁄  were 

defined randomly and differ from those used for training and optimizing the models. The results of 

an error analysis based on Data Set 3 are listed in Table 10. With the throughput model Π� =

��Π�,�, �,  � ��⁄ � , a coefficient of determination of �� = 0.999825  and a mean absolute error of 

��� = 0.013374  is achieved, which indicates excellent accuracy of the model. Note that the 

maximum absolute error ���� = 0.231581 is equivalent to a relative error �� = 1.819%. With the 

dissipation models, mean relative errors ��� ≤ 0.4%  and maximum relative errors ����� ≤

4.66% are achieved, which also indicates excellent accuracy. All three models exhibit very good 

performance on the independent evaluation data set. 
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Table 10. Evaluation results of the error analysis for the approximation models. 

Quality Measure Unit �����,�, �,  � ��⁄ � �����,�, �,  � ��⁄ � ��(��, �,  � ��⁄ ) 

Pearson’s �� - 0.999825 0.999845 0.999978 

mean abs. error - 0.013374 0.022295 0.008686 

max. abs. error - 0.231581 1.07895 0.226912 

mean rel. error %  0.4056 0.2470 

max. rel. error %  3.976 4.663 

Figure 18 compares the simulated and approximated throughput-pressure relationships for the 

power-law exponents chosen for the evaluation set and a screw-pitch ratio of � �� = 1.37⁄ . In Figure 

19, a comparison of simulation and approximation is given for the dissipation based on the evaluation 

data set for various power-law exponents and a screw-pitch ratio of � �� = 1.37⁄ . Figure 19a shows 

the approximation model Π� = ��Π�,�, �, � ��⁄ � , and Figure 19b the approximation model Π� =

�(Π�, �, � ��⁄ ). As confirmed by the error analysis, excellent agreement with the simulation results 

can be observed for all three models. Our extended symbolic regression models for predicting the 

pumping capability and viscous dissipation of two-dimensional flows in single-screw extrusion are, 

therefore, highly accurate, not only on the training data but on independent evaluation data within 

the complete range of application. This means that accurate predictions are guaranteed within the 

complete range of validity. Note that the range of validity is defined by the ranges of the 

dimensionless influencing parameters of the parametric design study (see Table 1). The broad scope 

of the parametric design study, however, covers almost all polymer melts and processing conditions. 

Moreover, it covers virtually all screw designs, including general-purpose screws and special screw 

designs, such as wave and energy-transfer screws. 

 

Figure 18. Comparison of approximation model for the dimensionless volume flow Π�  over 

dimensionless down-channel pressure gradient Π�,�  of a two-dimensional flow, for a screw-pitch 

ratio of � �� = 1.37⁄  and various power-law exponents based on the evaluation data set. 
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. 

Figure 19. Comparison of approximation models for the dimensionless dissipation Π� as a function 

of the dimensionless influencing parameters for � �� = 1.37⁄  and various power-law exponents 

based on the evaluation data set. The approximation model Π� = ��Π�,�, �, � ��⁄ � is shown in (a), and 

Π� = �(Π�, �, � ��⁄ ) is shown in (b). 

6. Conclusion 

We have presented three generalized symbolic regression models for predicting the two-

dimensional polymer melt flow in the metering channel of a single-screw extruder: 

1. Π� as a function of Π�,�, �, and � ��⁄ ; 

2. Π� as a function of Π�,�, �, and � ��⁄ ; and 

3. Π� as a function of Π�, �, and � ��⁄ . 

These models take into account the effect of the non-Newtonian fluid behavior and cross-

channel flow, covering an extended range of applications, including strongly over-ridden screw 

zones. Hence, our models apply for both general purpose screws, as well as special screw designs, 

like wave and energy-transfer screws, covering almost all possible processing conditions. By 

applying the theory of similarity, we identified a set of independent dimensionless influencing 

parameters that fully describe the two-dimensional flow of polymer melts in metering channels: the 

dimensionless pressure gradient Π�,�, the power-law exponent �, and the screw-pitch ratio � ��⁄ . 

Due to the relationship between the dimensionless flow rate Π� and the dimensionless pressure-

gradient Π�,� , it was possible to identify a second, different set of independent dimensionless 

influencing parameters for the viscous dissipation: the dimensionless flow rate Π�, the power-law 

exponent �, and the screw-pitch ratio � ��⁄ . Based on the findings of our dimensional analysis, an 

extensive parametric design study was carried out, which resulted in numerical solutions for 

throughput and dissipation. The ranges of the dimensionless influencing parameters were chosen 

such that they cover almost all polymer materials and processing conditions occurring in polymer 

extrusion. Unlike with existing models, the lower limit of the dimensionless down-channel pressure 

gradient was not limited to achieve approximately Π� ≤ 2.0, but was fixed to Π�,�,��� = −1.0. Screw 

calculations have shown that for special screw designs, such as wave and energy-transfer screws, and 

for polymer melts with distinct shear-thinning behavior, the lower limit for the dimensionless down-

channel pressure gradient of previous models is insufficient. Additionally, we extended the range for 

the screw-pitch ratio significantly. Our approximation equations were derived by applying symbolic 

regression based on genetic programming. All three models are continuous over the whole range of 

applications, simple, and contain a moderate number of coefficients. In contrast to previously 

presented approximation equations for the throughput-pressure relationship, our model has no 

complex and deeply nested functions of sine, cosine, exponential, and logarithmic functions. Rather, 

the arguments of these functions are combinations of constants and variables only. This is also the 

case for the dissipation models. Additionally, the presented models accurately approximate the 

numerical solutions, as proven by means of an independent and unbiased evaluation data set. The 
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throughput model yields a coefficient of determination �� = 0.999825 and a mean absolute error 

��� = 0.013374. The dissipation models yield a coefficient of determination �� ≥ 0.999845, a mean 

relative error ��� ≤ 0.4%, and a maximum relative error ����� ≤ 4.66%. 

Performing minor adaptions of the boundary conditions, our models are additionally applicable 

to injection molding. To this end, the velocity boundary conditions have to be rewritten as 

v�,� = v� cos(��) + �̇  sin(��), (71) 

v�,� = v�  sin(��) − �̇  cos(��), (72) 

with the axial retraction speed �̇. The dimensionless parameters are then related to these velocity 

boundary conditions and the screw-pitch ratio has to be adapted according to 

tan(��) =
v�,�

v�,�
. (73) 

Our models have a simple structure and can be implemented easily in screw-calculation routines 

or any other application. Implementations of pumping models in screw-calculation routines are 

shown by [56] and [57], which also cover solids conveying and melting. Melt-conveying, however, is 

one of the most critical functional zones. Moreover, easy mathematical operations, like forming the 

derivative, are possible. Additionally, our models enable fast and stable prediction of both the 

throughput-pressure relationship and viscous dissipation without the need for complex, time-

consuming, and computationally expensive numerical procedures, which require lots of expertise 

knowledge. Although these models are not capable of outperforming numerical simulations in terms 

of accuracy, as they approximate the numerical solutions for a large search space, they are 

considerably faster than solving the flow equations numerically. Since viscous dissipation is mainly 

responsible for the axial melt temperature increase, our models for the dissipation provide an 

excellent basis for calculating the axial melt-temperature development. Combining the models for 

the throughput-pressure relationship and the viscous dissipation allows the effect of the temperature-

dependent viscosity on the axial pressure profile to be considered. This means non-isothermal 

throughput-pressure calculations are possible. In addition, for model-based extrusion control, 

accurate predictions of the extrusion characteristics are necessary, like the dissipated energy is 

important for multi-zone temperature control. Note that for screw calculations the dimensionless 

influencing parameters must first be determined and then the dimensionless target variables 

calculated, which must finally be transformed back to the dimensional representation. 
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Appendix A 

Nomenclature 

Symbol Parameter Symbol Parameter 

A1–A6 sub-functions � melt density 

B1–B10 sub-functions p hydrostatic pressure 

C1–C68 sub-functions D rate-of-deformation tensor 
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a00–a31 constants L velocity gradient tensor 

b00–b44 constants τ viscous stress tensor 

c00–c43 constants τij components of the stress tensor 

Db barrel diameter �̇ volumetric flow rate 

h channel height �̇���� specific viscous dissipation 

w channel width �̇���� viscous dissipation 

i 
number of parallel screw 

channels 
ξ 

dimensionless coordinate up-channel 

direction 

e flight width νz, νx dimensionless velocities 

δ flight clearance �̇∗ dimensionless shear rate 

t screw pitch �∗ dimensionless viscosity 

��  helix angle at outer diameter τij* 
dimensionless components of the stress 

tensor 

vb barrel velocity 
Π�,�, 

Π�,� 
dimensionless pressure gradients 

vb,x barrel velocity in z-direction Π� dimensionless volumetric flow rate 

vb,z barrel velocity in x-direction �� 
dimensionless specific viscous 

dissipation 

x, y, z spatial coordinates Π� dimensionless viscous dissipation 

v velocity vector J Jacobi matrix 

vx, vy, 

vz 
velocity components R2 coefficient of determination 

N screw speed MAE mean absolute error 

�  viscosity ���� maximum absolute error 

�̇ shear rate MRE mean relative error 

K consistency ����� maximum relative error 

n power-law exponent   

A1. Sub-Functions of Equation (68): �� = ����,�, �, � ��⁄ � 

�� = ��� + ��� � + ��� Π�,� + ��� sin���� + ��� Π�,��. (74) 

�� =
Π�,�

��� + ��� � + ��� Π�,� + ���  � �� +
1

��� + ��� � + ��� sin���� Π�,��
�

. 
(75) 

�� = ��� + ��� � + ��� Π�,� + ���  � ��⁄ . (76) 

�� =
��� Π�,�

��� + ��� � + ��� Π�,� + ���  � �� + sin���� Π�,��⁄
. (77) 

�� =
cos���� Π�,��

��
. (78) 

�� = ��� + ��� Π�,� +
��� Π�,�

�

� + ��� Π�,�
+ ���  � �� + ��� sin���� Π�,��⁄ . (79) 
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Table A1. Rounded values of the constants for Π� = ��Π�,�, �, � ��⁄ �. 

Constant Value Constant Value Constant Value 

a00 −0.12014 a11 −3.4056 a22 0.18277 

a01 0.25392 a12 −26.252 a23 2.6134 

a02 2.0905 a13 1.5616 a24 3.2436 

a03 3.2395 a14 2.0161 a25 −0.0017916 

a04 2.9348 a15 2.1787 a26 0.078972 

a05 0.70199 a16 0.61167 a27 0.066612 

a06 −0.050140 a17 0.42387 a28 0.14623 

a07 −0.95819 a18 −5.8881 a29 −0.0033694 

a08 −0.32345 a19 0.77710 a30 −0.019723 

a09 0.0014903 a20 3.1672 a31 4.1031 

a10 −27.930 a21 2.8402   

A2. Sub-Functions of Equation (69): �� = ����,�, �, � ��⁄ � 

�� = ��� + ��� � + ��� Π�,�
� + ���(� + ���  � ��⁄ )�. (80) 

�� = ��� + ��� �. (81) 

�� = ��� �� + ��� Π�,� + ����� + Π�,�(��� + ���  � ��⁄ ) + ���  � ��⁄ �. (82) 

�� = ��� Π�,�
�  � ��⁄ + ���  � ��⁄ + ���  � ��⁄ �

. (83) 

�� = ���� � Π�,�
� (��� + ��� �)���� + ��� Π�,��. (84) 

�� = ���� � + ��� + ��� � + ��� Π�,� + ��� Π�,�
� . (85) 

�� = ��� + ���� � + ���� ��,� (��� + ��� �) + ��� Π�,� + ���  � ��⁄ . (86) 

�� = ��� + ���  � ��⁄ . (87) 

�� = ��� + ���� � + ���� ����� ��,� + ��� ���� ��,�. (88) 

��� = ��� � + ��� �� + ��� Π�,�
� + ���  � ��⁄ �

. (89) 

Table A2. Rounded values of the constants for Π� = ��Π�,�, �, � ��⁄ �. 

Constant Value Constant Value Constant Value 

b00 0.86172 b15 −0.26376 b30 −11.314 

b01 0.10200 b16 −24.303 b31 −10.082 

b02 3.0156 b17 −0.25811 b32 −0.052856 

b03 0.0014701 b18 0.26056 b33 −393.64 

b04 16.281 b19 −7.1580 b34 −90.030 

b05 1.6249 b20 16.080 b35 −68.179 

b06 −1.6156 b21 18.452 b36 4.8797 

b07 −0.0099142 b22 98.805 b37 −14.870 

b08 −0.10634 b23 −136.28 b38 −11.171 

b09 0.13419 b24 356.33 b39 190.64 

b10 0.25265 b25 416.31 b40 2.1170 

b11 −0.061868 b26 3.2554 b41 91.599 
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b12 −0.10227 b27 4.6268 b42 −224.08 

b13 0.17363 b28 3.1055 b43 120.47 

b14 0.19517 b29 1.6456 b44 20.069 

A3. Sub-Functions of Equation (70): �� = �(��, �, � ��⁄ ) 

�� = ��� + ��� � + ��� Π� + ���  � ��⁄ . (90) 

�� = ���� �. (91) 

�� = ��� + ��� � + ��� Π� + ���  � ��⁄ + ���  � ��⁄ �
+ ��� ln(��� + ��� Π�). (92) 

�� = ���� � ���� ���� � ��⁄ + ��� � + ��� Π� + ��� Π�
� + ���  � ��⁄ �

�. (93) 

�� = ��� + ���� ����� �� + ��� � + ��� Π� + ��� Π�
� + ���  � ��⁄ + ���  � ��⁄ �

. (94) 

�� = ��� + ��� ���� �� + ��� Π� + ��� Π�
� + ���  � ��⁄ �

. (95) 

�� = ��� + ���� � + ���� �� + ��� �� + ��� Π� + ���  � �� + ���  � ��⁄ �⁄ . (96) 

�� =
��� Π�

� ln(��� + ��� Π�)
. (97) 

Table A3. Rounded values of the constants for Π� = �(Π�, �, � ��⁄ ). 

Constant Value Constant Value Constant Value 

c00 −4.0149 c15 0.19534 c30 −5.7695 

c01 −0.77962 c16 6.1094 c31 −2.9650 

c02 1.4469 c17 −11.854 c32 2.0976 

c03 0.11684 c18 10.1740 c33 0.18684 

c04 1.7719 c19 4.0632 c34 1.2438 

c05 −8.4896 c20 5.7393 c35 −0.10144 

c06 0.76173 c21 1.3311 c36 −3.5935 

c07 −0.45230 c22 −1.4480 c37 0.69822 

c08 −0.14219 c23 0.92724 c38 −0.029327 

c09 0.017573 c24 0.27244 c39 −0.061845 

c10 2.6071 c25 1.8007 c40 0.011676 

c11 17.055 c26 1.2338 c41 0.85656 

c12 −0.25102 c27 0.83026 c42 4.2487 

c13 −0.87942 c28 −0.68791 c43 0.64400 

c14 42.781 c29 0.28069   
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