
polymers

Article

Extended Regression Models for Predicting the
Pumping Capability and Viscous Dissipation of
Two-Dimensional Flows in Single-Screw Extrusion

Wolfgang Roland 1,* , Michael Kommenda 2, Christian Marschik 1 and Jürgen Miethlinger 1

1 Institute of Polymer Extrusion and Compounding, Johannes Kepler University Linz, 4040 Linz, Austria;
christian.marschik@jku.at (C.M.); juergen.miethlinger@gmail.com (J.M.)

2 Josef Ressel Centre for Symbolic Regression, School of Informatics, Communication and Media, University of
Applied Sciences Upper Austria, 4232 Hagenberg, Austria; Michael.Kommenda@fh-hagenberg.at

* Correspondence: wolfgang.roland@jku.at; Tel.: +43-732-2468-6589

Received: 10 January 2019; Accepted: 12 February 2019; Published: 14 February 2019
����������
�������

Abstract: Generally, numerical methods are required to model the non-Newtonian flow of
polymer melts in single-screw extruders. Existing approximation equations for modeling the
throughput–pressure relationship and viscous dissipation are limited in their scope of application,
particularly when it comes to special screw designs. Maximum dimensionless throughputs of
ΠV < 2.0, implying minimum dimensionless pressure gradients Πp,z ≥ −0.5 for low power-law
exponents are captured. We present analytical approximation models for predicting the pumping
capability and viscous dissipation of metering channels for an extended range of influencing
parameters (Πp,z ≥ −1.0, and t/Db ≤ 2.4) required to model wave- and energy-transfer screws.
We first rewrote the governing equations in dimensionless form, identifying three independent
influencing parameters: (i) the dimensionless down-channel pressure gradient Πp,z, (ii) the power-law
exponent n, and (iii) the screw-pitch ratio t/Db. We then carried out a parametric design study
covering an extended range of the dimensionless influencing parameters. Based on this data set, we
developed regression models for predicting the dimensionless throughput-pressure relationship and
the viscous dissipation. Finally, the accuracy of all three models was proven using an independent
data set for evaluation. We demonstrate that our approach provides excellent approximation.
Our models allow fast, stable, and accurate prediction of both throughput-pressure behavior and
viscous dissipation.

Keywords: polymer processing; modeling and simulation; extrusion; symbolic regression;
power-law fluid

1. Introduction

Single-screw extruders are the most important machinery in polymer processing. They are
used in continuous extrusion lines to produce finished or semi-finished products (e.g., pipes, sheets,
films and profiles) and in recycling. However, single-screw plasticizing units are not limited to
continuous processes, but are also used in injection molding and as feeding units in blow molding
and thermoforming processes. Hence, a majority of the polymers produced pass a single-screw unit at
least once in their life cycle. The melt-conveying zone—also often referred to as the pumping zone—is
one of the most crucial functional zones in single-screw extruders. It must convey the melt forward
and provide sufficient pressure to pump it through the die. Especially in smooth-bore single-screw
extruders, the melt-conveying zone is the rate-limiting zone and must generate most of the pressure
needed at the screw tip. In grooved-fed single-screw extruders, however, the solids conveying zone is
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already capable of building up most of the required pressure, and the following zones are often over
ridden. Hence, the melt-conveying zone can be both pressure-generating and pressure-consuming.
Further, a significant proportion of the total dissipated energy is generated within the metering zone,
which, therefore, has a major influence on the final melt temperature.

1.1. Review

The first analysis of the metering zone was published anonymously in 1922 [1] and further
improved by Rowell and Finlayson in 1928 [2]. They developed a one-dimensional isothermal
Newtonian pumping model using the flat-plate model, a widely accepted approach to describing the
flow channel. Assuming the viscosity to be Newtonian and temperature-independent, an analytical
model was derived for the melt-conveying behavior where the total flow rate is a linear superposition of
drag- and pressure-flows, which can be solved independently. Several further studies have investigated
and extended the theory for Newtonian fluids. Carley et al. [3] included the die characteristic and
tapered screw channels. However, not only the throughput-pressure relation is of interest, but also
the power and torque required to drive the screw. Based on the existing Newtonian flow theory, an
equation for the power consumption was therefore presented by Mallouk and McKelvey [4]. The screw
drive power is given by the product of the viscous force acting on the barrel surface and its area. The
cross-channel flow was first included by Mohr et al. [5]. They derived the down- and cross-channel
velocity profiles independently and superposed them to derive the shear imposed on the fluid. In
a subsequent study Mohr and Mallouk [6] included the cross-channel flow in the calculation of the
power requirement. In order to validate the Newtonian pumping model, McKelvey [7] performed
experiments on a single-screw extruder using a viscous Newtonian fluid (corn syrup) and a nearly
Newtonian polymer melt.

These early studies of Newtonian fluids gave first insights into the polymer melt flow in
single-screw extruders. Nevertheless, for more accurate analyses, the non-Newtonian fluid behavior
of polymer melts must be taken into account. Polymer melts generally exhibit shear-thinning—also
called pseudo-plastic—fluid behavior. This means that the viscosity decreases with increasing shear
rate. Hence, drag and pressure flows are no longer independent of each, which results in a non-linear
relationship for the throughput-pressure characteristics. Additionally, down- and cross-channel
flows influence each other, albeit not directly but via the shear-rate-dependent viscosity. Taking the
non-Newtonian fluid behavior into account significantly increases the complexity of the problem,
and the flow equations can no longer be solved analytically, but require numerical techniques. Even
for the simplest non-Newtonian case—a one-dimensional, isothermal flow of a power-law fluid
without flight effects—no exact, closed-form analytical solution has yet been found [8]. Several
authors [8–12] have presented analytical solutions for the Poiseuille-Couette flow of a power-law fluid
that require the integration constant to be determined numerically. In principle, all these solutions
give similar results. Krüger [10] additionally proposed a representative viscosity approach that uses
the linear Newtonian to approximate the non-linear throughput-pressure characteristic. Kroesser
and Middleman [11] compared their results with the traditional Newtonian pumping model and the
superposition introduced by Krüger, applying the representative viscosity. A general and detailed
derivation of the analytical approach for calculating the throughput-pressure characteristic of a
one-dimensional flow of a power-law fluid within an infinite channel width was provided by Tadmor
and Gogos [12]. For accurate predictions, however, the cross-channel flow cannot be ignored, because
it influences the down-channel flow via the shear-rate-dependent viscosity, and vice versa. Hence, the
flow rate is also affected by the transverse flow. Addressing this issue, Griffith [13] derived numerical
results for isothermal and non-isothermal fully developed two-dimensional flows of power-law fluids.
For the non-isothermal case, a constant fluid temperature is assumed for one streamline. Zamodits and
Pearson [14] followed a similar approach, reporting results for an isothermal flow, as well as a flow
with a superposed steady temperature profile of a power-law fluid for pseudo-plastic and dilatant
fluids. Stellar [15] presented an algebraic solution for the two-dimensional flow of a power-law fluid.
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This algebraic solution, however, requires the integration constants for the velocity profiles to be solved
numerically. An alternative approach was introduced by Booy [16], who investigated the effect of the
transverse flow on the effective viscosity. Detailed reviews of the traditional melt-conveying models
were published by Tadmor and Klein [17] and by Fenner [18].

All the approaches to modeling the non-Newtonian throughput-pressure relationship of polymer
melts in single-screw extruders presented above require numerical methods. For practical screw
design, however, numerical methods are not always desirable, because they are complex, require high
computational effort, and can be time-consuming and unstable. For this reason, Rauwendaal [8,19]
introduced correction factors that describe the non-Newtonian behavior. Applying these correction
factors allows the Newtonian throughput-pressure relationship to be used, while avoiding complex
numerical calculations. Note that these correction factors only hold for pressure-generating zones
with the helix angle in the range from 15◦ to 25◦. Potente [20,21] followed a similar approach: First, an
approximation was presented of the one-dimensional flow of power-law fluids for pressure-generating
and pressure-reducing melt-conveying zones that is valid for a range of the dimensionless throughput
rate of 0.55 ≤ ΠV ≤ 1.45 [20]. Then, the model was improved with regard to the effect of the transverse
flow on the throughput-pressure relationship [21]. It was shown that the improved two-dimensional
model covers the numerical values in the range 0.55 ≤ ΠV ≤ 1.0 for the dimensionless throughput
and in the range 0◦ ≤ ϕb ≤ 17.65◦ for the helix angle. A further improvement of Potente’s model
was developed by Effen [22], who extended the range of the dimensionless influencing parameters.
Effen’s model is valid for the range 0.1 ≤ ΠV ≤ 2.0 for the dimensionless throughput, 0.2 ≤ n ≤ 1.0
for the power-law exponent, and 0.8 ≤ t/Db ≤ 2.0 for the screw-pitch ratio. His model, however,
distinguishes between eight different regions with different values for the model coefficients. A detailed
summary of Potente’s and Effen’s models was given by White and Potente [23]. The models described
above are all linear or piecewise-linear approximations of the throughput-pressure relationship. A
generalized two-dimensional model that describes both pressure-generating and pressure-consuming
melt-conveying zones (0.0 ≤ ΠV ≤ 2.0) was presented by Pachner et al. [24]. Additionally, it considers
wide ranges of the screw pitch ratio (0.75 ≤ t/Db ≤ 2.0) and the power-law exponent (0.2 ≤ n ≤ 0.9).
Pachner et al. avoided the traditional formulation that superposes the drag- and pressure-flows
and developed a closed analytical approximation equation for the throughput-pressure relationship,
applying symbolic regression based on genetic programming. Spalding and Campbell [25,26] provided
a correction factor for the rotational flow—drag flow—that considers the deviation of the drag flow of
power-law fluids in finite channels compared to the drag flow for a Newtonian fluid. Their approach,
however, does not include a shape factor for the pressure-flow. Kim and Kwon [27] introduced a total
shape factor to include the influence of the flights on the flow rate. This total shape factor gives the
ratio between the flow rate of the three-dimensional flow to that by the two-dimensional. Nevertheless,
an analytical approximation is only given for Newtonian fluid. Marschik et al. [28–30] presented a
three-dimensional metering model for polymer melts, taking into account the rate-limiting effect of
the screw flights on the flow rate. By means of experiments [31] and three-dimensional simulations
of wave-screws [32] the validity and practicability of the regression models [24,29] in capturing the
melt-conveying zone of single-screw extruders was demonstrated.

For practical screw design, not only the isothermal throughput-pressure relationship, but also viscous
dissipation, power-consumption, and melt-temperature development, are of great significance. Mallouk
and McKelvey [4] demonstrated the power calculation for Newtonian fluids. Mohr and Mallouk [6]
extended the analysis to include the transverse flow. McKelvey [33] introduced the calculation of
the adiabatic melt temperature development for a temperature-dependent Newtonian fluid leading
to a logarithmic melt temperature increase. Tadmor and Klein [17] summarized this work, pointing
out that the real extrusion process lies between the adiabatic and isothermal conditions, and that the
adiabatic case defines the maximum melt temperature to be expected. Including the non-Newtonian
fluid behavior of polymer melts, Potente [21] developed approximation equations for the drive power of
melt-conveying zones, considering one- and two-dimensional flows. These models apply in the range
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0.55 ≤ ΠV ≤ 1.25 for the dimensionless throughput. Potente and Obermann [34] further improved
these models, performing 2.5D finite-element (FE) simulations. Application of these equations for
non-isothermal throughput-pressure calculations that take into account constant Brinkmann numbers
was shown by White and Potente [23]. However, the power consumption is not directly responsible
for the melt-temperature increase. Rather, the screw-drive power is a combination of pressure build-up
work and viscous dissipation, where the latter is the main source of the melt-temperature increase in a
melt-conveying channel. Campbell et al. [35] investigated the viscous dissipation of a Newtonian fluid for
both barrel- and screw-rotation theory. Using a representative viscosity approach, Rauwendaal [8]
developed various methods for predicting the melt-temperature increase. In his approaches, the
pressure and temperature development are coupled via a temperature-dependent viscosity. With this
representative viscosity, the viscous dissipation is approximated simply by pure drag flow. Thus, the
additional dissipation caused by the pressure flow, as well as the coupling between drag- and pressure
flows, and the transverse flow are ignored. Derezinski [36–38] presented numerical solutions for the
axial melt-temperature developments of power-law and Carreau-Yasuda viscosities. In his work, heat
conduction through the barrel wall was taken into account by heat transfer coefficients and a fixed
barrel-wall temperature. However, a representative shear rate was used for calculating the viscosity. Note
that all these models for calculating the axial melt-temperature development are based on the lumped
energy equation, and therefore predict a bulk melt temperature. Using a representative shear rate is
insufficient for an accurate prediction of the viscous dissipation—the contributions of the pressure flow,
the effect of the non-Newtonian fluid behavior, and the coupling effect of pressure-, drag-, and transverse
flows via the shear-rate-dependent viscosity cannot be ignored. To address this matter, previous studies
derived numerical results [39] and presented generalized symbolic regression models [40] of one- and
two-dimensional flows of power-law fluids. These models cover a wide range of processing conditions
(0.0 ≤ ΠV ≤ 2.0) of polymeric materials (0.2 ≤ n ≤ 1.0) and screw geometries (0.5 ≤ t/Db ≤ 2.0). Further,
they enable fast, simple, accurate, and stable prediction of viscous dissipation in the melt-conveying zone.

The novelty of recent work [24,29,40] by our research group is that analytical approximation equations
are generated using symbolic regression based on genetic programming. In contrast to classical regression
analysis, in symbolic regression based on genetic programming, the structure of the model does not have
to be predefined. This enables the identification of unknown non-linear relationships. Koza [41] was the
first who described the principles of symbolic regression in detail. Schmidt and Lipson [42] demonstrated
that genetic programming is suitable for discovering analytical relationships that underlie physical
phenomena in nature by automatically searching motion-tracking data. In modeling the non-linearity of
electric machines, Bramerdorfer et al. [43] applied symbolic regression using genetic programming to data
derived by finite-element simulations. Symbolic regression was shown to achieve the highest accuracies
among various other modeling strategies. It is not limited to simulation data, but can also be applied to
experimental data, as shown by Kronberger et al. [44] in modeling wet tribological systems; they first
carried out extensive experimental tests and then applied symbolic regression. However, data-based
modeling using experimental data may require data preprocessing. Symbolic regression is also not limited
to technical contexts, but can be applied in any field, for instance, physics, biology, medicine, and economy,
as shown in [45] for macro-economic time-series modeling.

1.2. Overview

In this work, we present extended symbolic regression models for predicting the pumping capability
and viscous dissipation of two-dimensional flows in single-screw extrusion. The existing models are
limited to dimensionless throughput rates of ΠV ≤ 2. Especially for polymer melts with a distinct
shear thinning nature (i.e., with a power law exponent in the range of 0.2 to 0.4), this means that the
dimensionless pressure gradient is limited to approximately Πp,z ≥ −0.5. However, screw calculations of
special screw designs, such as wave and energy-transfer screws, have shown heavily overridden screw
zones, especially in the compression regions. This means that considerably large negative dimensionless
pressure gradients (up to Πp,z ≈ −0.9) can be observed for power-law exponents of about 0.2 to 0.4.
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Since the existing models are not valid in this range, their predictions are insufficiently accurate for both
throughput-pressure calculation and viscous dissipation. Further, the only general two-dimensional
throughput-pressure model, presented by Pachner et al. [24], is discontinuous beyond its application
range, featuring regions where it becomes infinite and abruptly changes the sign, and therefore has limited
extrapolation capabilities. In summary, the existing models are not suitable for these special screw designs
(wave and energy-transfer screws). Because wave and energy-transfer screws show interruptions of the
screw flights and additionally in the sections around the wave peaks the screw channels are very shallow,
two-dimensional modeling is preferred, which best represents the geometry of these screw channels.

In order to address these issues, we present general and continuous extended models that also
consider negative dimensionless pressure gradients of up to Πp,z = −1.0 for power-law exponents ranging
from n = 0.2 to n = 1.0. Further, the proposed symbolic regression models cover an extended range for
the screw-pitch ratio (t/Db = 0.6 to t/Db = 2.4). These models are suitable for both general-purpose
screws and special screw designs, such as wave and energy-transfer screws. Additionally, they cover
pressure-generating and pressure-reducing melt-conveying zones. The dissipation models can be used to
calculate the axial melt-temperature profile and consequently the non-isothermal throughput-pressure
behavior. First, a fundamental analysis of the governing equations was conducted based on the theory of
similarity and then a comprehensive numerical parametric design study was carried out for the extended
application range. Based on these results, approximation equations were derived by means of symbolic
regression using genetic programming. We carried out comprehensive modeling and model pre-selection,
analyzing the accuracy of the models on training data and on additional test data. These models were
further simplified and optimized, and subsequently the final models were selected. Finally, we performed
an error analysis, additionally validating the model with a third, independent validation set. Figure 1
shows a schematic of the work flow.
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2. Flow Analysis

2.1. Geometric Modeling Approach

Modeling the melt-conveying zone of a single-screw extruder requires a geometric representation
of the screw channel. In this work we used the following approach:

• The flat-plate assumption is applied for modeling the melt-conveying zone of a single-screw
extruder. To this end, the helical screw channel is unwound and considered as a flat rectangular
channel. The barrel surface is represented by an infinite flat plate. This approach, which ignores
the influence of the curvature, is widely accepted in science and industry. Note that the channel
curvature influences the polymer melt flow, as addressed by Sun and Rauwendaal [46] for
Newtonian fluids, and by Roland et al. [47] for non-Newtonian fluids. The difference between
flat-plate and cylindrical systems increases with increasing h/Db ratio. The flat-plate model with
moving barrel is applicable for channel depth-to-diameter ratios h/Db < 0.1.

• The kinematics are reversed. This means that the screw is considered to be stationary and the barrel
to be rotating with circumferential velocity vb, calculated according to Equation (1) with the barrel
diameter Db and the screw speed N. The circumferential speed is divided into a down-channel
velocity vb,z (Equation (2)) and a cross-channel velocity vb,x (Equation (3)) component depending
on the screw pitch angel ϕb (Equation (4)), with barrel diameter Db and screw pitch t.

• The leakage flow over the flight gap δ is ignored. Usually, both the flight clearance and the flow
through the clearance are small [8].

• The effect of the flights on the polymer melt flow is omitted. This approach is valid for
shallow screw channels with h/w < 0.1 [8]. Ignoring the effect of the flight flanks means
that a two-dimensional velocity profile is considered with velocity components in the cross- and
down-channel directions only.

Finally, this leads to the two-dimensional flat-plate model with moving barrel, as shown in
Figure 2.

vb = DbπN. (1)

vb,z = vb cos(ϕb), (2)

vb,x = vb sin(ϕb), (3)

with

ϕb = arctan
(

t
Dbπ

)
. (4)
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2.2. Governing Equations

Determining the flow rate and viscous dissipation in the melt-conveying zone requires the balance
equations to be solved by considering the boundary conditions. Detailed information on the deviation
of the governing equations is provided in [40].

In addition to the geometric modeling approach, the following assumptions are made to solve the
balance equations for the flow rate and viscous dissipation:

1. The fluid is incompressible;
2. The flow is stationary, fully developed, and isothermal;
3. Gravitational forces are ignored; and
4. The fluid is wall adhering.

Due to these simplifications, the velocity vector is reduced to Equation (5) with the down- and
cross-channel velocities being functions of the channel height coordinate y only.

v =

 vx(y)
0

vz(y)

. (5)

With these simplifications, the momentum equations are reduced to Equations (6) and (7) for the
down- and cross-channel directions, respectively. Considering isothermal conditions uncouples the
momentum equations from the energy equation. The latter is, therefore, no longer required for solving
the velocity field. The viscous dissipation term can subsequently be evaluated based on the velocity
profile derived by the momentum equations.

∂p
∂x

=
∂τyx

∂y
. (6)

∂p
∂z

=
∂τyz

∂y
. (7)

In order to be able to solve the simplified momentum equations for the down- and cross-channel
velocity profiles, given a down-channel pressure gradient dp/dz, the boundary conditions must be
defined. These are given by Equations (8)–(11) for a wall-adhering fluid, which is also well known as
the no-slip condition. Additionally, it must be taken into account that the net cross-channel volumetric
flow rate must be zero (Equation (12)), which determines the cross-channel pressure gradient. This
means that the integral of the cross-channel velocity profile over the channel height must be zero.

vx(y = 0) = 0. (8)

vx(y = h) = vb,x. (9)

vz(y = 0) = 0. (10)

vz(y = h) = vb,z. (11)

.
Vx =

∫ h

0
vx(y)·dy = 0. (12)

The simplified momentum equations (Equations (6) and (7)) are two non-linear partial differential
equations coupled via the shear-rated dependent viscosity η. The shear-stress components are defined
by the constitutive equation for the stress tensor τ (Equation (13)), which is the product of viscosity
η and rate-of-deformation tensor D (Equation (14)). The latter is the symmetric part of the velocity
gradient tensor L (Equation (15)).

τ = 2ηD. (13)
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D =
1
2

(
L + LT

)
. (14)

L = ∇v. (15)

For most polymer melts, the viscosity decreases with increasing shear rate. This behavior is called
pseudo-plastic or shear-thinning. We consider this pseudo-plastic, non-Newtonian fluid behavior by
using the power-law model (Equation (16)) with the consistency K, the power-law exponent n, and the
magnitude of the shear-rate

∣∣ .
γ
∣∣. Using the power-law model, an error might be introduced because

many polymer melts have a Newtonian plateau in the very low shear region. However, the error
introduced by the very low shear-rate is not significant. This is because the high shear-rate regions
determine flow rate and viscous dissipation [12]. Nevertheless, it is recommended to compute the
power-law parameters for a representative shear-rate that appears in the screw channel to obtain best
results. The magnitude of the shear-rate—a scalar quantity—is related to the second invariant of the
rate-of-deformation tensor D and can be calculated according to Equation (17).

η = K
∣∣ .
γ
∣∣n−1. (16)

∣∣ .
γ
∣∣ = √2(D : D). (17)

Given the modeling assumptions, the power-law viscosity is reduced to Equation (18). Further, by
applying the power-law model, the shear-stress components τyx and τyz are reduced to Equations (19)
and (20), respectively.

η = K

[(
∂vx

∂y

)2
+

(
∂vz

∂y

)2
] n−1

2

. (18)

τyx = K

[(
∂vx

∂y

)2
+

(
∂vz

∂y

)2
] n−1

2
∂vx

∂y
. (19)

τyz = K

[(
∂vx

∂y

)2
+

(
∂vz

∂y

)2
] n−1

2
∂vz

∂y
. (20)

Now we take the shear-stress components (Equations (19) and (20)) and apply them
to the simplified momentum equations (Equations (6) and (7)), which leads us to our final
momentum equations for the cross-channel direction (Equation (21)) and the down-channel direction
(Equation (22)).

∂p
∂x

=
∂

∂y

(
η(y)

∂vx

∂y

)
=

∂

∂y

K

[(
∂vx

∂y

)2
+

(
∂vz

∂y

)2
] n−1

2
∂vx

∂y

. (21)

∂p
∂z

=
∂

∂y

(
η(y)

∂vz

∂y

)
=

∂

∂y

K

[(
∂vx

∂y

)2
+

(
∂vz

∂y

)2
] n−1

2
∂vz

∂y

. (22)

Using these momentum equations, the boundary conditions, and the supplementary constraint of
zero net cross-channel flow, we can determine the down- and cross-channel velocities by means of
numerical methods as functions of the channel-height coordinate y and the cross-channel pressure
gradient ∂p/∂x. The flow rate and the viscous dissipation can be evaluated based on the velocity
profile. The volumetric flow rate is the integral of the down-channel velocity profile vz(y) over the
cross-sectional area, as given by Equation (23), with i as the number of parallel screw channels and w
as the channel width. The specific viscous dissipation per unit volume is given by

.
qdiss = τ : L. The
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simplifications above reduce the specific dissipation to Equation (24). The total dissipation over the
cross-channel area is the integral of the specific dissipation over the cross-channel area (Equation (25)).

.
V = iw

∫ h

0
vz(y)dy. (23)

.
qdiss = τyx

∂vx

∂y
+ τyz

∂vz

∂y
= η

[(
∂vx

∂y

)2
+

(
∂vz

∂y

)2
]

. (24)

.
QDiss = iw

∫ h

0

.
qdiss(y)dy. (25)

2.3. Theory of Similarity

2.3.1. Transformation of Governing Equations into Dimensionless Form

In the next step, the governing equations are transformed into dimensionless form by applying
the theory of similarity and dimensional analysis. In the fields of fluid dynamics and heat engineering,
the theory of similarity is a common tool for transforming phenomena observed at laboratory scale
to the scale of real-world applications [48]. In this work, we sought to obtain generalized results that
can be applied to any arbitrary real-world screw design by transforming the governing equations
into dimensionless form. In fact, our solutions are dimensionless—that is, indirect. Generally, two
systems that are described by the same dimensionless quantities are similar. This means that they
are described by the same physics, but can operate under different operating conditions. Hence, the
dimensionless solution for a specific set of independent dimensionless influencing parameters applies
to all dimensional variations that result in this particular set of dimensionless parameters. Moreover,
by applying the theory of similarity, the number of independent influencing parameters can be reduced
dramatically and the scales of the independent and dependent variables are harmonized.

Scaling partial differential equations (i.e., transforming them into dimensionless form) requires
the following steps [49]:

1. Identify the independent and dependent variables.
2. Introduce characteristic values of the independent and dependent variables and make

them dimensionless.
3. Insert the dimensionless variables into the governing equations and derive a model that has

dimensionless variables only.
4. Make each term dimensionless. Divide by the coefficient in front of any term (preferably by the

coefficient in front of the term with the highest derivative).
5. When not yet fixed, define a characteristic quantity for the characteristic values introduced in

step (2).

For the problem under consideration, the down- and cross-channel velocities (vz and vx) are the
dependent variables and the channel height coordinate y is the independent variable. Hence, we
introduce the dimensionless down-channel velocity νz (Equation (26)), the dimensionless cross-channel
velocity νx (Equation (27)), and the dimensionless channel-height coordinate ξ (Equation (28)). The
down-channel velocity at the top plate (barrel surface) vb,z is chosen as the characteristic velocity, and
the channel height h as the characteristic length.

νz =
vz

vb,z
. (26)

νx =
vx

vb,z
. (27)

ξ =
y
h

. (28)
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In the next step, these dimensionless variables are introduced into our governing equations: First,
the dimensionless variables are applied to the shear-rate-dependent viscosity η (see Equation (18)),
which results in Equation (29) for the dimensionless viscosity.

η∗ =
ηhn−1

Kvn−1
b,z

=
∣∣∣ .
γ
∗
∣∣∣n−1

=

[(
∂νz

∂ξ

)2
+

(
∂νx

∂ξ

)2
] n−1

2

. (29)

Further, the dimensionless variables are applied to the momentum equations to obtain the
dimensionless momentum equations in the down-channel (Equation (30)) and cross-channel (Equation
(31)) direction. Making the remaining terms dimensionless yields the dimensionless down-channel
pressure gradient Πp,z (Equation (32)) and the dimensionless cross-channel pressure gradient Πp,x

(Equation (33)).

6Πp,z =
∂

∂ξ

(
η∗

∂νz

∂ξ

)
=

∂

∂ξ


[(

∂νz

∂ξ

)2
+

(
∂νx

∂ξ

)2
] n−1

2
∂νz

∂ξ

. (30)

6Πp,x =
∂

∂ξ

(
η∗

∂νx

∂ξ

)
=

∂

∂ξ


[(

∂νz

∂ξ

)2
+

(
∂νx

∂ξ

)2
] n−1

2
∂νx

∂ξ

. (31)

Πp,z =
∂p
∂z hn+1

6Kvn
b,z

. (32)

Πp,x =
∂p
∂x hn+1

6Kvn
b,z

. (33)

Similarly, the boundary conditions are made dimensionless, which results in Equations (34) to
(37). The constraint that the net cross-channel flow must be zero is also transformed into dimensionless
form (Equation (38)).

νx(ξ = 0) = 0. (34)

νx(ξ = 1) =
vb,x

vb,z
= tan(ϕb) =

t
Dbπ

. (35)

νz(ξ = 0) = 0. (36)

νz(ξ = 1) = 1. (37)

ΠV,x =
∫ 1

0
νx(ξ)·dξ = 0. (38)

Using the dimensionless equations of motions and numerical methods allows the dimensionless
down- and cross-channel velocity profiles to be determined for a given down-channel pressure
gradient. Additionally, the zero net cross-channel flow constraint determines the dimensionless
cross-channel pressure gradient. Nevertheless, there is an effect of the down-channel flow due to the
shear-rate-dependent viscosity. Since these results allow the flow rate and viscous dissipation to be
determined, the flow rate and viscous dissipation are also transformed into dimensionless form. The
dimensionless flow rate is defined by Equation (39) and can be evaluated according to Equation (40)
based on the dimensionless down-channel velocity profile. The dimensionless specific dissipation is
defined and calculated according to Equation (41). In analogy to the flow rate, the dimensionless total
dissipation is defined by Equation (42) and can be evaluated according to Equation (43).

ΠV =
2

.
V

iwhvb,z
. (39)
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ΠV = 2
∫ 1

0
νz(ξ)dξ. (40)

πq(ξ) =

.
qdisshn+1

Kvn+1
b,z

= η∗
[(

∂νz

∂ξ

)2
+

(
∂νx

∂ξ

)2
]

. (41)

ΠQ =

.
QDisshn

iwKvn+1
b,z

. (42)

ΠQ =
∫ 1

0
πq(ξ)dξ =

∫ 1

0

[(
∂νz

∂ξ

)2
+

(
∂νx

∂ξ

)2
] n+1

2

dξ. (43)

In summary, by applying the theory of similarity, the governing equations are transformed into
dimensionless form, which results in three independent dimensionless influencing parameters:

1. The dimensionless pressure gradient Πp,z;
2. The power-law exponent n; and
3. The screw-pitch ratio t/Db.

2.3.2. Set-Up of Parametric Design Study

Taking the findings of the dimensional analysis into account, we created three different sets of
independent design points by varying the dimensionless input parameters Πp,z, n, and t/Db. The
first data set was used as training set for symbolic regression, and the second as test set. The first and
second sets together were used for model selection and post-processing, and the third was used as a
validation set to obtain a more objective and unbiased evaluation of the final model. The symbolic
regression is described in detail in the Section Analytical Approximation. For Data Set 1 and Data
Set 2, the ranges of the screw-pitch ratio t/Db, the power-law exponent n, and the dimensionless
down-channel pressure gradient Πp,z are given in Tables 1 and 2, respectively. Note that Data Set
2 is related to a data set used in our previous study [40]. For the present study, the range of the
screw-pitch ratio was extended to t/Db,max = 2.4. Further, we extended the range of the dimensionless
down-channel pressure gradient. In previous studies [24,39,40], the lower limit for the dimensionless
down-channel pressure gradient was chosen to achieve dimensionless throughputs of approximately
ΠV,max ≥ 2.0. This would mean that the throughput is approximately twice the pure drag flow. For
polymer melts with distinct shear-thinning nature, it follows that the dimensionless down-channel
pressure gradient is limited to approximately Πp,z ≥ −0.5. Screw calculations have shown that this
limit is insufficient for special screw designs, such as wave- and energy-transfer screws. Hence, for
this work the lower limit of the dimensionless down-channel pressure gradient of Data Set 1 was
extended and fixed to Πp,z,min = −1.0 for all combinations of the screw pitch ratio t/Db and power-law
exponents n. The resulting range of Πp,z was divided into 40 equidistant divisions. For Data Set 2,
the limitation remained the same, and the resulting range of Πp,z was divided into 60 equidistant
divisions. For Data Set 3, an independent validation set was generated. Within the parameter range
of Data Set 1, nine and six random values were chosen, respectively, for the screw-pitch ratio t/Db
and the power-law exponent n (see Table 3). For each combination of these two parameters, the
resulting range of dimensionless down-channel pressure gradients was divided into 17 equidistant
divisions. Table 4 summarizes the number of variations for each dimensionless influencing parameter
and the resulting total number of independent design points for each data set. The chosen range of the
dimensionless influencing parameters covers almost all materials, operating conditions, and screw
geometries possible in polymer extrusion.
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Table 1. Ranges of variation for t/Db, n, and Πp,z for Data Set 1.

Variable Min Max Increment

t/Db 0.6 2.4 0.2
n 0.2 1.0 0.1

Πp,z −1.0 var. (ΠV,min ≤ 0) var.

Table 2. Ranges of variation for t/Db, n, and Πp,z for Data Set 2.

Variable Min Max Increment

t/Db 0.6 2.0 0.1
n 0.2 1.0 0.1

Πp,z var. (ΠV,max ≥ 2.0) var. (ΠV,min ≤ 0) var.

Table 3. Values for t/Db, n, and Πp,z for Data Set 3.

t/Db 0.62 0.88 1.29 1.31 1.37 1.61 1.83 2.19 2.35
n 0.26 0.39 0.52 0.65 0.78 0.91

Πp,z 17 equidistant divisions

Table 4. Summary of variation for t/Db, n, and Πp,z for all three data sets.

Data Set Quantity t/Db Quantity n Quantity Πp,z Total Number

1 10 9 41 3690
2 15 9 61 8235
3 9 6 18 972

3. Numerical Calculations

Applying the theory of similarity reduced the number of influencing parameters dramatically
to three: (i) Πp,z, (ii) n, and (iii) t/Db. These describe completely the physics of the underlying
problem. Determining the dimensionless target values—the dimensionless throughput ΠV and
dimensionless dissipation ΠQ—first requires the dependent dimensionless variables to be calculated.
These are the dimensionless down-channel and cross-channel velocities. To this end, the dimensionless
momentum equations in the down-channel and cross-channel directions (Equations (30) and (31))
must be solved. Due to the shear-rate-dependent viscosity, these are two non-linear coupled partial
differential equations with unknown analytical solution that must be solved by numerical methods.
Partial differential equations can be solved by various numerical methods, for instance, the finite
difference method (FDM), the finite element method (FEM), and the shooting method. It has been
shown that all three methods are suitable for solving this problem [39]. For this work, we chose the
shooting method to compute the numerical solutions.

3.1. Numerical Solution

The basic idea of the shooting method is to transform the boundary value problem into an initial
value problem. To this end, the momentum equations are transformed into explicit form for the velocity
gradients. First, both dimensionless momentum equations (Equations (30) and (31)) are integrated
over the dimensionless channel height, which yields Equations (44) and (45).

6Πp,zξ + C1 = η∗
∂νz

∂ξ
. (44)

6Πp,xξ + C2 = η∗
∂νx

∂ξ
. (45)
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Next, the shear-rate-dependent viscosity is substituted. For this, the two integrated momentum
equations are first squared and then added to obtain Equation (46). This equation can be re-formulated
by use of Equation (29) to express the dimensionless viscosity η∗ in the form of Equation (47).

η∗2
[(

∂νz

∂ξ

)2
+

(
∂νx

∂ξ

)2
]
=
(
6Πp,zξ + C1

)2
+
(
6Πp,xξ + C2

)2. (46)

η∗ =
[(

6Πp,zξ + C1
)2

+
(
6Πp,xξ + C2

)2
] n−1

2n . (47)

This expression for the dimensionless viscosity η∗ is used in Equations (44) and (45). By further
rearrangement, the momentum equations are transformed into explicit form for the down-channel
and cross-channel velocity gradients:

∂νz

∂ξ
=

1
η∗
(
6Πp,zξ + C1

)
. (48)

∂νx

∂ξ
=

1
η∗
(
6Πp,xξ + C2

)
. (49)

For a given set of dimensionless input parameters (Πp,z, n, and t/Db), the integration constants
C1 and C2 and the dimensionless cross-channel pressure gradient Πp,x, are unknown and must be
determined. Physically, this means that the integration constants C1 and C2 are the dimensionless
wall shear stresses at the screw surface in the down-channel and cross-channel directions, respectively.
Determining the unknowns requires initial estimates for C1, C2, and Πp,x, which are taken from the
Newtonian case given by Equations (50) to (52).

C1 = 1− 3Πp,z. (50)

C2 = −2 tan(ϕb) = −2
t

Dbπ
. (51)

Πp,x = tan(ϕb) =
t

Dbπ
. (52)

With these initial values, the dimensionless velocity profiles can be computed by integrating the
velocity gradients over the dimensionless channel height (Equations (53) and (54)). Note that the initial
values are the boundary conditions at the screw wall.

νz(ξ) = νz(ξ = 0) +
∫ 1

0

∂νz

∂ξ
dξ. (53)

νx(ξ) = νx(ξ = 0) +
∫ 1

0

∂νx

∂ξ
dξ. (54)

The integration is done numerically using the Simpson rule. Unless the initial values are perfect,
the boundary conditions at the top (barrel) wall and the condition that the net cross-channel flow
must be zero will not be met, and hence there will be some residuals. We applied a Newton-Raphson
scheme (Equation (55)) to iteratively solve the unknowns until the solution has converged.

xn+1 = xn − J(xn)
−1[f(xn)− f(x)]. (55)

For this problem, the vector of the unknown variables x contains the integration constants C1

and C2 and the dimensionless cross-channel pressure gradient Πp,x (Equation (56)). The function
vector f contains both dimensionless boundary conditions at the top wall and the dimensionless
cross-channel volume flow rate (Equation (57)). J(xn) is the Jacobian containing all partial derivatives
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of the three functions in f with respect to the three variables in x (Equation (58)). The partial derivatives
are determined numerically by slightly varying C1, C2, and Πp,x and re-computing the velocity
profiles and the cross-channel volume flow rate. Finally, the new values of the unknown variables are
calculated according to Equation (59) for the next iteration. This procedure converges rapidly and
requires between five to ten iterations, depending on the dimensionless influencing parameters. With
the converged solution for the velocity profiles, the dimensionless volume flow rate ΠV (Equation
(40)) and the dimensionless dissipation ΠQ (Equation (43)) are evaluated using the Simpson rule for
all numerical integrations.

x =

 C1

C2

Πp,x

. (56)

f =

 νz(ξ = 1)
νx(ξ = 1)

ΠV,x

 =

 νz,1

νx,1

ΠV,x

. (57)

J(x) =


∂νz,1
∂C1

∂νz,1
∂C2

∂νz,1
∂Πp,x

∂νx,1
∂C1

∂νx,1
∂C2

∂νx,1
∂Πp,x

∂ΠV,x
∂C1

∂ΠV,x
∂C2

∂ΠV,x
∂Πp,x

. (58)

 C1,n+1

C2,n+1

Πp,x,n+1

 =

 C1,n
C2,n

Πp,x,n

− J(xn)
−1


 νz,1,n

νx,1,n
ΠV,x,n

−
 1

t/(Dbπ)

0


. (59)

The parameter setup chosen for the numerical simulations is given in Table 5. The dimensionless
channel height was divided into 1000 equidistant segments to obtain a total of 1001 nodes. As abortion
criterion, the dimensionless volume flow rate was chosen. The solution was considered converged if
the change in the dimensionless volume flow rate ∆ΠV between two iterations was < 10−8. Both the
number of nodes and the abortion criterion were proven to be sufficient to reach a mesh-independent
solution for throughput and dissipation. Furthermore, for numerical reasons, the dimensionless
viscosity was limited to values between a specified maximum and minimum. These limits were
also tested and had no influence on ΠV and ΠQ, even for low power-law exponents n and high
dimensionless pressure gradients Πp,z.

Table 5. Parameter setup chosen for the numerical simulations.

Parameter Value

number of nodes 1001
abortion criterion ∆ΠV < 10−8

variation of C1 for linearization 0.01
variation of C2 for linearization 0.01

variation of Πp,x for linearization 0.01
max. dimensionless viscosity η∗ 103

min. dimensionless viscosity η∗ 10−3

3.2. Results of the Numerical Calculations

The comprehensive parametric design study yielded numerical solutions for the dimensionless
volume flow rate ΠV and dissipation ΠQ as functions of the dimensionless independent influencing
parameters Πp,z, n, and t/Db. Additionally, it provided results for the dimensionless cross-channel
pressure gradient Πp,x. Figure 3 plots the dimensionless volume flow rate over the dimensionless
down-channel pressure gradient for a screw-pitch ratio of t/Db = 1.0 and various power-law
exponents n. It can be clearly seen that the throughput-pressure relationship becomes increasingly
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non-linear and pressure-sensitive with decreasing power-law exponent. Previous research [8,19,22,24]
provided results for ΠV ≤ 2.0 (highlighted by a dashed red line). Our results for this area show
very good agreement with the previous two-dimensional analyses. Here, we also present results for
dimensionless pressure gradients Πp,z ≥ −1.0 for over ridden zones. For polymer melts with distinct
shear-thinning nature, this can give rise to dimensionless volume flow rates that are significantly
higher than ΠV ≤ 2.0. Figure 4 shows the dimensionless throughput-pressure relationship for
various screw-pitch ratios and a power-law exponent of n = 0.2, and highlights the significant
increase in dimensionless volume flow rate for strongly over-ridden screw zones. Additionally,
it can be seen that the dimensionless throughput decreases with increasing screw-pitch ratio for
both pressure-generating and slightly over-ridden screw zones. For highly over-ridden screw zones,
the dimensionless throughput increases with increasing screw-pitch ratio. This effect is due to the
influence of the cross-channel flow on the shear-rate-dependent viscosity. For a distinctly negative
dimensionless down-channel pressure gradient (exceeding Πp,z ≈ −0.5 for n = 0.2), the effect of
the screw-pitch ratio on the dimensionless volume flow rate decreases because the down-channel
pressure flow dominates the flow behavior. In Figure 5, the dimensionless flow rate as a function of
the dimensionless down-channel pressure gradient is given for a power-law exponent n = 0.2 and
a screw-pitch ratio t/Db = 1.0 for the whole range of the dimensionless pressure gradient. For a
dimensionless down-channel pressure gradient of Πp,z = −1.0, the dimensionless volume flow rate
exceeds values of ΠV = 35.
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Figure 6 plots the dimensionless dissipation ΠQ for various power-law exponents and a
screw-pitch ratio of t/Db = 1.0. Due to the relation between the dimensionless throughput and
the dimensionless down-channel pressure gradient, the dimensionless dissipation can be given
both relative to the dimensionless down-channel pressure gradient (see Figure 6a) and relative to
the dimensionless volume flow rate (Figure 6b). Generally, it can be seen that the dimensionless
dissipation reaches its minimum for pure drag flow (Πp,z = 0). For moderate dimensionless pressure
gradients (positive and negative), the dissipation decreases with decreasing power-law exponent.
For higher magnitudes, the dissipation increases with decreasing power-law exponents. Especially
for Πp,z ≤ −0.5, the dissipation becomes highly dependent on the dimensionless down-channel
pressure gradient and the power-law exponent. Considering constant dimensionless volume flow
rates, the dissipation decreases with decreasing power-law exponent. Figure 6b indicates the limitation
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of ΠV ≤ 2.0 of our previous study [40]. Figure 7 shows the dimensionless dissipation for various
power-law exponents n and t/Db = 2.4. Comparison of the results for t/Db = 2.4 with those for
t/Db = 1.0 shows that the influence of the power-law exponent on the dissipation increases with
increasing screw-pitch ratio. Especially for moderate dimensionless pressure gradients, this effect is
significant. This is due to the effect of the cross-channel flow on the shear rate and thus on the viscosity.
With increasing screw-pitch ratio the shear rate increases, which leads to an increased influence of the
shear-thinning effect on the viscosity. Figure 8 plots the dimensionless dissipation for a power-law
exponent n = 0.2 and various screw-pitch ratios t/Db. For both constant dimensionless down-channel
pressure gradient and volume flow rate, dissipation increases with increasing screw-pitch ratio. This is
due to an increased cross-channel flow that results in an increased shear-rate, and thus an increase
in viscous dissipation. As already observed for the dimensionless volume flow rate, the effect of the
screw-pitch ratio on the dissipation decreases for strongly over-ridden screw zones because the flow
behavior is dominated by the pressure flow. Note that in our previous study [40] the dimensionless
down-channel pressure gradient for n = 0.2 and over-ridden screw zones was limited to the range
Πp,z,min ≈ [−0.55;−0.43] depending on the screw-pitch ratio. For n = 0.2 and t/Db = 1.0, the
dissipation for the whole range of Πp,z is given in Figure 9. For this combination, the dimensionless
down-channel pressure gradient was limited to Πp,z,min = −0.44. Below this limit the dissipation
becomes strongly dependent on the dimensionless down-channel pressure gradient, exceeding a
dimensionless dissipation of ΠQ = 100 for Πp,z = −1.0; in contrast, the maximum dimensionless
dissipation is ΠQ,max = 5.75 for the traditional limit.Polymers 2019, 11, x FOR PEER REVIEW 17 of 37 
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Figure 9. Dimensionless dissipation ΠQ over dimensionless down-channel pressure gradient Πp,z

(a) and over the dimensionless volume flow rate ΠV (b) for a power-law exponent of n = 0.2 and a
screw-pitch ratio of t/Db = 1.0. For the parameter setup shown, the dashed red lines indicate (a) the
limit for the dimensionless down-channel pressure gradient of the previous study and (b) the limit for
the dimensionless volume flow rate.
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For small power-law exponents n and large negative dimensionless down-channel pressure
gradients Πp,z, we observed that the influence of the screw-pitch ratio on the dimensionless throughput
and dimensionless dissipation becomes minimal and vanishes. This indicates that the pressure
flow dominates the total flow behavior. Ignoring the cross-channel flow and assuming that the
down-channel pressure flow dominates the complete flow behavior allows the expression for the
total dimensionless flow rate ΠV to be transformed into Equation (60). This represents a drag-flow
component and the dimensionless pressure flow component ΠV,p (Equation (61)) for a one-dimensional
flow of power-law fluids. The total dimensionless dissipation ΠQ can be transformed into Equation
(62), which represents the dimensionless dissipation of one-dimensional pure pressure flow.

ΠV = 1 + ΠV,p. (60)

ΠV,p = −sign
(
Πp,z

) 3
1
n n

2n + 1

∣∣Πp,z
∣∣ 1

n . (61)

ΠQ =
3

n+1
n n

2n + 1

∣∣Πp,z
∣∣ n+1

n . (62)

Figure 10 illustrates the difference between the one-dimensional pressure-flow approach and
the numerical solutions for negative dimensionless down-channel pressure gradients. It can clearly
be seen that for n = 0.2 the flow is dominated by the pressure flow for Πp,z ≤ −0.75. With higher
power-law exponents, the shear-thinning effect decreases, and thus larger negative dimensionless
down-channel pressure gradients are needed to reach the point where pure pressure flow dominates
the flow behavior.Polymers 2019, 11, x FOR PEER REVIEW 19 of 37 
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To gain a deeper understanding of the strong influence of the dimensionless pressure gradient
on the throughput and dissipation for small power-law exponents, Figure 11 plots the down-channel
velocity (a), cross-channel velocity (b), dimensionless viscosity (c), and dimensionless dissipation
(d) over the dimensionless channel height for a power-law exponent n = 0.2 and a screw-pitch
ratio of t/Db = 1.0 for various pressure gradients. It can be seen that decreasing the dimensionless
down-channel pressure gradient from Πp,z = −0.4 to Πp,z = −0.6 increases the down-channel velocity
disproportionately. For Πp,z = −0.6 in the center of the screw-channel, the flow in the down- and
cross-channel directions resembles plug flow. The shear rate is therefore close to zero and the viscosity
very high. On the other side, near the walls, the viscosity is close to zero and the shear rate very high.
This can also be observed in the dimensionless dissipation profile, where dissipation increases near the
walls and decreases in the center with increasing magnitude of the dimensionless pressure gradient.
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This effect can be attributed to the shear stress distribution of pure pressure flow. For pure pressure
flow, it follows that the shear stress is linear over the channel height, being maximum at the walls
and zero in the center. According to the power-law model, the shear-rate is related to the shear-stress
by
∣∣ .
γ
∣∣ ∼ τ1/n. This means that for low power-law exponents, high shear-rates (velocity gradients)

are expected near the wall and low shear-rates near the center. However, the down-channel flow in
the metering section is affected by the cross-channel flow. However, with increasing dimensionless
down-channel pressure gradient, this influence decreases and the down-channel flow dominates the
overall behavior. Following, this almost causes plug flow in the center, not only for the down-channel,
but also for the cross-channel flow, due to the coupling via the shear-rate dependent viscosity.Polymers 2019, 11, x FOR PEER REVIEW 20 of 37 
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Figure 11. Dimensionless channel height ξ versus dimensionless down-channel velocity νz (a),
dimensionless cross-channel velocity νx (b), dimensionless viscosity η∗ (c), and dimensionless specific
dissipation πq (d) for various dimensionless down-channel pressure gradients Πp,z, n = 0.2, and
t/Db = 1.0.

Another interesting parameter is the dissipation per throughput. This gives an indication of the
potential melt temperature increase; for an adiabatic extrusion process with temperature-independent
viscosity, this value would be proportional to the melt temperature increase. Figure 12 shows the
dimensionless dissipation per throughput over the dimensionless down-channel pressure gradient
for a power-law exponent n = 0.2 and various screw-pitch ratios. As observed above, the dissipation
increases with increasing screw-pitch ratio because the cross-channel flow increases. Above we
mentioned that the total dimensionless dissipation is minimal for pure drag flow. The dissipation per
throughput, however, is minimal for slightly over ridden melt-conveying zones. In pressure build-up
zones, the dissipation per throughput increases significantly with increasing pressure gradient because
the throughput decreases and becomes zero, reaching the dam-up pressure. Considering the dissipation
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per throughput, it is even more obvious that the influence of the screw-pitch ratio vanishes for strongly
over ridden screw zones because the pressure-flow component becomes dominating.Polymers 2019, 11, x FOR PEER REVIEW 21 of 37 
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4. Analytical Approximation

The results presented above provide numerical solutions for the dimensionless throughput
ΠV , and dimensionless dissipation ΠQ depending on the independent dimensionless influencing
parameters identified by applying the theory of similarity. Since numerical solutions are
time-consuming and require considerable expert knowledge, analytical models that describe the
throughput and dissipation as functions of the influencing parameters are usually desired for practical
screw design. We have used HeuristicLab [50], an open-source software to derive models describing
the relationships of target variables and several independent variables by means of symbolic regression
based on genetic programming.

4.1. Symbolic Regression—Modeling

In general, symbolic regression searches for a mathematical expression for the relation between the
target variable and the influencing variables without specifying the structure of the model. In contrast
to symbolic regression, conventional regression requires a predefined model structure and searches
for the coefficients that best fit the data. If the preselected model structure does not fit the data well,
other functions must be tested until a good model is found. This procedure is time-consuming
and the results of the analysis strongly depend on the functions and models tested. Symbolic
regression, however, involves finding both the best model structure and its coefficients, optimizing
them simultaneously [41,51]. Affenzeller et al. [52] provided fundamental theoretical background on
genetic algorithms and genetic programming. Genetic algorithms are population-based metaheuristics;
the basic principle is to apply evolutionary concepts from natural evolution. This means that starting
with a random initial population of individual models, the models are first evaluated and then selected,
and finally a new population of solutions is produced. The most important genetic operators for
producing a new population are [52]:

• Parent selection, which means to select parents for “mating” and recombination to generate
off-springs that form the next generation. For producing a new generation the two operations
crossover and mutation are used.

• Crossover, also called recombination, basically takes two or more different solutions and
recombines them to form a new solution.
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• Mutation is a random modification that alters one or more solutions. Since mutation can result
in a solution that differs completely from the previous solution, it is possible to arrive at even
better solutions.

• Replacement is choosing which of the new candidate solutions generated by crossover and
mutation operations become members of the next generation and replace some of the old solutions.

Solving a practical problem by using genetic programming requires the following to be
specified [51]:

• a terminal set, which is a set of input variables, functions with no argument, and constants;
• a function set, which consists of functions that are used to generate the symbolic regression

solution (e.g., arithmetic functions, trigonometric functions, Boolean operations);
• a fitness function, which is a quality measure for evaluating the generated solutions (e.g., mean

squared error, mean absolute error);
• algorithm and control parameters, which include control parameters of the algorithm, such as

population size, crossover and mutation probability;
• a termination criterion, which is generally the maximum number of generations or a

problem-specific success criterion.

The first two specifications basically define the search space for symbolic regression based on
genetic programming. If the function set were unrestricted, the search space would theoretically be
infinite. Usually, tree-based genetic programming is used, and the symbolic regression solution is
given in the form of a symbolic expression tree, as shown in Figure 13. Symbolic regression based on
genetic programming is well suited to this problem, because firstly, the underlying model structure is
unknown, and secondly, the result is a mathematical expression that can be manipulated and easily
implemented into screw-calculation programs.
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Figure 13. Symbolic regression model example in mathematical notation and in symbolic expression
tree form.

In our case, the aim was to develop three different analytical equations: one for the dimensionless
throughput ΠV as a function of the dimensionless pressure gradient Πp,z, the power-law exponent
n, and the screw-pitch ratio t/Db; one for the dimensionless dissipation ΠQ as a function of Πp,z, n,
and t/Db; and a final one for ΠQ as a function of ΠV , n, and t/Db. Table 6 summarizes the target and
influencing variables for the three approximation equations.
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Table 6. Target and influencing variables for the analytical approximation equations.

Target Variable Influencing Variables

ΠV Πp,z, n, t/Db
ΠQ Πp,z, n, t/Db
ΠQ ΠV , n, t/Db

The NSGA-II algorithm [53] was used to derive the analytical approximation equations for the
throughput model ΠV = f

(
Πp,z, n, t/Db

)
. For the two dissipation models ΠQ = f

(
Πp,z, n, t/Db

)
and ΠQ = f (ΠV , n, t/Db), we employed the NSGA-II and OSGA algorithms [54]. The NSGA-II is a
multi-objective non-dominated sorting genetic algorithm that simultaneously optimizes model quality
and model complexity [55]. The OSGA is the offspring selection genetic algorithm that optimizes
model quality only. Aside from being accurate, the models to be obtained had to be simple and
interpretable. Thus, we sought the optimal trade-off between high model accuracy and low model
complexity. In order to reduce the search space and limit model complexity, we restricted the model
size and the function set. The model size was limited to a maximum tree length of 100. For the function
set, four different setups were created with different functions and levels of complexity allowed, as
listed in Table 7. Note that the argument of more complex functions (square, exponential, logarithm,
sine, and cosine) were limited in order to avoid nested functions. To account for statistical variations
in the initial population, each of the four settings was repeated 25 times by conducting an experiment,
which resulted in a total of 100 models for each target variable.

Table 7. Mathematical building blocks for the analytical approximation—four different setups.

Tree grammar Variant (a) (b) (c) (d)

Constant
√ √ √ √

State variable
√ √ √ √

Addition
√ √ √ √

Multiplication
√ √ √ √

Division
√ √ √ √

Square
√ √ √ √

Exponential
√ √

Logarithm
√ √

Sine
√ √

Cosine
√ √

Model quality was determined by means of the coefficient of determination—Pearson R2

(Equation (63)). The coefficient of determination R2, with yi as the real values, ŷi as the regression
values, and y as the mean value of the real values, was optimized by the algorithm searching for
regression models. The coefficient of determination is in the range between 0 and 1, where R2 = 0
means that the symbolic regression model does not fit the simulation data at all, and R2 = 1 means
that the symbolic regression model fits the simulation data perfectly [52].

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 . (63)

For generating the analytical approximation models, Data Set 1 was used as training set of the
algorithms. These models were then analyzed based on Data Sets 1 and 2, and the most promising
models were preselected for the subsequent procedure. Combining Data Sets 1 and 2, these preselected
models were simplified, after which their constants were further optimized. Finally, for each analytical
approximation equation, the best solution was selected by evaluating the model with Data Sets 1 and
2. For the dimensionless throughput model, the coefficient of determination R2, the mean absolute
error (MAE) (Equation (64)), and the maximum absolute error (Equation (65)) were analyzed. For the
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dissipation models, the mean relative error (MRE) (Equation (66)) and the maximum relative error
(Equation (67)) were analyzed in addition.

MAE =
1
N

N

∑
i=1
|yi − ŷi|. (64)

emax = max(|yi − ŷi|). (65)

MRE =
1
N

N

∑
i=1

|yi − ŷi|
yi

. (66)

REmax = max
(
|yi − ŷi|

yi

)
. (67)

4.2. Symbolic Regression—Results

We derived three different symbolic regression results by modeling the 3690 design points of
Data Set 1 and by additionally using the 8235 design points of Data Set 2 for the final optimization
and selection procedure. One model was developed for the dimensionless throughput ΠV , and two
models were developed for the dimensionless dissipation ΠQ.

4.2.1. Dimensionless Throughput ΠV

Our analytical approximation equation predicting the dimensionless throughput ΠV as a function
of ΠV = f

(
Πp,z, n, t/Db

)
is given by Equation (68), with the sub-functions A1 to A6 containing 32

coefficients. The sub-functions and the corresponding coefficients are given in the Appendix A.1 in
Equations (74) to (79) and Table A1, respectively. This developed model predicts the two-dimensional
throughput-pressure relationship of non-Newtonian fluids for pressure-generating and-pressure
consuming metering channels, including strongly over-ridden screw zones. The overall model
structure is relatively simple, consisting only of arithmetic operations and sine and cosine functions.
Since the model has no nested functions, and as the arguments of sine and cosine are constants and
variables only, mathematical manipulations such as differentiation are easily possible. Additionally,
the model is easy to implement in a simulation program, and fast computation can be achieved.

ΠV
(
Πp,z, n, t/Db

)
= A1 + A2 +

1
A3 + A4

+ A5 A6. (68)

The accuracy of the model was evaluated based on an error analysis. To this end, the coefficient
of determination, the mean absolute error, and the maximum absolute error were evaluated for both
data sets: Data Set 1 was used for training the model, and Data Set 2 was additionally used for
model preselection and final optimization. The results of the error analysis are listed in Table 8. With
this model, a coefficient of determination of R2 = 0.999599 and above can be achieved, the mean
absolute error is in the range of MAE ≈ 0.01, and the maximum absolute error is emax = 0.15169 and
emax = 0.088444, respectively, for Data Sets 1 and 2. Note that the maximum error emax = 0.15169 for
Data Set 1 represents a data point for slightly negative dimensionless throughputs. Excluding the
design points that are beyond the limit of negative throughputs (ΠV ≤ 0) shifts the maximum absolute
error for Data Set 1 to e∗max = 0.086905, which is in the same range as that for Data Set 2. Scatter plots
showing the approximated solutions versus the exact numerical solutions for Data Sets 1 and 2 are
given in Figure 14a,b, respectively. The dashed lines indicate an absolute error of 0.06. The scatter
plot illustrates the excellent accuracy of the presented model. A comparison of the dimensionless
throughput pressure model with the numerical simulation results is given by Figure 15 in the form of
dimensionless throughput-pressure curves. Again, it can be seen that the extended approximation
model for ΠV = f

(
Πp,z, n, t/Db

)
fits the simulation results really accurately.
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Table 8. Results of the error analysis of the approximation model ΠV = f
(
Πp,z, n, t/Db

)
.

Quality Measure Unit Data Set 1 Data Set 2

Pearson’s R2 - 0.999974 0.999599
mean abs. error - 0.011689 0.009782
max. abs. error - 0.151690 0.088444
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4.2.2. Dimensionless Dissipation ΠQ

We developed two analytical approximation equations that predict the dimensionless dissipation
ΠQ of a two-dimensional flow of power-law fluids in metering channels. Equation (69) predicts
the dimensionless dissipation ΠQ as a function of ΠQ = f

(
Πp,z, n, t/Db

)
, and Equation (70) as a

function of ΠQ = f (ΠV , n, t/Db). B1 to B10 are the sub-functions of ΠQ = f
(
Πp,z, n, t/Db

)
, which

contain a total number of 45 coefficients, as given in the Appendix A.2 by Equations (80) to (89)
and Table A2, respectively. C1 to C8 are the sub-functions of ΠQ = f (ΠV , n, t/Db) and contain a
total number of 44 coefficients, as given in the Appendix A.3 by Equations (90) to (97) and Table A3,
respectively. Analogously to the throughput models, the overall model structure is also relatively
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simple for the two dissipation models, as they consist only of arithmetic operations and exponential and
logarithmic functions. Again, no nested functions are present, and the arguments of the exponential
and logarithmic functions consist of constants and variables only. This enables easy mathematical
manipulation and implementation, as well as fast computation of the dissipation models.

ΠQ
(
Πp,z, n, t/Db

)
= B1 + B2(B3 + B4) + B5B6

(
B7 +

B8

B9 + B10

)
. (69)

ΠQ(ΠV , n, t/Db) = C1 + C2

(
C3 +

C4

C5
+

C6

C7 + C8

)
. (70)

Our dissipation models predict the two-dimensional dissipation of non-Newtonian fluids for
pressure-generating and pressure-consuming metering channels, including strongly overridden
screw zones. The effect of the cross-channel flow, which has a significant impact on the viscous
dissipation, is accounted for by the screw-pitch ratio t/Db. Predictions are possible for either a
given pressure-gradient or a given throughput. Both viscous dissipation models exhibit outstanding
accuracy, as shown by an error analysis using Data Sets 1 and 2, the results of which are listed in
Table 9. Mean relative errors of MRE ≤ 0.4% and MRE ≤ 0.27% are achieved by the dissipation models
ΠQ = f

(
Πp,z, n, t/Db

)
and ΠQ = f (ΠV , n, t/Db), respectively. The maximum error of both models is

REmax = 4.17%, and thus significantly lower than 5%. The excellent quality of the dissipation models
is also highlighted by scatter plots showing the approximated dissipation versus the corresponding
simulation results in Figure 16. The dashed lines indicate a maximum relative error of ±5%, and, as
confirmed by the error analysis, it can be seen that all data points are clearly within ±5%.

Table 9. Results of the error analysis for the approximation model ΠQ = f
(
Πp,z, n, t/Db

)
and ΠQ =

f (ΠV , n, t/Db).

Quality Measure Unit
ΠQ=f(Πp,z,n,t/Db) ΠQ=f(ΠV,n,t/Db)

Data Set 1 Data Set 2 Data Set 1 Data Set 2

Pearson’s R2 - 0.999997 0.999830 0.999999 0.999934
mean abs. error - 0.009385 0.007797 0.006564 0.004990
max. abs. error - 0.109750 0.082440 0.084250 0.043206
mean rel. error % 0.3571 0.4031 0.2415 0.2696
max. rel. error % 4.169 4.170 3.530 3.521

For both dissipation models developed, Figure 17 shows a comparison between approximated
and simulated dissipation for a constant screw-pitch ratio and various power-law exponents (a), (c),
and for constant power-law exponent and different screw pitch ratios (b), (d). Again, it can be seen that
the results of both extended approximation models ΠQ = f

(
Πp,z, n, t/Db

)
and ΠQ = f (ΠV , n, t/Db)

fit the simulation values really accurately.
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Figure 17. Comparison of approximation models for the dimensionless dissipation ΠQ with the
simulation results for: (a) ΠQ = f

(
Πp,z, n, t/Db

)
for various power-law exponents and t/Db = 1.6; (b)

ΠQ = f
(
Πp,z, n, t/Db

)
for various screw-pitch ratios and n = 0.3; (c) ΠQ = f (ΠV , n, t/Db) for various

power-law exponents and t/Db = 1.6; and (d) ΠQ = f (ΠV , n, t/Db) for various screw-pitch ratios and
n = 0.3.

5. Validation

To obtain a more objective and unbiased assessment of the accuracy of our models, we tested
them on a data set that had not been used for training, model selection, and model optimization—Data
Set 3. Variation of the dimensionless influencing parameters for Data Set 3, described above and listed
in Table 3, resulted in a total of 927 design points for the final model evaluation. The parameter range
was within the scope of validity defined by Data Set 1. The values of the dimensionless down-channel
pressure gradient Πp,z, the power-law exponent n, and the screw-pitch ratio t/Db were defined
randomly and differ from those used for training and optimizing the models. The results of an error
analysis based on Data Set 3 are listed in Table 10. With the throughput model ΠV = f

(
Πp,z, n, t/Db

)
,

a coefficient of determination of R2 = 0.999825 and a mean absolute error of MAE = 0.013374 is
achieved, which indicates excellent accuracy of the model. Note that the maximum absolute error
emax = 0.231581 is equivalent to a relative error RE = 1.819%. With the dissipation models, mean
relative errors MRE ≤ 0.4% and maximum relative errors REmax ≤ 4.66% are achieved, which also
indicates excellent accuracy. All three models exhibit very good performance on the independent
evaluation data set.
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Table 10. Evaluation results of the error analysis for the approximation models.

Quality Measure Unit ΠV(Πp,z,n,t/Db) ΠQ(Πp,z,n,t/Db) ΠQ(ΠV,n,t/Db)

Pearson’s R2 - 0.999825 0.999845 0.999978
mean abs. error - 0.013374 0.022295 0.008686
max. abs. error - 0.231581 1.07895 0.226912
mean rel. error % 0.4056 0.2470
max. rel. error % 3.976 4.663

Figure 18 compares the simulated and approximated throughput-pressure relationships for
the power-law exponents chosen for the evaluation set and a screw-pitch ratio of t/Db = 1.37. In
Figure 19, a comparison of simulation and approximation is given for the dissipation based on the
evaluation data set for various power-law exponents and a screw-pitch ratio of t/Db = 1.37. Figure 19a
shows the approximation model ΠQ = f

(
Πp,z, n, t/Db

)
, and Figure 19b the approximation model

ΠQ = f (ΠV , n, t/Db). As confirmed by the error analysis, excellent agreement with the simulation
results can be observed for all three models. Our extended symbolic regression models for predicting
the pumping capability and viscous dissipation of two-dimensional flows in single-screw extrusion
are, therefore, highly accurate, not only on the training data but on independent evaluation data within
the complete range of application. This means that accurate predictions are guaranteed within the
complete range of validity. Note that the range of validity is defined by the ranges of the dimensionless
influencing parameters of the parametric design study (see Table 1). The broad scope of the parametric
design study, however, covers almost all polymer melts and processing conditions. Moreover, it covers
virtually all screw designs, including general-purpose screws and special screw designs, such as wave
and energy-transfer screws.
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Figure 19. Comparison of approximation models for the dimensionless dissipation ΠQ as a function of
the dimensionless influencing parameters for t/Db = 1.37 and various power-law exponents based
on the evaluation data set. The approximation model ΠQ = f
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)
is shown in (a), and

ΠQ = f (ΠV , n, t/Db) is shown in (b).

6. Conclusions

We have presented three generalized symbolic regression models for predicting the
two-dimensional polymer melt flow in the metering channel of a single-screw extruder:

1. ΠV as a function of Πp,z, n, and t/Db;
2. ΠQ as a function of Πp,z, n, and t/Db; and
3. ΠQ as a function of ΠV , n, and t/Db.

These models take into account the effect of the non-Newtonian fluid behavior and cross-channel
flow, covering an extended range of applications, including strongly over-ridden screw zones. Hence,
our models apply for both general purpose screws, as well as special screw designs, like wave and
energy-transfer screws, covering almost all possible processing conditions. By applying the theory of
similarity, we identified a set of independent dimensionless influencing parameters that fully describe
the two-dimensional flow of polymer melts in metering channels: the dimensionless pressure gradient
Πp,z, the power-law exponent n, and the screw-pitch ratio t/Db. Due to the relationship between the
dimensionless flow rate ΠV and the dimensionless pressure-gradient Πp,z, it was possible to identify a
second, different set of independent dimensionless influencing parameters for the viscous dissipation:
the dimensionless flow rate ΠV , the power-law exponent n, and the screw-pitch ratio t/Db. Based
on the findings of our dimensional analysis, an extensive parametric design study was carried out,
which resulted in numerical solutions for throughput and dissipation. The ranges of the dimensionless
influencing parameters were chosen such that they cover almost all polymer materials and processing
conditions occurring in polymer extrusion. Unlike with existing models, the lower limit of the
dimensionless down-channel pressure gradient was not limited to achieve approximately ΠV ≤ 2.0,
but was fixed to Πp,z,min = −1.0. Screw calculations have shown that for special screw designs, such
as wave and energy-transfer screws, and for polymer melts with distinct shear-thinning behavior, the
lower limit for the dimensionless down-channel pressure gradient of previous models is insufficient.
Additionally, we extended the range for the screw-pitch ratio significantly. Our approximation
equations were derived by applying symbolic regression based on genetic programming. All three
models are continuous over the whole range of applications, simple, and contain a moderate number of
coefficients. In contrast to previously presented approximation equations for the throughput-pressure
relationship, our model has no complex and deeply nested functions of sine, cosine, exponential, and
logarithmic functions. Rather, the arguments of these functions are combinations of constants and
variables only. This is also the case for the dissipation models. Additionally, the presented models
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accurately approximate the numerical solutions, as proven by means of an independent and unbiased
evaluation data set. The throughput model yields a coefficient of determination R2 = 0.999825 and a
mean absolute error MAE = 0.013374. The dissipation models yield a coefficient of determination
R2 ≥ 0.999845, a mean relative error MRE ≤ 0.4%, and a maximum relative error REmax ≤ 4.66%.

Performing minor adaptions of the boundary conditions, our models are additionally applicable
to injection molding. To this end, the velocity boundary conditions have to be rewritten as

v1,z = vb cos(ϕb) +
.
s sin(ϕb), (71)

v1,x = vb sin(ϕb)−
.
s cos(ϕb), (72)

with the axial retraction speed
.
s. The dimensionless parameters are then related to these velocity

boundary conditions and the screw-pitch ratio has to be adapted according to

tan(ϕ1) =
v1,x

v1,z
. (73)

Our models have a simple structure and can be implemented easily in screw-calculation
routines or any other application. Implementations of pumping models in screw-calculation
routines are shown by [56,57], which also cover solids conveying and melting. Melt-conveying,
however, is one of the most critical functional zones. Moreover, easy mathematical operations, like
forming the derivative, are possible. Additionally, our models enable fast and stable prediction of
both the throughput-pressure relationship and viscous dissipation without the need for complex,
time-consuming, and computationally expensive numerical procedures, which require lots of expertise
knowledge. Although these models are not capable of outperforming numerical simulations in
terms of accuracy, as they approximate the numerical solutions for a large search space, they
are considerably faster than solving the flow equations numerically. Since viscous dissipation
is mainly responsible for the axial melt temperature increase, our models for the dissipation
provide an excellent basis for calculating the axial melt-temperature development. Combining the
models for the throughput-pressure relationship and the viscous dissipation allows the effect of
the temperature-dependent viscosity on the axial pressure profile to be considered. This means
non-isothermal throughput-pressure calculations are possible. In addition, for model-based extrusion
control, accurate predictions of the extrusion characteristics are necessary, like the dissipated energy
is important for multi-zone temperature control. Note that for screw calculations the dimensionless
influencing parameters must first be determined and then the dimensionless target variables calculated,
which must finally be transformed back to the dimensional representation.
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Nomenclature

Symbol Parameter Symbol Parameter
A1–A6 sub-functions $ melt density
B1–B10 sub-functions p hydrostatic pressure
C1–C68 sub-functions D rate-of-deformation tensor
a00–a31 constants L velocity gradient tensor
b00–b44 constants τ viscous stress tensor
c00–c43 constants τij components of the stress tensor
Db barrel diameter

.
V volumetric flow rate

h channel height
.
qdiss specific viscous dissipation

w channel width
.

Qdiss viscous dissipation
i number of parallel screw channels ξ dimensionless coordinate up-channel direction
e flight width νz, νx dimensionless velocities
δ flight clearance

.
γ
∗ dimensionless shear rate

t screw pitch η∗ dimensionless viscosity
ϕb helix angle at outer diameter τij

* dimensionless components of the stress tensor
vb barrel velocity Πp,z, Πp,x dimensionless pressure gradients
vb,x barrel velocity in z-direction ΠV dimensionless volumetric flow rate
vb,z barrel velocity in x-direction πq dimensionless specific viscous dissipation
x, y, z spatial coordinates ΠQ dimensionless viscous dissipation
v velocity vector J Jacobi matrix
vx, vy, vz velocity components R2 coefficient of determination
N screw speed MAE mean absolute error
η viscosity emax maximum absolute error
.
γ shear rate MRE mean relative error
K consistency REmax maximum relative error
n power-law exponent

Appendix A

Appendix A.1 Sub-Functions of Equation (68): ΠV = f
(
Πp,z, n, t/Db

)
A1 = a00 + a01n + a02Πp,z + a03 sin

(
a04 + a05Πp,z

)
. (74)

A2 =
Πp,z

a06 + a07n + a08Πp,z + a09t/Db +
1

a10+a11n+a12 sin(a13Πp,z)

. (75)

A3 = a14 + a15n + a16Πp,z + a17t/Db. (76)

A4 =
a18Πp,z

a19 + a20n + a21Πp,z + a22t/Db + sin
(
a23Πp,z

) . (77)

A5 =
cos
(
a24Πp,z

)
n2 . (78)

A6 = a25 + a26Πp,z +
a27Π3

p,z

n + a28Πp,z
+ a29t/Db + a30 sin

(
a31Πp,z

)
. (79)
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Table A1. Rounded values of the constants for ΠV = f
(
Πp,z, n, t/Db

)
.

Constant Value Constant Value Constant Value

a00 −0.12014 a11 −3.4056 a22 0.18277
a01 0.25392 a12 −26.252 a23 2.6134
a02 2.0905 a13 1.5616 a24 3.2436
a03 3.2395 a14 2.0161 a25 −0.0017916
a04 2.9348 a15 2.1787 a26 0.078972
a05 0.70199 a16 0.61167 a27 0.066612
a06 −0.050140 a17 0.42387 a28 0.14623
a07 −0.95819 a18 −5.8881 a29 −0.0033694
a08 −0.32345 a19 0.77710 a30 −0.019723
a09 0.0014903 a20 3.1672 a31 4.1031
a10 −27.930 a21 2.8402

Appendix A.2 Sub-Functions of Equation (69): ΠQ = f
(
Πp,z, n, t/Db

)
B1 = b00 + b01n + b02Π2

p,z + b03(n + b04t/Db)
2. (80)

B2 = b05 + b06n. (81)

B3 = b07n2 + b08Πp,z + n
[
b09 + Πp,z(b10 + b11t/Db) + b12t/Db

]
. (82)

B4 = b13Π2
p,zt/Db + b14t/Db + b15t/Db

2. (83)

B5 = eb16nΠ2
p,z(b17 + b18n)

(
b19 + b20Πp,z

)
. (84)

B6 = eb21n + b22 + b23n + b24Πp,z + b25Π2
p,z. (85)

B7 = b26 + eb27n + eb28Πp,z (b29 + b30n) + b31Πp,z + b32t/Db. (86)

B8 = b33 + b34t/Db. (87)

B9 = b35 + eb36n + eb37n+b38Πp,z + b39eb40Πp,z . (88)

B10 = b41n + b42n2 + b43Π2
p,z + b44t/Db

2. (89)

Table A2. Rounded values of the constants for ΠQ = f
(
Πp,z, n, t/Db

)
.

Constant Value Constant Value Constant Value

b00 0.86172 b15 −0.26376 b30 −11.314
b01 0.10200 b16 −24.303 b31 −10.082
b02 3.0156 b17 −0.25811 b32 −0.052856
b03 0.0014701 b18 0.26056 b33 −393.64
b04 16.281 b19 −7.1580 b34 −90.030
b05 1.6249 b20 16.080 b35 −68.179
b06 −1.6156 b21 18.452 b36 4.8797
b07 −0.0099142 b22 98.805 b37 −14.870
b08 −0.10634 b23 −136.28 b38 −11.171
b09 0.13419 b24 356.33 b39 190.64
b10 0.25265 b25 416.31 b40 2.1170
b11 −0.061868 b26 3.2554 b41 91.599
b12 −0.10227 b27 4.6268 b42 −224.08
b13 0.17363 b28 3.1055 b43 120.47
b14 0.19517 b29 1.6456 b44 20.069

Appendix A.3 Sub-Functions of Equation (70): ΠQ = f (ΠV , n, t/Db)

C1 = c00 + c01n + c02ΠV + c03t/Db. (90)

C2 = ec04n. (91)
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C3 = c05 + c06n + c07ΠV + c08t/Db + c09t/Db
2 + c10 ln(c11 + c12ΠV). (92)

C4 = ec13n
(

c14ec15t/Db + c16n + c17ΠV + c18Π2
V + c19t/Db

2
)

. (93)

C5 = c20 + ec21n+c22ΠV + c23n + c24ΠV + c25Π2
V + c26t/Db + c27t/Db

2. (94)

C6 = c28 + c29ec30ΠV + c31ΠV + c32Π2
V + c33t/Db

2. (95)

C7 = c34 + ec35n + ec36ΠV + c37n2 + c38ΠV + c39t/Db + c40t/Db
2. (96)

C8 =
c41ΠV

n ln(c42 + c43ΠV)
. (97)

Table A3. Rounded values of the constants for ΠQ = f (ΠV , n, t/Db).

Constant Value Constant Value Constant Value

c00 −4.0149 c15 0.19534 c30 −5.7695
c01 −0.77962 c16 6.1094 c31 −2.9650
c02 1.4469 c17 −11.854 c32 2.0976
c03 0.11684 c18 10.1740 c33 0.18684
c04 1.7719 c19 4.0632 c34 1.2438
c05 −8.4896 c20 5.7393 c35 −0.10144
c06 0.76173 c21 1.3311 c36 −3.5935
c07 −0.45230 c22 −1.4480 c37 0.69822
c08 −0.14219 c23 0.92724 c38 −0.029327
c09 0.017573 c24 0.27244 c39 −0.061845
c10 2.6071 c25 1.8007 c40 0.011676
c11 17.055 c26 1.2338 c41 0.85656
c12 −0.25102 c27 0.83026 c42 4.2487
c13 −0.87942 c28 −0.68791 c43 0.64400
c14 42.781 c29 0.28069
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