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Abstract: Combing active ester chemistry and click chemistry, a cyclic double-grafted
polymer was successfully demonstrated via a “grafting onto” method. Using active ester
chemistry as post-functionalized modification approach, cyclic backbone (c-P2) was synthesized
by reacting propargyl amine with cyclic precursor (poly(pentafluorophenyl 4-vinylbenzoate),
c-PPF4VB6.5k). Hydroxyl-containing polymer double-chain (l-PS-PhOH) was prepared by reacting
azide-functionalized polystyrene (l-PSN3) with 3,5-bis(propynyloxy)phenyl methanol, and further
modified by azide group to generate azide-containing polymer double-chain (l-PS-PhN3). The cyclic
backbone (c-P2) was then coupled with azide-containing polymer double-chain (l-PS-PhN3) via
CuAAC reaction to construct a novel cyclic double-grafted polymer (c-P2-g-Ph-PS). This research
realized diversity and complexity of side chains on cyclic-grafted polymers, and this cyclic
double-grafted polymer (c-P2-g-Ph-PS) still exhibited narrow molecular weight distribution
(Mw/Mn < 1.10).

Keywords: cyclic double-grafted polymer; topological architecture; active ester chemistry; “grafting
onto” approach

1. Introduction

Grafted polymers, in conjunction with conventional linear polymers, have fascinating topological
macromolecular structure with various side chains along their main backbones. They exhibit unique
and remarkable properties by controlling chemical components of main backbones or side chains,
the length of side chains, and grafting density [1,2]. Grafted polymers have been thoroughly probed
as the precursors of drug-delivery materials [3], biosensors [4], nanowires [5] and nanotubes [6].
According to the structure of polymeric main backbones, grafted polymers can be roughly divided
into linear-, star-, cyclic-, dendritic-, hyperbranched-grafted polymers and so on. With continuous
development of new synthesis technologies, novel grafted polymers have exhibited more and more
different properties and exploration for new strategies to construct novel grafting polymers have never
stopped [7–15].
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Comparing linear counterparts, cyclic polymers without any terminals, as another kind
of topological architecture, demonstrate remarkable and unique properties, such as a smaller
hydrodynamic volume, lower intrinsic viscosity, a higher glass transition temperature, higher rate
of crystallization and a higher density [16–22]. In general, the research of cyclic polymers can be
mainly divided into three parts: (1) constructing complex cyclic topological structure; (2) exploring
new synthetic methods and strategies of cyclic polymers; (3) comparing the performance difference
between cyclic polymers and linear counterparts [23–27]. Recent studies related to cyclic polymers
have displayed that partial bio-materials containing cyclic structures could reduce cytotoxicity [28],
increase transfection efficiency [29] or improve drug loading and releasing capacity [30,31].

Cyclic-grafted polymers consisting of one cyclic backbone and various side chains, as one
kind of grafted polymers, have potential applications in biomaterials [32–34]. There are three main
categories for producing cyclic-grafted polymers: (1) “grafting through” approach, the polymerization
of cyclic-macromonomers [35]; (2) “grafting from” approach, the growth of side chains from a
cyclic-macroinitiator backbone [36–42]; (3) “grafting onto” approach, the addition of ready-made
polymeric chains to a cyclic backbone by high-effective chemical reactions or supramolecular
assembly, such as esterification reaction [43], click chemistry [44–48], active ester chemistry [49,50],
Suzuki coupling reaction [51] and metallo-supramolecular interactions [52]. In the “grafting onto”
approach, cyclic backbone and grafting chains can be independently synthesized and characterized.
Diversity and complexity of side chains probably contribute to constructing functionalized cyclic
topologies and exploring their potential applications.

In this work, combing active ester chemistry and click chemistry, we constructed a cyclic
double-grafted polymer successfully via the “grafting onto” approach as shown in Scheme 1.
Using active ester chemistry, a cyclic backbone (c-P2) was synthesized by post-functionalized
modification by reacting propargyl amine with cyclic precursor (poly(pentafluorophenyl
4-vinylbenzoate), c-PPF4VB6.5k) (Scheme S1). Additionally, hydroxyl-containing polymer
double-chain (l-PS-PhOH) was prepared by reacting azide-functionalized polystyrene (l-PSN3)
with 3,5-bis(propynyloxy)phenyl methanol, and further modified by azide group to generate
azide-containing polymer double-chain (l-PS-PhN3). The cyclic backbone (c-P2) was then coupled
with prepared polymer double-chain (l-PS-PhN3) using CuAAC reaction to successfully construct a
novel cyclic double-grafted polymer (c-P2-g-Ph-PS). This research realized diversity and complexity
of side chains on cyclic-grafted polymers, and this cyclic double-grafted polymer (c-P2-g-Ph-PS) still
exhibited narrow molecular weight distribution.
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2. Materials and Methods

2.1. Materials

3,5-Dihydroxybenzyl alcohol (HWRK CHEM, Beijing, China, 98%), 3-(trimethylsilyl)propargyl
bromide (Energy Chemical, Shanghai, China, 97%), 18-crown-6 (Sinopharm Chemical Reagent,
Suzhou, China, CP), diphenyl azidophosphate (DPPA) (Alfa Aesar, Shanghai, China,
97%), 1,8-diazabicylco[5.4.0]undec-7-ene (DBU) (Tokyo Chemical Industry Co., Ltd., 98%),
pentamethyldiethylenetriamine (PMDETA) (Energy Chemical, Shanghai, China, 99%) and copper(0)
powder (Sinopharm Chemical Reagent, Suzhou, China, 99.9%) were purchased and used as
received. Copper(I) bromide (CuBr) (Sinopharm Chemical Reagent, Suzhou, China, 99%) was
washed by the mixture solution (acetic acid/deionized water, v/v = 5/95) and anhydrous ethanol
many times, and then dried in a vacuum. The solvents including acetone, dichloromethane
(CH2Cl2), hydrochloric acid (HCl), toluene, ethyl acetate (EA), petroleum ether (PE), tetrahydrofuran
(THF), dimethylformamide (DMF) and methanol (MeOH) were used as received without any
purification process.

2.2. Characterizations

All the 1H NMR and 13C NMR spectra were measured on a Bruker (300 MHz) Nuclear Magnetic
Resonance spectrometer (Bruker, USA). All the average molecular weights (Mn) and molecular weight
distributions (Mw/Mn) were measured by TOSOH HLC-8320 size exclusion chromatography (SEC,
Tosoh Corporation, Japan). The recycling preparative HPLC Mode LC-9260NEXT (often called as
Prep-SEC, Tosoh Corporation, Japan) was utilized to purify crude polymers. A Bruker TENSOR-27
FT-IR spectrometer was utilized to measure FT-IR spectra (Bruker, USA). Matrix assisted laser
desorption ionization/time of flight mass spectra (MALDI TOF MS) (Bruker, USA) were gained by
using an UltrafleXtreme MALDI TOF mass spectrometer. The UV-light resource was considered using
one low-pressure lamp purchased from Beijing China Education Au-light Co. Ltd (CEL-LPH120-254,
120 W, Beijing, China). All the parameters and measure conditions of these spectrometers are shown in
detail in the supporting information.

2.3. Synthesis of 3,5-bis(propargyloxy)benzyl Alcohol

3,5-Dihydroxybenzyl alcohol (1.4 g, 10 mmol), 3-(trimethylsilyl)propargyl bromide (4.2 g,
22 mmol), 18-crown-6 (264 mg, 1 mmol), K2CO3 (3.45 g, 25 mmol) and acetone (80 mL) were added
into a round-bottom flask in nitrogen atmosphere. This mixture solution was placed in oil-bath at
80 ◦C for 48 h. The mixed solution was filtered to remove indissoluble solid, and the filtrate was
then concentrated. The solution was extracted with CH2Cl2 for three times and washed by 1 mol/L
HCl and brine. The collected organic phase was dried using MgSO4. After evaporating the solution,
the crude product was purified by silica gel chromatography (eluent: petroleum ether/ethyl acetate =
4/1) to get a white solid (1.2 g, yield: 57.3%). 1H NMR (CDCl3, 300 MHz, ppm, Figure S1): 6.63 (a, 2H),
6.54 (b, 1H), 4.67 (c, 6H), 2.53 (d, 2H), 1.70 (e, 1H). 13C NMR: (CDCl3, 75 MHz, ppm): 158.92, 143.70,
106.31, 101.58, 78.49, 75.81, 65.14, 56.01.

2.4. Synthesis of Hydroxyl-Containing Polymer Double-Chain (l-PS-PhOH)

3,5-Bis(propargyloxy)benzyl alcohol (10.81 g, 0.05 mmol), azide-functional polystyrene (l-PS-N3,
257.5 mg, 0.103 mmol), PMDETA (17.84 mg, 0.103 mmol), toluene (5 mL) and a magnetic stirrer were
added into a 10 mL ampoule in nitrogen atmosphere. CuBr (14.8 mg, 0.103 mmol) and Cu (3.18 mg,
0.05 mmol) were added into above ampoule. The mixture solution was stirred at ambient temperature
for 1.5 h in nitrogen atmosphere. After that, the polymer was precipitated in anhydrous methanol and
dried in a vacuum (249.4 mg, yield: 92.9%). The crude polymer double-chain was purified by Prep-SEC
to get hydroxyl-containing polymer double-chain (l-PS-PhOH, Mn,SEC = 5000 g/mol, Mw/Mn = 1.04).
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2.5. Synthesis of Azide-Containing Polymer Double-Chain (l-PS-PhN3)

Hydroxyl-containing polymer double-chain (l-PS-PhOH, 100 mg, 0.02 mmol) was dissolved in
DMF (1 mL) and put in an ampoule (5 mL) containing a magnetic stirrer in nitrogen atmosphere.
The ampoule was wrapped in aluminum foil to avoid light. DPPA (110.08 mg, 0.4 mmol) and DBU
(60.90 mg, 0.4 mmol) were added into the ampoule under nitrogen atmosphere. The ampoule was
placed in an oil-bath at 80 ◦C for 24 h. The mixed solution was purified by passing through a short
Al2O3 column, precipitated in anhydrous methanol and dried under vacuum. (l-PS-PhN3, 93.4 mg,
yield: 93.4%, Mn,SEC = 5000 g/mol, Mw/Mn = 1.04).

2.6. Synthesis of Cyclic Double-Grafted Polymer (c-P2-g-Ph-PS)

Cyclic polymer (c-P2, 2.3 mg, 5 × 10−4 mmol), linear polymer (l-PS-PhN3, 81 mg,
1.62 × 10−2 mmol), PMDETA (5.62 mg, 3.24 × 10−2 mmol), mixture solvent (THF = 2 L, DMF = 1 mL)
and a magnetic stirrer were added into a 10 mL ampoule in nitrogen atmosphere. CuBr (4.64 mg,
3.24 × 10−2 mmol) and Cu (1.72 mg, 2.7 × 10−2 mmol) were added into above ampoule. The solution
was reacted at ambient temperature in nitrogen atmosphere. After 24 h, the polymer was precipitated
in anhydrous methanol and dried in a vacuum. The crude double-grafted polymer was further
purified by Prep-SEC to get final cyclic double-grafted polymer (c-P2-g-Ph-PS, 33.6 mg, yield: 40.33%,
Mn,SEC = 30,700 g/mol, Mw/Mn = 1.04).

3. Results and Discussion

3.1. Synthesis of l-PS-PhOH and l-PS-PhN3

Hydroxyl-containing polymeric double-chain (l-PS-PhOH) was synthesized by reacting
3,5-bis(propargyloxy)benzyl alcohol (Scheme 2) and azide-functionalized polystyrene (l-PS-N3) by
virtue of Copper-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The synthesis and
characterization of l-PS-N3 (Mn,SEC = 2500 g/mol, Mw/Mn = 1.05) was shown in our previous
publication [50]. The usage of slightly excessive l-PS-N3 was necessary in the process of preparing
l-PS-PhOH, the gained crude l-PS-PhOH needs to be easily purified by Prep-SEC.
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Scheme 2. The structure of 3,5-bis(propargyloxy)benzyl alcohol.

Hydroxyl-containing polymer double-chain (l-PS-PhOH) was verified by SEC, NMR, MALDI
TOF MS and FT-IR spectroscopy. As shown in Figure 1, corresponding to l-PS-N3, 1H NMR spectra
of l-PS-PhOH showed that the characteristic signal of the methine hydrogen (–CH(Ph)–, f) shifted
from 3.8–4.1 ppm to 4.9–5.2 ppm completely. A new peak was clearly observed at 4.6 ppm, which was
assigned to the benzylic hydrogen (–CH2–, i). In addition, the (f+h)/i/b integration ratio is close to
6/2/4, which means the successful formation of l-PS-PhOH. The number average molecular weight
of l-PS-PhOH (Mn,SEC = 5000 g/mol, Figure 2) was twice than that of l-PS-N3 (Mn,SEC = 2500 g/mol,
Figure 2) and the molecular weight distribution remained at 1.04, which also indicated the successful
preparation of l-PS-PhOH. MALDI TOF MS (Figure 3) provided direct and powerful evidence for the
formation of polymeric double-chain. The typical experimental peak m/z value (4715.97 Da) accords
with the theoretical calculating value ([40M+Na]+, 4715.74 Da), in accordance with 40 repeat units
of l-PS-PhOH with one sodium cation. The difference value of two adjacent experimental peaks is
consistent with the m/z value of a styrene. Furthermore, in Figure 4, the complete disappearance of
signals from azide groups (2094 cm−1) also proved the formation of l-PS-PhOH. All the above results
confirmed the successful preparation of hydroxyl-containing polymer double-chain (l-PS-PhOH)
without residue of l-PS-N3.
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Figure 4. FT-IR spectra of l-PS-N3, l-PS-PhOH and l-PS-PhN3.

3.2. Synthesis of l-PS-PhN3 and c-P2-g-Ph-PS

Azide-containing polymer double-chain (l-PS-PhN3) was synthesized by hydroxyl-containing
polymer double-chain (l-PS-PhOH) under the system of DPPA/DBU mixtures. Azide-containing
polymer double-chain (l-PS-PhN3) was verified by SEC, NMR, MALDI TOF MS and FT-IR spectroscopy.
Comparing to the spectrum of l-PS-PhOH (Figure 1), 1H NMR spectrum of l-PS-PhN3 (Figure 5)
demonstrated that the benzylic hydrogen (–CH2–, i) shifted from 4.6 to 4.2 ppm completely,
which indicated the complete formation of azide-containing polymeric double-chain (l-PS-PhN3).
After azidation, the (f+h)/i/b integration ratio still kept at 6/2/4, which also indicated the successful
preparation of l-PS-PhN3. From SEC curves (Figures 2 and 6), there are no obvious changes before and
after azidation. The average molecular weight of l-PS-PhN3 is 4900 g/mol and the molecular weight
distribution remained at 1.03. In FT-IR spectrum (Figure 4), the vibrational absorption peak from
azide group of l-PS-PhN3 appeared at 2094 cm−1. MALDI TOF MS provided persuasive evidence for
successful formation of l-PS-PhN3. Figure 7 exhibited two main peak distributions, accurately assigned
to polymeric double-chain (l-PS-PhN3). The typical experimental peak m/z value (such as 4712.91 Da),
is consistent with the theoretical calculating value ([40 M-N2 + Na]+, 4712.74 Da). The difference value
of two adjacent experimental peaks (103.94 Da) accords with the value of one styrene. These results
demonstrated the successful preparation of l-PS-PhN3.
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The active ester chemistry, such as the nucleophilic substitution of activated ester bearing
pentafluorophenyl groups with diverse amines, is one kind of high-effective chemical reaction, which is
often utilized as one post-modification technology for constructing functional polymers that cannot be
obtained by conventional polymerization technologies [53]. Here, we chose propargylamine as the
amine to react with cyclic poly(pentafluorophenyl 4-vinylbenzoate) (c-PPF4VB6.5k) for synthetizing
functional cyclic polymer (c-P2). All the synthesis and characterizations of c-PPF4VB6.5k and c-P2 are
shown in supporting information in detail (Figures S2–S8).

Furthermore, functional cyclic polymer (c-P2) was used as cyclic polymeric backbone to react
with polymer double-chain (l-PS-PhN3) via CuAAC reaction for constructing cyclic double-grafted
polymer (c-P2-g-Ph-PS). The crude cyclic double-grafted polymer (c-P2-g-Ph-PS) was purified by
Prep-SEC and further characterized by NMR and SEC. As shown in Figure 5, 1H NMR spectrum of
c-P2-g-Ph-PS exhibited that the characteristic signals from the methine hydrogen (–CH(Ph)–, f) adjacent
to 1,2,3-triazole, the methylene hydrogen (–CH2–, h and p) adjacent to 1,2,3-triazole and the benzylic
hydrogen (–CH2–, i) were assigned in the 4.2–5.5 ppm region. It is hard to calculate grafting density
of cyclic double-grafted polymer (c-P2-g-Ph-PS) by the integration ratio from 1H NMR spectrum,
but the difference between l-PS-PhN3 and c-P2-g-Ph-PS indicated the successful preparation of cyclic
double-grafted polymer. Additionally, according to the SEC curves of c-P2, l-PS-PhN3 and c-P2-g-Ph-PS
(Figure 6), the shifts toward high molecular weight field can be observed clearly, demonstrating the
successful formation of cyclic double-grafted polymer. The molecular weight of cyclic double-grafted
polymer (c-P2-g-Ph-PS) was 30,700 g/mol and the molecular weight still stayed at 1.04.
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4. Conclusions

A novel cyclic topological architecture, a cyclic double-grafted polymer, was successfully
constructed using active ester chemistry and click chemistry via a “grafting onto” method.
Cyclic backbone (c-P2) was synthesized by reacting propargyl amine with cyclic precursor
(c-PPF4VB6.5k) using active ester chemistry as a post-modification approach. Hydroxyl-containing
polymer double-chain (l-PS-PhOH) was prepared by reacting azide-functionalized polymer chain
(l-PSN3) with 3,5-bis(propynyloxy)phenyl methanol, and further azide-modified to generate
azide-containing polymer double-chain (l-PS-PhN3) and well characterized by SEC, NMR and MALDI
TOF MS. Finally, this cyclic backbone (c-P2) was coupled with azide-containing polymer double-chain
(l-PS-PhN3) using CuAAC reaction to successfully construct a novel cyclic double-grafted polymer
(c-P2-g-Ph-PS). Notably, this cyclic double-grafted polymer (c-P2-g-Ph-PS) still exhibited a narrow
molecular weight distribution. On the basis of our previous work, this research realized diversity and
complexity of side chains from cyclic-grafted polymers, which could eventually enrich the topological
architecture and provide a new platform for constructing amphiphilic cyclic-brush polymers with
amphiphilic polymeric double-chains along the cyclic backbone.
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