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Abstract: We investigated the statistical behaviors of semiflexible polymer chains, which were 

simultaneously subjected to force stretching and rectangular tube confinement. Based on the 

wormlike chain model and Odijk deflection theory, we derived a new deflection length, by using 

which new compact formulas were obtained for the confinement free energy and force–

confinement–extension relations. These newly derived formulas were justified by numerical 

solutions of the eigenvalue problem associated with the Fokker–Planck governing equation and 

extensive Brownian dynamics simulations based on the so-called generalized bead-rod (GBR) 

model. We found that, compared to classical deflection theory, these new formulas were valid for a 

much more extended range of the confinement size/persistence length ratio and had no adjustable 

fitting parameters for sufficiently long semiflexible chains in the whole deflection regime. 

Keywords: wormlike chain model; rectangular tube confinement; slit confinement; Odijk length; 

stretch; GBR model; Brownian dynamics simulation 

 

1. Introduction 

Statistical physics properties of single polymer chains can be significantly influenced or even 

determined by geometrical confinements and applied external forces [1–4]. A detailed understanding 

of the behaviors of polymers under such circumstances is still considered to be an unsolved problem 

in polymer physics after more than half a century. However, even so, advances in the study of 

geometrically and potentially constrained polymers are playing a role in the development of many 

existing nanotechnologies of genomics and materials science, etc. [5–7]. 

For polymers under confinement, the effects of constraints have usually been classified into three 

regimes (weak, moderate, and strong confinements), which are distinguished in terms of the 

comparison between the polymer’s unconfined radius of gyration and the Kuhn length of the typical 

confinement length scale. In the regime of weak confinement, Casassa [8] has discussed the free 

energy of ideal chains trapped in pores with different shapes based on the theory of diffusion. Then, 

de Gennes and his coworkers [9,10] developed the so-called blob model to describe the confinement 

of a long, flexible polymer. According to this model, the free energy of confinement is given by 

1/
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. (1) 

Here, H is the length scale of confinement, Bk  is the Boltzmann constant, and T is the absolute 

temperature. g a

vR L N  is the radius of gyration of the unconfined polymer, N is the number of 

monomers, aL  is of the order of the monomer-monomer separation, and v equals 1/2 for ideal 

polymers and approximately 3/5 for polymers with excluded volume. A widely used model of a 

polymer with bending energy is the wormlike chain (WLC) model, characterized by the contour 
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length L and persistence length Lp, which was first proposed by Kratky and Porod in 1949 [11]. In the 

strong confinement regime, Odijk [12,13] has argued that polymer behavior can be interpreted in 

terms of /L   statistically independent segments with deflection length  . Based on this picture, 

he [12–14] obtained expressions of the confinement free energy, F, and the average extension of the 

chain, 𝑅||, in terms of 𝜆 as 
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where 
fe ext,     represent the free energy and extension-associated deflection lengths, respectively: 

1/3 2/3

fe ext p, L D   [12] has been suggested for the confinement of a cylindrical tube with diameter D. 

For the confinement of a rectangular tube with height and width Hh and Hw, the deflection length 

associated with the free energy calculation has been suggested as [15,16] 
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(4) 

In contrast, this deflection length associated with the average extension is given as 

1/3 2/3 1/3 2/3

ext p h p w2 ( )L H L H  
. (5) 

We note that Equations (4) and (5) have different expressions and prefactors. The prefactors in 

Equations (4) and (5) were determined by using various numerical techniques and theoretical 

derivations, such as the Monte Carlo simulations [17,18] and eigenvalue technique associated with 

the Fokker–Planck equations [15,19]. Examples of the determined prefactors are illustrated in Table 

1. We can see that the prefactors 1 A  and  , respectively determined from free energy and 

extension, have an almost 10 times difference in quantity. 

Table 1. Prefactors of the Odijk deflection length scale. 

A
 


 

1.1036 [15] -- 

1.108 ± 0.013 [17] -- 

1.1038 ± 0.0006 [18] 0.09137 ± 0.00007 [18] 
1.1032 ± 0.0001 [19] 0.09143 ± 0.0001 [19] 

In addition, a slit of separation H can be regarded as a rectangular tube with height Hh =H and 

infinite width 
wH  . Statistical properties of polymer chains confined in the slit have been 

extensively studied [20–25] based on Monte Carlo simulations and eigenvalue analysis. The 

deflection length in a strong confinement regime has been confirmed to follow the Odijk scaling law, 

1/3 2/3

pL H  . (6) 

Although the deflection length in Equation (5) can be viewed as the combination of that for two 

slits with heights Hh and Hw, respectively [15], it can be observed from Equations (4)–(6) that the 

deflection length in Equation (5) is not consistent with Equation (6) as wH  . 

Beyond the Odijk regime, Chen [24] numerically calculated the confinement free energy by 

treating the problem of a confined polymer as an eigenvalue problem. He also suggested an 

interpolating formula that can have very good agreement with that of the numerical calculations for 

polymers under both strong and weak confinements. In addition, an extended de Gennes regime 

[20,26,27] has also been identified based on the Monte Carlo simulations. 

Interestingly, external forces can pose similar effects to the statistical behaviors of single polymer 

chains as geometrical confinements. For a polymer chain to be stretched by a sufficiently large force, 

javascript:;
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𝑓s, a deflection length also exists and can be expressed as [3,28]  𝜆f = 𝐿p √𝑓⁄ , where 𝑓 = 𝑓s𝐿p/𝑘B𝑇, so 

that the force-extension relation can be expressed as 

1
1

ˆ2

R

L f
 

. 
(7) 

Polymers in real microenvironments are usually subjected to both geometrical constraints and 

external forces. Wang and Gao [29] have revealed that the average extension of a strongly tube-

confined and force-stretched polymer chain can be equivalent to that of an unconfined chain 

subjected to an effective stretching force. Li and Wang [30] later confirmed that this equivalence 

property is still valid for the tube-confined polymers in a much more extended Odijk regime. 

Therefore, for a semiflexible polymer chain in the deflection confinement regime, one can generally 

have 

c
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, 
(8) 

where one can set 2 2

c p fe
ˆ = /f L   or 2 2

c p ext
ˆ = /f L   as the normalized effective force due to the existence of 

strong confinement: For the confinements of rectangular tubes, 
fe , 

ext  are given by Equations (4) 

and (5). 

However, as shown above, Odijk deflection lengths based on free energy and extension are 

different. Then a critical question arises. Which deflection length should be used if the polymer chain 

is under both geometrical confinement and force stretching? Therefore, there are still open questions 

on how the Odijk length can be uniquely and precisely defined for polymer chains confined in 

rectangular tubes. 

In this study, for semiflexible polymer chains confined in rectangular tubes and slits, we derived 

a modified deflection length, which was expected to be valid for a more extended range than the 

classical Odijk deflection length. This extended deflection length was directly used to quantitatively 

formulate both energy and extension. We will present numerical calculations based on the eigenvalue 

technique developed by Chen and coworkers [19,31,32] and Brownian dynamics simulations in terms 

of the generalized bead-rod (GBR) model [30,33,34] to justify our theoretical predictions. 

2. Materials and Methods 

2.1. Model 

 

Figure 1. Schematic of a wormlike chain (WLC) confined in a rectangular tube and stretched by a 

force. 

We first considered a WLC confined in a rectangular tube with width Hw and height Hh, as 

shown in Figure 1. We assumed that the tube was small so that the chain’s configurations with the 

so-called “hairpin” structures [14,35] rarely existed. This means statistical behaviors of the chain fell 

into the deflection regime. In order to obtain a universal deflection length scale, λ, to simultaneously 

characterize both the free energy and extension of the chain in terms of the ideas of de Gennes [9,10] 

and Odijk [12], the chain was assumed to behave like L/λ independent free segments, aligning one 
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by one along the tube axis, so that the conformational free energy could still be scaled as Equation (1) 

and the average extension could be simply the sum of that for each free segment. On the other hand, 

when considering the average extension of the chain, the quantitative behavior of each segment 

should be in analogy with a free chain of effective contour length 
1 mc  , in which the parameter c1 

actually reflects the influence of two artificial ends of each such segment. For a free WLC segment of 

contour length 
1 mc  , projection of the position vector of one end, r(s2), to the tangential vector of the 

other end, u(s1), can be given by [36] 

1 m p/

1 2 p( ) ( ) (1 )
c L

s s L e


  r u . (9) 

Then the average extension of the whole chain can be estimated as 
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|| 2 1 2 2
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   r u , (10) 

in which 𝑐2  is introduced as an unknown dimensionless factor. Equation (10) should reproduce 

Equation (3) in the deflection regime, which can determine 
1 8c A    and 

2 1/c  , so 

that eventually we have 

 m pp

||

m

1
LLL

R e





  . (11) 

For a tightly confined polymer in a channel with a rectangular cross-section, Burkhardt and Yang 

et al. [16,19] have derived that the confinement free energy of the polymer chain can be scaled by the 

average length of the tube occupied by the polymer, which is the average extension of the polymer 

chain, as follows: 

2/3 2/3B
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Assuming that 
m  should satisfy Equations (2), (11), and (12), one has 
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where h h p
ˆ /H H L  and w w p

ˆ /H H L . Equation (14) can be regarded as a new deflection length that 

fulfills both requirements for the free energy and statistics of geometrical quantities. We can see from 

Equation (14) that as long as Min(𝐻w, 𝐻h) 𝐿p⁄ ≪ 1, Taylor expansion of this equation yields the result 

in Equation (4). Inserting Equation (14) into Equation (2), and replacing 
fe  by 

m , we can obtain 

the confinement free energy as follows: 

1 2/3 2/3 1
B p h w

ˆ ˆln[1 ( ) ]
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. (15) 

For the extension of the chain under both confinement and stretching force, as shown in Figure 1, 

Wang and Li [37] have suggested the force-extension relation shown in Equation (8), which now can 

be rewritten as 

 
2
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(16) 
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On the other hand, substituting Equation (5) into Equation (3), we can obtain the classical 

extension relation without stretching in the tight-confinement regime, h pL 1H , w p 1H L , as 

follows: 

2/3 2/3

h w
ˆ ˆ1 ( )

R
H H

L
   . (17) 

In the case of ˆ 0f  , Equation (16) in this regime can be reduced to 

2/3 2/3 1

h w
ˆ ˆ1 4 ( )

R
H H

L
      . (18) 

Equations (17) and (18) clearly agree in the special case (𝐻h = 𝐻w) of a tube with a square cross-

section. In terms of the aspect ratio 
h w/H H  , the right-hand side of Equation (17) is larger than 

the right-hand side of Equation (18) by the factor 

   
2

1/3 1/31

4
      . (19) 

The function     has a single minimum at 1  , corresponding to  1 1  , and approaches 

  in the limits 0   and   . Thus, Equation (18) only agrees with the classical strong 

confinement limit (17) if the cross-section of the tube is square or close to it. 

2.2. Numerical Verifications 

2.2.1. Solutions to the Fokker–Planck Equation 

In order to verify the derived free energy expression, we considered the solutions to the Fokker–

Planck equation, which can be used to describe the statistical behaviors of confined polymer chains. 

We first introduce 𝑞(𝐫, 𝐮, s) to represent the probability that a polymer chain at arc length s has an 

end position vector r and an end unit tangential vector u. Then, we can have the partition function of 

the chain with contour length L as 𝑍 = ∫ d𝐫d𝐮𝑞(𝐫, 𝐮, 𝐿) and the Fokker–Planck equation [31,32] 

 2

p B
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2
q s V q s
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r u u u u r r u , (20) 
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r  (21) 

is the potential energy per unit length due to the confinement of a rectangular tube. As suggested by 

Chen [19,32], the solution of Equation (20) can be expanded into a series of eigenfunctions associated 

with negative exponential terms of eigenvalues. By noting that the chain is sufficiently long and that 

the high-order eigenvalues are large enough, then the solution can be approximated by the ground 

state eigenfunction 
0 ( , ) r u  and eigenvalue 𝜇0 as follows: 

0
0

p

( , , ) exp( ) ( , )
2

L
q L

L


  r u r u . (22) 

Then the free energy can be written as 

0
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p
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   . (23) 

Comparing Equation (2) to Equation (23) gives 
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 . (24) 

Chen and his coworkers [19,31,32] have proposed an iteration method to numerically determine 

the ground state eigenvalue and eigenfunction. In this study, we adopted this method to calculate 

the confinement free energy. As examples, we considered polymer chains confined in slits with 

different heights H. When using Chen’s method to calculate 𝜇0, we set the tolerance error as 10−4. 

Figure 2 shows the comparison of the confinement free energy as a function of H/Lp obtained by 

numerical solutions of the ground state eigenvalue, Equation (15), and Equation (2) in terms of the 

classical Odijk length. It can be seen from Figure 2 that free energy based on the modified deflection 

length had a better agreement with the numerical results than that based on the classical one. 

  

Figure 2. Normalized confinement free energy as a function of the normalized slit height, predicted 

based on the classical and modified deflection lengths, and the solutions of the eigenvalue problem. 

2.2.2. Brownian Dynamics Simulations (Appendix A) 

We used the technique of statistical dynamics simulations to verify the derived force-extension 

relation on polymer chains subjected to both confinement of rectangular tubes and stretching of 

external forces. We performed the simulations by using our GBR model for Brownian dynamics of 

semiflexible polymer chains in confinements [33]. This model has been successfully applied to the 

quantitative analysis of statistical behaviors of polymers confined on spherical surfaces [34] and in 

cylindrical tubes [29,30] and subjected to stretching forces [29,30]. In this GBR model, we considered 

the polymer chain as a discrete WLC with N identical virtual beads of radius a at different positions 

( ) { ( ), ( ), ( )}'k k k kt x t y t z tr }, where k = 1, 2, …, N, linked by N-1 rods with inextensible length b. The 

virtual beads are used to feel the hydrodynamic interactions, and angle changes of the adjacent rods 

are used to account for the bending deformation. As long as the position vectors of all N beads at the 

nth time step, denoted as ( )nr ={ 1,( )nr , 2,( )nr , …, ,( )N nr }’, are obtained, the new position vector at the 

(n + 1)th time step,  1n
r , can be calculated from [33,34] 

                 
wall

1

B

( )( )
n n n n n n n n n

t

k T



     r I T B r χ D F ξ T d , (25) 

where t  is the time step, 
'nn  is the Kronecker delta symbol, 

 n
F  is the collective vector of 

internal and external forces, 
   n n

I T B  is a projection matrix (which together with 
 n

T d  sets the 

inextensible constraints),  
wall

n
χ  is the penalty displacement vector for the tube/slit walls,  n

D  is the 

translational diffusion matrix determined through hydrodynamic interactions between beads, and 

 n
ξ  is the vector of random force generated at each time step from a Gaussian distribution with zero 

mean and variance equal to 
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We performed Brownian dynamics simulations for WLCs confined in square tubes, rectangular 

tubes, and narrow slits of different sizes and subjected to various stretching forces. In all simulations, 

the chains were initially set in a straight configuration. Confinements and constant tensile forces were 

then applied during chain relaxation. At the nth time step, we recorded the end-to-end distance along 

the z axis,    , 0,N n n
z z . For each simulation, we needed to keep the steady extension states lasting a 

sufficiently long enough time to generate enough numbers of different equilibrium configurations. 

For each case, average extension of the WLC was obtained by first averaging over time and then 

averaging over a large number of independent trajectories with different random seeds, which was 

then denoted as 𝑅||. For the simulation parameters, we should note that the contour length should 

be larger than (at least) two times the persistence length and much larger than the deflection length 

scale m . As we were only interested in the equilibrium properties of the polymer chains, therefore 

specific values of the bead radius, the hydrodynamic interaction between beads, and time steps were 

not the key factors as long as sufficiently large numbers of different configurations of the polymer 

chain could be generated for averaging. In addition, the bond length should be selected to be much 

smaller than the deflection length scale m  and the persistence length. For all these Brownian 

dynamics simulations, we chose persistence length of the chain as Lp = 50 nm, the viscosity of water 

as 4
0 1.005725 10 Pa.s   , and the absolute temperature as 293KT  . Simulation parameters on bead 

radius a, bond length b, time step t , contour length L, total simulation time, and total number of 

different trajectories for the ensemble average are listed in Tables 2–6 for different chains in different 

confinements. 

Figure 3 shows convergence of the simulations for the evolution of the ensemble average of the 

extension, 𝑅||, for slit- and square tube-confined WLCs under stretching. It can be seen from Figure 

3 that the equilibrium state could last a sufficiently long enough time to guarantee the effectiveness 

of time averaging. 

Figure 4 shows the comparison of Brownian dynamics simulation results and corresponding 

theoretical predictions based on the classical deflection length as shown in Equation (17) and based 

on the modified deflection length in Equation (16) for the normalized average extension of the WLCs 

confined in square tubes of different sizes without stretching. Simulation parameters are listed in 

Table 2. It can be seen from Figure 4 that the prediction in terms of the modified deflection length 

agreed well with the simulation results, and could be reduced to that of the classical one at a tight 

confinement limit. For the case of a large Hw/Lp, the prediction in terms of the classical deflection 

length exhibited a large discrepancy with the simulation results. 

Table 2. Simulation parameters for the confinement of square tubes without stretching force. 

Mark 

Bead 

Radius 
𝑎 

Bond 

Length 
𝑏 

Time 

Step 
∆𝑡 

Contour 

Length 
𝐿 

Total 

Simulation 

Time  

Total 

Trajectory 

Number 

Square 0.98 nm 2 nm 10 ps 160 nm 60 μs 72 

Rhombus 1.85 nm 4 nm 20 ps 320 nm 120 μs 72 

Circle 0.98 nm 2 nm 10 ps 120 nm 60 μs 72 

Cross 1.85 nm 4 nm 20ps 240 nm 120 μs 72 
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Table 3. Simulation parameters for the confinement of square tubes. 

Confinement 

size 
𝐻/𝐿p 

Bead 

Radius 
𝑎 

Bond 

Length 
𝑏 

Time 

Step 
∆𝑡 

Contour 

Length 
𝐿 

Total 

Simulation 

Time  

Total 

Trajectory 

Number 

0.2 1.85 nm 4 nm 10 ps 120 nm 60 μs 120 

0.3 1.85 nm 4 nm 10 ps 120 nm 60 μs 120 

0.4 1.85 nm 4 nm 20 ps 600 nm 120 μs 120 

0.6 1.85 nm 4 nm 20 ps 600 nm 120 μs 120 

Table 4. Simulation parameters for the confinement of rectangular tubes. 

Confinement 

Size 

𝐻w/𝐿p, 𝐻h/𝐿p 

Bead 

Radius 
𝑎 

Bond 

Length 
𝑏 

Time 

Step 
∆𝑡 

Contour 

Length 
𝐿 

Total 

Simulation 

Time 

Total 

Trajectory 

Number 

0.2, 0.3 2 nm 5 nm 20 ps 300 nm 120 μs 120 

0.3, 0.4 1.85 nm 4 nm 20 ps 200 nm 120 μs 120 

0.3, 0.6 1.85 nm 4 nm 20 ps 200 nm 120 μs 120 

0.4, 0.6 2 nm 5 nm 20 ps 300 nm 120 μs 120 

Table 5. Simulation parameters for the confinement of slits (circle). 

Confinement 

Size 

𝐻h/𝐿p, 𝐻w/𝐿p 

Bead 

Radius 
𝑎 

Bond 

Length 
𝑏 

Time 

Step 
∆𝑡 

Contour 

Length 
𝐿 

Total 

Simulation 

Time  

Total 

Trajectory 

Number 

0.2, 1000 2 nm 5 nm 15 ps 200 nm 90 μs 120 

0.3, 1000 2 nm 5 nm 20 ps 150 nm 120 μs 120 

0.4, 1000 1.85 nm 4 nm 25 ps 400 nm 150 μs 120 

0.6, 1000 1.85 nm 4 nm 20ps 400 nm 120 μs 120 

Table 6. Simulation parameters for the confinement of slits (cross). 

Confinement 

Size 

𝐻h/𝐿p, 𝐻w/𝐿p 

Bead 

Radius 
𝑎 

Bond 

Length 
𝑏 

Time 

Step 
∆𝑡 

Contour 

Length 
𝐿 

Total 

Simulation 

Time  

Total 

Trajectory 

Number 

0.2, 1000 1.85nm 4 nm 20 ps 240 nm 120 μs 120 

0.3, 1000 1.85 nm 4 nm 20 ps 240 nm 120 μs 120 

0.4, 1000 2 nm 5 nm 25 ps 500 nm 150 μs 120 

0.6, 1000 2 nm 5 nm 25 ps 500 nm 120 μs 120 

Figures 5–7 show the comparison of Brownian dynamics simulation results and corresponding 

theoretical predictions, based on Equation (8), associated with the classical deflection lengths fe  in 

Equation (4), ext  in Equation (5), and that based on Equation (17) associated with the present new 

deflection length m  in Equation (16), for the normalized average extension of the WLCs stretched 

by different forces and confined in square tubes, rectangular tubes, and slits of different sizes, 

respectively. 

It can be seen from Figures 5–7 that results based on the newly derived formula on the average 

extension of the confined WLC agreed with the simulation results very well, and those based on the 

classical deflection length showed an apparent discrepancy with the simulation results when the tube 

diameter became large or the stretching force was small. 
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(a) 𝐻h 𝐿p⁄ = 0.3, 𝐻w/𝐿p = 1000 (b) 𝐻w 𝐿p⁄ = 𝐻h/𝐿p = 0.3 

Figure 3. Evolution of the extension for tube-confined WLCs under stretching: (a) Slit, 𝐻h 𝐿p⁄ = 0.3,

𝐻w/𝐿p = 1000; (b) Square tube, 𝐻w 𝐿p⁄ = 𝐻h/𝐿p = 0.3. 

 

Figure 4. Comparison of Brownian dynamics simulations and theoretical predictions on the relative 

average extension of a WLC under confinements of square tubes. 

  
(a) 𝐻w/𝐿p = 𝐻h/𝐿p = 0.2 (b) 𝐻w/𝐿p = 𝐻h/𝐿p = 0.3 
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(c) 𝐻w/𝐿p = 𝐻h/𝐿p = 0.4 (d) 𝐻w/𝐿p = 𝐻h/𝐿p = 0.6 

Figure 5. Comparison of Brownian dynamics simulations and theoretical predictions on the relative 

average extension of a WLC under stretching and confinements of square tubes of sizes (a) 𝐻w/𝐿p =

𝐻h/𝐿p = 0.2, (b) 𝐻w/𝐿p = 𝐻h/𝐿p = 0.3, (c) 𝐻w/𝐿p = 𝐻h/𝐿p = 0.4, and (d) 𝐻w/𝐿p = 𝐻h/𝐿p = 0.6. 

  
(a) 𝐻𝑤 𝐿p⁄ = 0.2, 𝐻h/𝐿p = 0.3 (b) 𝐻𝑤 𝐿p⁄ = 0.3, 𝐻h/𝐿p = 0.4 

  
(c) 𝐻𝑤 𝐿p⁄ = 0.3, 𝐻h/𝐿p = 0.6 (d) 𝐻𝑤 𝐿p⁄ = 0.4, 𝐻h/𝐿p = 0.6 

Figure 6. Comparison of Brownian dynamics simulations and theoretical predictions on the relative 

average extension of a WLC under stretching forces and confinements of rectangular tubes with sizes 

(a) 𝐻𝑤 𝐿p⁄ = 0.2, 𝐻h/𝐿p = 0.3, (b) 𝐻𝑤 𝐿p⁄ = 0.3, 𝐻h/𝐿p = 0.4, (c) 𝐻𝑤 𝐿p⁄ = 0.3, 𝐻h/𝐿p = 0.6 , and (d) 

𝐻𝑤 𝐿p⁄ = 0.4, 𝐻h/𝐿p = 0.6. 
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(a) 𝐻h 𝐿p⁄ = 0.2, 𝐻w/𝐿p = 1000 (b) 𝐻h 𝐿p⁄ = 0.3, 𝐻w/𝐿p = 1000 

  
(𝐜) 𝐻h 𝐿p⁄ = 0.4, 𝐻w/𝐿p = 1000 (d) 𝐻h 𝐿p⁄ = 0.6, 𝐻w/𝐿p = 1000 

Figure 7. Comparison of Brownian dynamics simulations and theoretical predictions on the relative 

average extension of a WLC under stretching forces and confinements of slits with sizes (a) 𝐻h 𝐿p⁄ =

0.2, 𝐻w/𝐿p = 1000, (b) 𝐻h 𝐿p⁄ = 0.3, 𝐻w/𝐿p = 1000, (c) 𝐻h 𝐿p⁄ = 0.4, 𝐻w/𝐿p = 1000, and (d) 𝐻h 𝐿p⁄ =

0.6, 𝐻w/𝐿p = 1000. 

3. Conclusion 

Based on WLC theory and existing results on statistical properties of strongly confined 

polymers, we theoretically and numerically studied confinement free energy and force-confinement-

extension relations of rectangular tube-confined semiflexible polymer chains under stretching in a 

deflection regime. We derived a modified deflection length without any adjustable parameters, 

which was valid for quantitative formulations of both free energy and geometrical extension. By 

using this deflection length scale, we obtained compact formulas on the confinement free energy and 

force-extension relation without any fitting parameters. Numerical analysis based on the eigenvalue 

problem of the governing Fokker–Planck equations and the GBR Brownian dynamics simulations 

justified these theoretical predictions to be valid for a much more extended range of the 

confinement/persistence length ratio than that based on the classical deflection length. 

Appendix A: The GBR Model for Brownian Dynamics Simulations 

In the GBR model, a semiflexible chain is described as N identical virtual beads of radius a, which 

is connected by N−1 inextensible rods of length b. Each bead has a different position in a Cartesian 

coordinate system, ( ) { ( ), ( ), ( )}k k k kt x t y t z t r , k = 1, 2, …, N, which is introduced for accounting 

hydrodynamic interactions between different chain segments. These segments are treated as hard 

rods, whose geometrical constraints are realized by the so-called linear constraint solver (LINCS) 

[33,38]. Evolution of chain configurations is characterized by a collective Brownian motion of N 

identical beads in solution. By denoting the time step, t , and position vectors of all the beads at 

the current n t , ( )nr ={ 1,( )nr , 2,( )nr , …, ,( )N nr }’, then the position vectors  1n
r  at (n+1) t  can be 

determined from the governing Langevin equation in terms of the first-order difference method as 
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         ( ) ( )1
( )T

n nn n n n n

B

t

k T



   r r D F B λ ξ , (A1) 

where ( )nD  is the translational diffusion matrix consisting of 3 × 3 sub-blocks ( )

jk

nD , j, k=1, 2, …, N, 

for which the Rotne–Prager tensor [39] is used to represent the hydrodynamic interactions between 

beads j and k. In a case where only equilibrium properties are interested, the sub-blocks ( )

jk

nD  can be 

simply set as 

( )

1 0 0

0 1 0
6

0 0 1

jk B

n

k T

a

 
 

  
 
 

D . (A2) 

Such a simplification will not affect various average results in the equilibrium state as long as a 

sufficiently large number of different configurations can be generated. In Equation (A11), ( )nF  is the 

collective vector, including internal bending forces and external forces; and ( )nB  is the associated 

gradient matrix related to the N − 1 time-independent constraint equations for the inextensible rods 

,( ) ,( ) 1,( )( ) 0i n i n i n id   g r r r  (A3) 

and 

,( )

( )

( )
, 1,2, , 1

i n

n i N
 

   
 

g r
B

r
, (A4) 

where id  is the length of the ith rod, and the dimensions of gradient matrix ( )nB  are ( 1) 3N N  . 

Vector ( )nλ  consists of N − 1 Lagrange multipliers, so that ( ) ( )

T

n nB λ can be regarded as collective 

constraint forces keeping the rod length constant. The vector ( )nξ represents random forces 

generated at each time step from a Gaussian distribution with zero mean and variance 

( ) ( ) ( )2n n n nnt  ξ ξ D , (A5) 

where nn   is the Kronecker delta symbol. 

As ( )nB  is time-independent, the time derivative of Equation (A3) yields 

( ) ( 1) ( )

( ) ( )

d d
0

d d

n n n

n n
t t t

 
  



g r rr
B B . (A6) 

Based on Equations (A1) and (A6), we can determine the Lagrange multipliers as 

1 B
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )T

n n n n n n n n

k T

t

  
   

 
λ B D B B D F ξ . (A7) 

Inserting Equation (A7) into Equation (A1) and adding an additional term ( ) ( ) ( )( )n n n T B r d  to 

suppress the accumulation of numerical errors, then the new position vector can be further expressed 

as 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

B

( )( )n n n n n n n n

t

k T



    r I T B r D F ξ T d , (A8) 

where 1

( ) ( ) ( ) ( ) ( ) ( )( )T T

n n n n n n

T D B B D B , and 
   n n

I T B  is a projection matrix that sets the constraints.  

For the confinement of a rectangular tube with width and height 
wH  and 

hH , we used a semi-

analytical technique proposed by Peters and Barenbrug [40] to treat the collective stochastic motion 

of N beads near the reflecting tube walls. Considering the jth bead with current position  ,j n
r , we 
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defined ,( )j nS  as the current distance of the jth bead from a wall. The bead can be viewed as close 

enough to the tube wall as long as 

,( ) 5 / 6 , 1,2, ,j n BS tk T a j N   . (A9) 

The influence of the tube wall on the movement of the jth bead in the next time step can be 

characterized by the random displacement ,( )j nr , as derived by Peters and Barenbrug [40]: 

,( ) ,( )

,( ) 1 2 / 6
/ 6 / 6

j n j n

j n B

B B

S S
f f k T a

tk T a tk T a
  

 

    
      

         

r n , 
(A10

) 

 
2

1

2
exp 1 erf

4 2

x x
f x x



    
       

   
, 

(A11

) 

 

2
2

2

2

2
2 erf exp

2 4

x x
f x x x



   
       

    
, 

(A12

) 

where n is the unit normal vector of the tube wall, and   is a random variable with first moment 

equal to 0. When ,( ) 5 / 6j n BS tk T a  , we set ,( ) 0j n r , implying that the bead is not sufficiently 

close to the wall. The stochastic displacements for all beads induced by the wall at the nth time step 

can be put in a 3N vector  
wall

n
χ . Substituting  

wall

n
χ  into Equation (A8) leads to  

 
wall

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

B

( )( )n n n n n n n nn

t

k T



     r I T B r χ D F ξ T d . (A13

) 

If the chain is stretched by external forces, then the force vector in the above equation can be 

expressed as 

b t

( ) ( ) ( )n n n F F F . 
(A14

) 

where 
b

( )nF  represents the internal forces on all beads due to bending deformation [33], and 
t

( )nF  

represents the tensile forces. 
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