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Abstract: pH-sensitive polyampholyte microgels of poly(acrylic acid-co-vinylamine) (P(AA-co-VAm))
were developed as an injectable hydrogel for controlled drug release. The microgels of P(AA-co-VAm)
were prepared via inverse suspension polymerization of acrylic acid and N-vinylformamide followed
by hydrolysis of poly(N-vinylformamide) (PNVF) chains of the resultant microgels under basic
condition. The pH-sensitivity of the P(AA-co-VAm) microgels in zeta potential and swelling ratio
were investigated using a zeta potential analyzer and optical microscope. The results showed that
both the zeta potential and the swelling ratio of the microgels were highly affected by the solution
pH. By changing the pH of P(AA-co-VAm) microgel dispersion, the interparticle interaction and the
swelling ratio of the microgels could be well adjusted and a colloidal hydrogel could be fabricated
at moderate pH, showing a pH-triggered reversible fluid-gel transition. Using the polyampholyte
P(AA-co-VAm) microgels as an injectable hydrogel drug release system, a sustained drug release
could be achieved, indicating the great potentials of the pH-sensitive P(AA-co-VAm) microgels for
controlled drug delivery.

Keywords: microgels; polyampholyte; poly(acrylic acid); polyvinylamine; injectable hydrogel;
drug delivery

1. Introduction

Hydrogels are insoluble polymer networks formed through the covalent or physical crosslinking
of hydrophilic macromer precursors that can absorb a significant amount of water or biological
fluids. Due to their excellent capability of retaining water and other biomimetic properties, hydrogels
represent one of the most promising technology platforms for therapeutic intervention in a variety of
diseases. They were widely explored in the domains of controlled drug delivery, tissue engineering, and
regenerative medicine [1–13]. Among the varied hydrogel systems, the injectable hydrogels attracted
much more attention due to their injectability, which is particularly useful for topical injection for a
site-specific action [9–13]. These material systems are flowable aqueous solutions or dispersions before
administration, but once injected, they rapidly turn into hydrogel under physiological conditions.
The formation of hydrogels after injection brings forth some advantages: An injectable matrix can
be implanted in the human body with minimal surgical wounds, and bioactive molecules or cells
can be incorporated into the matrix simply by mixing before injection. After injection and gelation,
these matrices could become drug delivery devices in pharmaceutics or cell-growing depots for
tissue engineering.

Polymers 2019, 11, 285; doi:10.3390/polym11020285 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://dx.doi.org/10.3390/polym11020285
http://www.mdpi.com/journal/polymers
http://www.mdpi.com/2073-4360/11/2/285?type=check_update&version=2


Polymers 2019, 11, 285 2 of 12

The injectable hydrogels can be formed by in situ chemical crosslinking or by the sol-gel or
fluid-gel transition. In situ chemical crosslinking is a conventional approach to prepare a stable
hydrogel [14–19]. For instance, the free radical chain growth polymerization of activated acrylates [16],
click chemistry of alkynes and azides [17], and conjugate Michael addition of multifunctional thiol and
activated -ene precursors [18,19] could result in stable hydrogels in situ. However, the suitability of
some of these systems for in situ gelation was limited due to the incomplete conversion of reactive
functional groups and high sol fraction. In addition, the use of metal catalysts, photo initiators,
and/or ultraviolet light to initiate and propagate gelation also brought about biocompatibility
concerns. In addition to chemically crosslinked hydrogels, in situ physically formed hydrogels
may represent a much more promising injectable hydrogel technology platform for controlled drug
delivery and tissue engineering. Physical gelation is free of any chemical reaction. Therefore, it could
overcome the defects of some chemical gelatins that have biocompatibility problems of residue
initiators or monomers. Some polymers in aqueous solution could undergo a reversible phase
transition upon external stimuli or modest changes of environmental conditions like temperature,
pH, redox condition, or ionic concentration, etc. For instance, the copolymers of poly(phenylene
oxide)-poly(ethylene oxide) (PPO-PEO), poly(lactic-co-glycolic acid)-poly(ethylene oxide) (PLGA-PEO)
and polycaprolactone-poly(ethylene oxide) (PCL-PEO) exited a sol-gel or fluid-gel transition upon
a temperature stimulus [20–22]. They could turn into gel after injection into body and show great
potentials in biomedical application. However, one great disadvantage of these systems is that they
have to be heated up to a high temperature (e.g., 60 ◦C) during injection, which would cause necrosis,
tissue scarring, and pain for the patient.

Polyelectrolytes are polymers whose repeating units bear electrolyte groups, such as carboxyl
or amino groups. Generally, the weak polyelectrolyte has an average dissociation constant (pKa or
pKb) in the range of ~2 to ~10, which means that it would be partially dissociated at intermediate
pH. Thus, the properties of weak polyelectrolytes, such as charge, can be modified by changing
the solution pH. Among the varied polyelectrolytes, poly(acrylic acid) (PAA) is a common anion
polyelectrolyte known for its pH-responsiveness, as it is composed polymeric backbones with pendant
carboxyl groups. PAA is widely used in biomedical engineering, agriculture, and environmental
protection [23]. Polyvinyl amine (PVAm) is a cationic polyelectrolyte that has the highest density of
primary amine functional groups of any polymer. PVAm adsorbs spontaneously on most surfaces
in aqueous solution, generating cationic interfaces. PVAm, therefore, provides a great potent tool
for the modification of macroscopic and nanoparticle surfaces [24]. Using these polyelectrolytes,
bulk complexes, such as hydrogels could be fabricated via the electrostatic attraction interactions
between the oppositely-charges groups [25–29]. For instance, PVAm and poly(ethylene-co-maleic
acid) (PEM) were used to coat poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres with either
positive or negative charges, respectively. The colloid self-assembled through electrostatic forces of
the oppositely-charged PLGA microspheres resulted in a stable 3D network, showing great potential
in controlled drug release and tissue engineering [28,29]. Polyampholyte microgel particles were
crosslinked polyelectrolytes bearing both positively and negatively charged groups. They normally
showed great pH-responsiveness: A minimum swelling ratio was normally observed at the isoelectric
point (pI, the pH of zero net charge), while a much larger swelling ratio and high chain extension
were shown at extreme pH values that far away the isoelectric point. These polyampholyte microgels
found great application in drug delivery and metal-ion removal [30]. For example, poly(methacrylic
acid)-poly[2-(dimethylamino)ethyl methacrylate](PAA-PDMAEMA) polyampholyte microgels were
reported to have a pH-dependent swelling, uptake, and release behaviors, showing great potentials
for controlled drug release [30,31].

In this report, we were interested in developing a novel injectable hydrogel system for controlled
drug delivery. PAA and PVAm were chosen due to their polyanic and polycationic natures.
Polyampholyte microgels of P(AA-co-VAm) were prepared via inverse suspension polymerization
of acrylic acid and N-vinylformamide followed by hydrolysis under basic condition. The changes of
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swelling ratio and the zeta potential of the microgels upon the change of pH were investigated by
optical microscope and zeta potential analyzer to test the pH-sensitivity. Finally, an injectable hydrogel
system was assembled using the pH-sensitive polyampholyte microgels and the in vitro drug release
behavior from the fabricated hydrogel was also investigated.

2. Materials and Methods

2.1. Materials

N-Vinylformamide (NVF) and acrylic acid (AA) were purchased from Alfa Aesar (Tianjin, China).
NVF was distilled under vacuum and stored at −20 ◦C, while AA was passed through an alumina
column before use. 4,4’-azobis(4-cyanopentanoic acid) (V501), N,N’-methylenebisacrylamide (MBA)
and Span 60, from Sigma-Aldrich (Shanghai, China), were used as supplied. Other reagents were
commercially available chemicals and used as received.

2.2. Preparation of P(AA-co-NVF) and P(AA-co-VAm) Microgels

The P(AA-co-NVF) microgels were prepared by inverse suspension polymerization of AA and
NVF with MBA as crosslinker [32]. Typically, the mixture of methanol-water (v/v = 1/4, 25 mL),
monomers (AA, 25 mmol; NVF, 25 mmol), cross-linker (MBA, 1.5 mmol), and initiator (V501, 0.5 mmol)
was added to a pre-purged oil phase containing 250 mL of heptane, 7.5 g Span 60 under stirred
at 400 rpm. The polymerization was conducted at 65 ◦C for 3 h at a stirring speed of 400 rpm.
The resultant microgels were separated by centrifuge at 4000 rpm for 10 min, washed with distilled
water, acetone and ethanol for several times. The P(AA-co-NVF) microgels were obtained as white
powder by drying under vacuum for 24 h at 40 ◦C.

The P(AA-co-VAm) microgels were prepared by basic hydrolysis of P(AA-co-NVF) microgels [33].
The P(AA-co-NVF) microgels (1.0 g) were dispersed in 100 mL of 2M NaOH solution and kept at
80 ◦C for 5 h. The resultant P(AA-co-VAm) microgels were separated by centrifuge at 4000 rpm for
10 min, washed thoroughly with distilled water, neutralized, and purified by dialysis for a week
against regularly replaced pure water. The P(AA-co-VAm) microgels were recovered by lyophilization.

2.3. Characterization of Microgels

FTIR spectra were recorded in KBr disks using a Perkin-Elmer Spectrum One instrument
(Perkin-Elmer, Waltham, MA, USA). The average number of scans per spectrum was 64 and the
spectral resolution was 4 cm−1. The surface structure of the microgels was characterized with an
S-4700 (Hitachi, Tokyo, Japan) scanning electron microscope (SEM). The samples were mounted
directly onto the SEM sample holder using double-sided sticking tape and were sputter-coated with
gold in vacuum prior to measurements. Zeta potential of the microgels was measured by laser Doppler
electrophoresis using a Zetasizer Nano ZS instrument (Malvern instrument, Malvern, UK) at 25 ◦C.
For samples prepared, the microgels were dispersed into phosphate buffer (PB, 50 mM) solutions
with different pH at a microgel concentration of 0.3 mg/mL for 24 h prior to measurements, the large
particles were removed by sedimentation, and the upper solution was injected into a disposable cuvette
for the measurement of zeta potential. Optical morphologies of the swollen microgels were observed
using a BX71 optical microscope (Olympus, Hachioji, Japan) and the diameters of the microgels
were statistic from the optical images. The swelling ratios (q) of the microgels were estimated using
Equation (1)

q = (
d
dc
)

3
(1)

where dc is the collapsed particle diameter that determined by SEM, d is the swollen particle diameter
determined by optical microscope images.
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2.4. Fluid-Gel Transition

The fluid-gel transition behavior of P(AA-co-VAm) microgels in aqueous dispersion was
determined using the test tube inverting method. The microgels were dispersed in water at pH 3 with
a desired concentration. Then, the pH of the solution was increased by adding a small amount of
4M NaOH. After kept for 10 min at the pH, the fluid-gel transition was determined by angling the
vial horizontally. A gel was determined when no significant flow was observed 30 s after the vial
was inverted.

2.5. In Vitro Drug Release from the Hydrogels

The release profiles of drug from hydrogels were studied at 37 ◦C in phosphate-buffered solution
with different pH. Briefly, 1.0 mL of hydrogels of 3.5% and/or 2.5% P(AA-co-VAm) were prepared by
adjusted the pH to the desired pH value in a tube. Doxorubicin (DOX) were incorporated into the
hydrogels during the fluid-gel transition with a payload of 400 µg. Then, 2.0 mL of phosphate-buffered
solution was added to the upper of the hydrogel. At selected time intervals, 1.0 mL of the upper
solution was removed for UV–vis analysis and replaced with fresh phosphate-buffered solution. DOX
concentration was calculated based on the absorbance intensity at 480 nm. In the assessment of
drug-release behavior, the cumulated amount of released drug was calculated, and the percentages of
drug released were plotted against time.

3. Results and Discussions

3.1. Preparation and Characterization of the Microgels

Scheme 1 shows the preparation pathway of the P(AA-co-NVF) and P(AA-co-VAm) microgels.
The P(AA-co-NVF) microgels were prepared by inverse suspension copolymerization of AA and NVF
with MBA as crosslinker. Then, hydrolysis of the P(AA-co-NVF) microgels under basic condition gave
the corresponding P(AA-co-VAm) microgels.
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Scheme 1. Preparation pathway of P(AA-co-NVF) and P(AA-co-VAm) microgels. 

Figure 1 showed the typical FTIR spectra of the P(AA-co-NVF) and P(AA-co-VAm) copolymer 
microgels with characteristic peaks shown in the spectra. As for the P(AA-co-NVF) microgel, the 
amide and carboxylic acid adsorption peaks, which are specific to NVF and AA components, 
respectively, can be identified in the FTIR spectrum. The amide peak of the NVF group appeared at 
1655 cm-1 for amide I (–CO–NH–, C=O stretching) and at 1541 cm−1 for amide II (–CO–NH–, N–H 
bending). Characteristic of C=O and C–O stretching bands of the carboxylic acid group of AA 
appeared at 1716 and 1250 cm−1, respectively. The FTIR result indicated successful polymerization of 
NVF and AA as expected. Basic hydrolysis of P(AA-co-NVF) microgels was utilized to prepare 
P(AA-co-VAm) microgels. After hydrolysis, in the FTIR spectrum, characteristic of C=O and C–O 
stretching bands of the carboxylic acid group of AA shifted to 1757 and 1264 cm−1, these blue shifts 
were due to the replace of hydrogen bond interaction by electrostatic interaction in the copolymer 
network. The character 1655 and 1541 cm−1 absorption for amide of NVF group disappeared and a 

Scheme 1. Preparation pathway of P(AA-co-NVF) and P(AA-co-VAm) microgels.

Figure 1 showed the typical FTIR spectra of the P(AA-co-NVF) and P(AA-co-VAm) copolymer
microgels with characteristic peaks shown in the spectra. As for the P(AA-co-NVF) microgel, the amide
and carboxylic acid adsorption peaks, which are specific to NVF and AA components, respectively,
can be identified in the FTIR spectrum. The amide peak of the NVF group appeared at 1655 cm−1

for amide I (–CO–NH–, C=O stretching) and at 1541 cm−1 for amide II (–CO–NH–, N–H bending).
Characteristic of C=O and C–O stretching bands of the carboxylic acid group of AA appeared at
1716 and 1250 cm−1, respectively. The FTIR result indicated successful polymerization of NVF and
AA as expected. Basic hydrolysis of P(AA-co-NVF) microgels was utilized to prepare P(AA-co-VAm)
microgels. After hydrolysis, in the FTIR spectrum, characteristic of C=O and C–O stretching bands of
the carboxylic acid group of AA shifted to 1757 and 1264 cm−1, these blue shifts were due to the replace
of hydrogen bond interaction by electrostatic interaction in the copolymer network. The character 1655
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and 1541 cm−1 absorption for amide of NVF group disappeared and a new group of absorption peak
belonged PVAm at 1672 cm−1 (N–H deformation vibration), 1554 cm−1 (C–N stretching) appeared,
indicating the success preparation of the P(AA-co-VAm) microgels.
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Figure 2 shows the typical SEM images of the P(AA-co-NVF) and P(AA-co-VAm) microgels.
Both the P(AA-co-NVF) and P(AA-co-VAm) microgels have regularly spherical shapes with relatively
smooth surfaces, and the microgel particles have average sizes of 4.7 µm for P(AA-co-NVF) and 3.8 µm
for P(AA-co-VAm) microgels, respectively.
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3.2. pH-Sensitivity of the Microgels

The microgels of P(AA-co-NVF) and P(AA-co-VAm) bear electrolyte groups, such as carboxyl
and/or amino groups, which would be partially dissociated at intermediate pH. Thus, the properties
of these polyelectrolytes microgels, such as charge and swelling behaviors, would be greatly affected
by the solution pH.

Figure 3 shows the zeta potential of P(AA-co-NVF) and P(AA-co-VAm) microgels at various pH.
The P(AA-co-NVF) microgel have a zeta potential of about −25 mV at pH above 6.0 due to the nearly
complete ionization of carboxyl groups in PAA with a pKa of ~4.5. The zeta potential of P(AA-co-NVF)
increased sharply with pH decrease from 6.0 to 2.0 and reached near 0 mV at pH 1.5~2.0 due to the near
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complete protonation of carboxyl groups in PAA. In contrast to P(AA-co-NVF) microgels, an isoelectric
point was observed at pH 3.5 for P(AA-co-VAm) microgels, where the net charge is zero. Below the
isoelectric point of pH 3.5, the zeta potential increased greatly to about 12 mV upon the pH decrease
from 3.5 to 1.5. Above the isoelectric point of pH 3.5, a negative zeta potential was observed and
the zeta potential decreased largely from 0 mV to about −25mV, while the pH increased from 3.5 to
8.0, and a slight decrease of zeta potential was observed from pH 8.0 to pH 11.5. The change of zeta
potential is due to the ionization balance of the carboxyl groups in PAA and primary amino groups
in PVAm. PAA has an average dissociation constant of pKa ≈ 4.5 while the dissociation constant
of the protonated PVAm (PVAm·H+) is of pKa ≈ 8.0 [24]. At pH 3.5, the carboxyl groups in PAA
were partially ionized, creating a negative charge. Meanwhile, the primary amino groups in PVAm
were partially protonated, providing a positive charge. The positive and negative charges wiped one
another out and gave a zero net charge. Below the isoelectric point, the amount of negatively charged
ionized carboxyl groups decreased, and the amount of positively charged protonated amino groups
increased with the decrease of pH, which resulted in a net positive zeta potential and the increase
of zeta potential for the P(AA-co-VAm) microgels upon the pH decreased from 3.5 to 1.5. Above
the isoelectric point, the amount of negatively charged ionized carboxyl groups increased and the
amount of positively charged protonated amino groups decreased upon the pH increase from 3.5 to
8.0, resulting in that the zeta potential decreased from 0 mV to about −25 mV with pH increasing
from 3.5 to 8.0. When pH was above 8.0, almost all the carboxyl groups were ionized, while the small
fraction of the protonated primary amino groups decreased upon the pH increase from 8.0 to 11.5.
As a result, the zeta potential decreased slightly with pH increase from 8.0 to 11.5.
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Figure 3. Variation of the zeta potential of P(AA-co-NVF) (solid) and P(AA-co-VAm) (hollow) microgel
as a function of pH.

Figure 4 showed the size distribution of the swollen P(AA-co-NVF) and P(AA-co-VAm) microgels
in different pH solution, as statistic from the optical images. The P(AA-co-NVF) microgels have an
average swollen diameter (d) of 14.5 µm at pH 2.0 and 26.7 µm at pH 7.4, while the P(AA-co-VAm)
microgels have an average swollen diameter of 14.8 µm at pH 2 and 24.2 µm at pH 7.4. The variation
of the swelling ratio (q) as a function of pH is shown in Figure 5. The P(AA-co-NVF) microgels were
swollen most at pH above 7.4 (q = 175), exhibited a significant decrease in swelling ratio at pH = 6, and
reached a constant of about 25 at pH blow 4. As for P(AA-co-VAm) microgels, the highest swelling
ratio was observed at pH 7~8, and a large decrease in the swelling ratio was observed at pH below
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6 and pH above 9. The swelling ratio of P(AA-co-VAm) reach a minimum at pH between 3 and 4,
nearing the isoelectric point. Below the isoelectric point, the swelling ratio increased significantly with
a pH decrease from pH 3 to pH 1.5. The pH-dependent of swelling behaviors were due to the different
polyelectrolytes nature. P(AA-co-NVF) microgel is a polyanionic polymer network. The carboxyl in
PAA is nearly complete ionization at pH above 6, resulting a higher osmotic pressure and consequently
a higher swelling ratio. The swelling ratio decreased upon the pH decrease, which resulted from
the protonation of carboxyl in PAA. P(AA-co-VAm) microgels are a polyampholyte polymer network
bearing both carboxyl and amino groups. The P(AA-co-VAm) microgel reaches its isoelectric point at a
certain pH (e.g., pH = 3.5), where the osmotic pressure reaches a minimum. Thus, the swelling ratio of
P(AA-co-VAm) microgels also reached a minimum at the isoelectric point. When the pH decreased
from 3.5 to 1.0, the protonation of amino groups in PVAm resulted in a higher osmotic pressure, and
thus, a higher swelling ratio; Similarly, with the pH increased from 3.5 to 8.0, the ionization of carboxyl
groups in PAA also resulted a higher osmotic pressure and a higher swelling ratio.
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3.3. Fluid-Gel Transition of P(AA-co-VAm) Microgels

Figure 6 shows the digital images of P(AA-co-VAm) microgels dispersion with a 2.5% polymer
concentration at varied pH. The dispersion of P(AA-co-VAm) microgels was flowable at pH below
6.0. When the pH was increased to 7.4 and/or 9.5, the dispersion turned from fluid into a gel state.
With a much higher value of pH 12, the formed hydrogel could turn into fluid again. Interestingly,
the destroyed hydrogels (e.g., at pH 12) could be reformed into a gel state by changing the pH
to the moderate pH region (such as pH 7.4 or 9.5), which meant that the fluid-gel transition is
reversible. However, no fluid-gel transition was observed for the P(AA-co-NVF) microgels solution.
The fluid-gel transition of P(AA-co-VAm) microgels dispersion resulted from the pH-dependent
electrostatic interactions and swelling behavior of the polyampholyte microgels.

As discussed above, the microgels of P(AA-co-VAm) bared both carboxyl and amino groups
inside the polymeric network. PAA has an average dissociation constant of pKa ≈ 4.5, while the
dissociation constant of the protonated PVAm (PVAm·H+) is of pKa ≈ 8.0 [24]. The existence forms of
both carboxyl (e.g., –COOH or –COO−) and amino groups (e.g., –NH3

+ or –NH2) inside the polymeric
network are highly affected by pH, which resulted in that the electrostatic interactions between the
microgels are highly affected by the solution pH. At a much lower pH (e.g., pH = 2), both the carboxyl
groups and amino groups were almost entirely protonated as –COOH and –NH3

+, respectively. As a
result, the microgels had a high positive charge (e.g., 12 mV) in the polymeric network, resulting in
the electrostatic repulsion between the microgels. In addition, the microgels were not swollen in large
quantities, as compared to the high pH range (e.g., pH = 8). These phenomena resulted in that the
microgel dispersion could flow easily at a rather low pH. At pH = 4, nearing the isoelectric point, the
much lower swelling ratio of the microgels also resulted in the flowability of the microgel dispersion.
However, at moderate pH (e.g., pH 7.4), the carboxyl groups were ionized into –COO− and the amino
groups were partially protonated into –NH3

+, which resulted into that the microgels had the negative
and positive charges in the polymeric network. As a result, the microgels could interact with each other
by the high electrostatic attraction and fabricate in a hydrogel. In addition to the high electrostatic
interactions, the much higher swelling ratio of the microgels also has a positive contribution to the
forming of hydrogel at moderate pH. As for a much higher pH (e.g., pH 12), the carboxyl groups were
ionized entirely as –COO− and the amino groups were almost neutralized as –NH2, showing high
negative charges in the polymeric network, which resulted in the electrostatic repulsion between the
microgels. In addition, the size of the swollen microgels decreased a bit due to the salt effect. As a
result, the P(AA-co-VAm) microgel dispersion turn into fluid at much higher pH (e.g., pH 12).
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Figure 7 shows the phase diagram of fluid-gel transition of the P(AA-co-VAm) microgels aqueous
dispersion. The fluid-gel transition was greatly affected by the pH and the polymer concentration.
For example, the P(AA-co-VAm) microgel dispersion with a 2.2% concentration was a flowable
fluid at pH < 8.0, and it could turn into the hydrogel at pH > 8.0, which could be destroyed into
a flowable dispersion at pH > 10.5. Notably, the P(AA-co-VAm) microgel dispersion had a narrow pH
window to form hydrogels at lower polymer concentration, while the dispersion with a high polymer
concentration could turn into hydrogel at a relatively wide pH region. For instance, the pH region
for the P(AA-co-VAm) microgel dispersion of 2.2% concentration to form hydrogel was about pH
8.0–10.5. However, the pH region for a 3.0% P(AA-co-VAm) microgel dispersion to form hydrogel is of
6.2–11.8, which was much wider than that of a lower polymer concentration. With a higher polymer
concentration of 3.5% or 4.0%, the dispersion could form hydrogel at a relatively wide pH region of
pH > 5.0 or pH > 4.6, and the hydrogels were stable even at pH as high as 13. The wide pH windows
for aqueous dispersion with a higher microgel concentration to form hydrogels is related to much
more charged microgel particles in the dispersion and to the high adsorption of aqueous solution the
microgel at a higher pH. With a higher polymer concentration, there are much more charged microgel
particles in the dispersion, and the charged particles could electrostatically interact with each other
to form an unflowable gel in spite of the inadequate swelling of the microgels in lower pH region,
which resulted in the decrease of the lower boundary of the fluid-gel transition for a higher microgel
concentration. On the other hand, with a higher polymer concentration, almost all the aqueous solution
could be adsorbed by the microgels at high pH region. The tremendously swollen microgels interacted
with each other via electrostatic interaction and/or adhesion and mutual friction interaction, which
resulted in that the dispersion could keep a gel state at a high pH region (e.g., as high as pH 13) and an
increase of the upper boundary of the fluid-gel transition for a higher microgel concentration.
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3.4. In Vitro Drug Release

Figure 8 shows the in vitro release of DOX from hydrogels fabricated by P(AA-co-VAm) microgels.
The drug release profiles were dependent on both the microgel concentration and the pH.

As seen in Figure 8a, DOX release much faster from the hydrogel with a lower microgel content
(e.g., 2.5%) than that of a higher microgel content (e.g., 3.5%) at pH 7.4. For example, 32% of DOX
released from the hydrogel assembled by 3.5% microgels in 24 h, while much more DOX (51%) released
from the hydrogel with a 2.5% microgel content. This is probably due to the fact that the hydrogel
with lower microgel content is easily eroded due to its lower stability, which resulted from the fact
that the release was performed at the pH nearing the hydrogel forming pH boundary. Thus, a faster
release could be achieved form the hydrogel with a lower microgel content. It was further observed
that DOX was released from the hydrogels in a near-zero ordered manner up to 80% release for the
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hydrogels with either a 2.5% or 3.5% polymer content. The sustained near-zero ordered drug release
profile should be controlled by the erosion of hydrogel. The erosion of hydrogel was taken at the top
hydrogel surface with a constant area of release, resulting in a near-zero ordered drug release.

The drug release from hydrogels fabricated by 3.5% P(AA-co-VAm) microgels was investigated
at different pH levels. As shown in Figure 8b, the drug released slower at pH 7.4 and pH 8.4 than
at pH 6.0. The pH-dependent drug release should resulted from the difference in the stability of the
forming hydrogels with different pH levels. The formed hydrogel at pH 6.0 had a lower stability and
the erosion of the hydrogel was easier due to the pH value is near the lower boundary of the fluid-gel
transition. At a higher pH of 7.4 or 8.4, the stability of the formed hydrogels is higher and consequently
a long-term drug release could be achieved at pH of 7.4 or 8.4.

Therefore, in combination of the favorable properties including injectability, pH-triggered fluid-gel
transition, and sustained drug release, the pH-sensitive polyampholyte microgels of P(AA-co-VAm)
showed great potentials for injectable drug delivery.
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4. Conclusions

pH-sensitive polyampholyte microgels of P(AA-co-VAm) were developed as injectable hydrogel
for controlled drug release. The P(AA-co-VAm) microgels were prepared via inverse suspension
polymerization of AA and NVF, followed by hydrolysis under basic condition. Both the swelling
ratio and the zeta potential of the P(AA-co-VAm) microgels were highly affected by the solution
pH, showing pH-sensitivity. By changing the pH, the P(AA-co-VAm) microgel dispersion showed a
pH-triggered fluid-gel transition, and a colloidal gel could be assembled at moderate pH values. Using
the polyampholyte P(AA-co-VAm) microgels as injectable hydrogel drug release system, a sustained
drug release could be achieved, showing the great potential of these pH-sensitive polyampholyte
microgels for controlled drug delivery.
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