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Abstract: Fluorescent magnetic nanoparticles (NPs) utilized for imaging hold great promise for
biomedical applications, but it remains a challenging task. Here, we report novel dual-modality NPs
using an aggregation-induced emission (AIE)-active and near-infrared (NIR) emissive dye (TPAS) and
magnetic Fe3O4 as the core, and biocompatible polymer Pluronic F-127 as the encapsulation matrix by
self-assembly procedures. The obtained fluorescent-magnetic AIE NPs have both high fluorescence
quantum yield (13.8%) at 700 nm and high magnetic saturation value. With good photostability and
biocompatibility, the resulting NPs show effective MRI ability, but also a stain in cytoplasm with a
strong NIR fluorescent signal.
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1. Introduction

As a noninvasive imaging technology, magnetic resonance imaging (MRI) possesses high spatial
resolution and desired tissue penetration depth, but it suffers from low sensitivity and resolution [1,2].
On the other hand, fluorescence imaging has high sensitivity but fails to provide quantitative
evaluation [3]. So, the integration of MRI and fluorescence imaging into a single probe will afford
multimodal probe with synergistic benefits, which is highly desirable in bioimaging and diagnosis
and provide more effective and accurate information about physiological functions [4–10].

The development of multimodal imaging is dependent on individual imaging probes [11].
Superparamagnetic iron (III) oxide particles are often chosen as multimodal imaging
components [12,13] because of their strong MIR signals and enhancement of local contrast of magnetic
resonance imaging. Meanwhile, aggregation-induced emission (AIE)-active fluorophores has opened
a venue with great potential for high resolution imaging [14]. Upon encapsulation by polymer
matrices, the resulting AIE dots become much brighter instead of undergoing weakened or quenched
fluorescence [15]. In addition to the improved photostability, excellent colloidal stability in aqueous
media and biological buffers, AIE dots are highly promising candidates as fluorescent trackers
in vivo [16–22]. Moreover, near-infrared (NIR; 650–900nm) fluorescent probes have attracted intense
interest due to less damage to living cells, better tissue penetration, improved the image sensitivity
and lower interference from background auto-fluorescence. Considering the great significances of both
AIE and NIR-emission, developing facile fabrication and application of dual-modality nanoparticles
based on an AIE-active NIR fluorescent molecule and magnetic Fe3O4 is urgent and promising. But it
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remains a challenging task, because Fe3O4 nanoparticles are also excellent quenchers for most dyes
and the synthesis of AIE-active NIR fluorescent molecule is time-consuming and tedious [19].

Herein, we have designed a novel nanoplatform for multimodal imaging. Amphiphilic surfactant
(Pluronic F-127) provide the environment for the aggregation and self-assembly of hydrophobic
substances. The NIR-emissive AIEgen and Fe3O4 NPs were encapsulated with Pluronic F-127, resulting
in AIE–Fe hybrid nanodots, which exhibit stable and bright NIR emission under one-photon with
excellent colloidal stability in biological environments. In vitro experiments show that AIE–Fe hybrid
nanodots with high NIR fluorescence efficiency and magnetic susceptibility have been achieved, which
is promising to facilitate their biological applications in multimodal imaging.

2. Materials and Methods

2.1. Chemicals and Instruments

All reagents and starting materials are commercially available and were used without further
purification, unless otherwise noted. 4-Bromo-N,N-di-para-tolylaniline was purchased from Aladdin
(Shanghai, China). Bis(hexyleneglycolato)diboron, Pd(Pph3)4, Pd(dppd)Cl2 were purchased from
J&K Scientific Ltd (Beijing China). Pluronic F-127 and3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H
-tetrazolium bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Deionized
water (18.2 MΩ cm resistivity) from a Milli-Q water system (Millipore, Bedford, MA, USA) was
used throughout the experiments before being used as solvents. All other reagents and solvents
were of analytical grade and used without further purification. Nuclear magnetic resonance spectra
were recorded on Bruker Avance III 400 MHz (Bruker, Bremen, Germany) and chemical shifts are
expressed in ppm using TMS (tetramethyl silane) as an internal standard. The UV–vis absorption
spectra were recorded using a Helios Alpha UV–vis scanning spectrophotometer (Thermo Scientific,
Bremen, Germany). Fluorescence spectra were obtained with a Hitachi F-4500 FL spectrophotometer
(Tokyo, Japan) with quartz cuvette (path length = 1 cm). Solid state PL efficiencies were measured
using an integrating sphere (C-701, Labsphere Inc.) with a 365 nm Ocean Optics LLS- Light Emitting
Diode as the excitation source, and the laser was introduced into the sphere through the optical fiber.
Dynamic Light Scattering (DLS) and zeta potential measurement was performed using a Malvern
Zetasizer Nano ZS size analyzer (Malvern, Herrenberg, Germany) at room temperature. Transmission
electron microscopy (TEM) images were obtained using a transmission electron microscope (TEM,
JEM-2100F, Tokyo, Japan). The cellular imaging was performed on an Olympus IX71 microscope
(Olympus, Tokyo, Japan) with mercury lamp as the excitation source.

The quantum yields of AIE–Fe nanodots were measured on the Hamamatsu absolute PL quantum
yield spectrometer Quantaurus-QY C11347 (Hamamatsu Photonics, Hamamatsu, Japan) equipped with
excitation light source of xenon lamp, monochromater and emission light collector of an integration
sphere. The detector is a back-thinned charge-coupled device (CCD) sensor with high measurement
sensitivity. Fe3O4 nanoparticles were purchased from Nanjing Nanoeast Biological Technology Co.
Ltd (Nanjing, China).

2.2. Synthesis of Target Dye (TPAS)

2.2.1. Synthesis of 1a

4-Bromo-N,N-di-p-tolylaniline (500.0 mg, 1.4 mmol), bis(pinacolato)diboron(431.7 mg, 1.7 mmol)
and potassium acetate (412.2 mg, 4.2 mmol) were dissolved in 50 mL dioxane and added to a 100 mL
flask. Under the nitrogen atmosphere, 5 mol% Pd(dppf)Cl2 (51.2 mg, 0.07 mmol) was added to the
flask quickly and the mixture was heated to 100 ◦C. After reflux for 16 h, the mixture was concentrated
using the rotary evaporators and purified by silica gel column chromatography with the eluent of
petroleum ether-ethyl acetate (20:1, v/v). The white powder product with a yield of 88 % was obtained.
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1H NMR (400 MHz, CDCl3, δ): 7.67 (d, 2H, J = 7.6 Hz), 7.11 (d, 4H, J = 7.9 Hz), 7.04 (d, 4H, J = 7.7 Hz),
7.01 (d, 2H, J = 7.7 Hz), 2.35 (s, 6H), 1.37 (s, 12H).

2.2.2. Synthesis of 1b

1a (280.0 mg, 0.7 mmol) and 5-bromo-2-thiophenecarbaldehyde (200.0 mg, 1.05 mmol) were
dissolved in 40 mL THF. Upon the nitrogen atmosphere, 3.5 mL 2 M potassium carbonate and 40
mg (5 mol%) Pd(PPh3)4 were added into the solution successively. After 24 h reaction, the mixture
was poured into 100 mL water and extracted with dichloromethane until the aqueous phase became
colorless. The organic phase was dried with NaSO4 and concentrated by the rotary evaporators and
purified by silica gel column chromatography with the eluent of petroleum ether- ethyl acetate (10:1,
v/v). The product is yellow solid with a yield of 60 %. 1H NMR (400 MHz, CDCl3, δ,): 9.77 (s, 1H),
7.62 (d, 1H, J = 3.9 Hz), 7.41 (d, 2H, J = 8.7 Hz), 7.20 (d, 1H, J = 4.4 Hz), 7.04 (d, 4H, J = 8.4 Hz), 6.96 (d,
4H, J = 8.4 Hz), 6.92 (d, 2H, J = 8.7 Hz), 2.26 (s, 6H).

2.2.3. Synthesis of TPAS

1b (50.0 mg, 0.13 mmol) and malononitrile (17.0 mg, 0.26 mmol) dissolved in 20 mL EtOH were
added into a 50 mL flask. Under the nitrogen atmosphere, two drops of triethylamine were dropped
into the mixture and heated to 80 ◦C for 6 h. Next, red solution was concentrated by the rotary
evaporators and purified by silica gel column chromatography with the eluent of hexane - ethyl acetate
(5:1, v/v) to obtain the red solid with a yield of 27 %. 1H NMR(400 MHz, CDCl3, δ): 7.73 (s, 1H), 7.67 (d,
1H, J = 4.2 Hz), 7.49 (d, 2H, J = 9.0 Hz), 7.30 (d, 1H, J = 4.2 Hz), 7.13 (d, 4H, J = 8.2 Hz), 7.05 (d, 4H,
J = 8.5 Hz), 6.98 (d, 2H, J = 8.9 Hz) 2.35 (s, 6H). 13C NMR (100 MHz, CDCl3, δ): 157.69, 150.42, 144.18,
140.55, 134.39, 133.00, 130.37, 127.66, 125.85, 124.09, 123.16, 120.62, 114.81, 113.94, 74.83, 21.06. HRMS
(ESI, m/z), [M + H]+ calcd for C28H22N3S 432.1529; found, 432.1520.

2.3. Fabrication of AIE–Fe Hybrid Nanodots

Firstly, 0.5 mg TPAS, 10 mg Pluronic F127 and 0.5 mg oleic acid modificating Fe3O4 were dissolved
in 1-mL tetrahydrofuran (THF), and then injected the above solution into 10 mL deionized water under
the ultrasonic condition. After 20 min, the THF was removed through bubbling N2 gas and heating at
60 ◦C. The resulting mixture was filtrated with 0.22-µm filter and filtrate was stored in a refrigerator at
5 ◦C.

2.4. In Vitro Cytotoxicity Assay

HeLa cells used in this study were purchased from Cobioer Biosciences Co., Ltd. (Nanjing, China).
To determine the cytotoxicity of AIE–Fe nanodots, methyl thiazolyl tetrazolium (MTT, Sigma Aldrich,
St. Louis, MO, USA) assays were performed. Briefly, HeLa cells were seeded in 96-well plates and
cultured in a CO2 incubator for 12 h at 37 ◦C. Then, the old medium was replaced with fresh medium
containing various concentrations of AIE–Fe nanodots (5–50 ppm). The cells were incubated in the
CO2 incubator for 24 h. Subsequently, MTT was added to each well for 4 h at 37 ◦C. Then, DMSO was
added to each well, and each plate was agitated on a plate shaker for 10 min. The absorbance was
measured at 570 nm using a microplate reader.

2.5. Fluorescence Imaging in HeLa Cells with AIE–Fe Nanodots

The HeLa cell lines were cultured in dulbecco’s modified eagle medium (DMEM) medium
supplemented with 10% (v/v) calf serum, penicillin (100 U/mL), and streptomycin (100 mg/mL). The
cells were seeded in laser confocal fluorescence microscope (LCFM) culture dishes and maintained at
37 ◦C in a humidified atmosphere containing 5% CO2. When the whole cells took up 60–70% space of
culture dishes, the cells were further incubated with AIE–Fe nanodots (10 ppm) for 30 min at 37 ◦C.
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The cellular imaging was performed on an Olympus IX71 microscope with mercury lamp as the
excitation source.

2.6. In Vitro MRI Studies

In vitro MRI studies were conducted on a 7Tesla MRI Bruker ClinScan using a 72-mm volume
coil. The longitudinal relaxation time (T1) of the AIE–Fe nanodots in aqueous solutions with different
concentrations of Fe3O4 were measured using an inversion recovery spin echo sequence.

3. Results and Discussion

Fabrication of Fe3O4@TPAS Dots

As shown in Figure 1a, NIR fluorophore (namely, TPAS, due to presence of triphenylamine
section) was synthesized. Firstly, the bromic group of 4-bromo-N,N-di-para-tolylaniline was
substituted by boric acid ester to yield 1a. The following Suzuki coupling reaction between 1a
and 5-bromothiophene-2-carbaldehyde to generate 1b. Finally, TPAS was obtained by Knoevenagel
condensation reaction between 1b and malononitrile. The chemical structures of intermediates and
TPAS are characterized by NMR and HRMS (Figures S1–S5, Supporting information).
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Figure 1. (a) Synthetic routes of target dye TPAS. (b) The emission spectra of TPAS (10 µM) in
CH3CN/water mixtures with different fraction of water (λem = 494 nm). (c) The fluorescence intensity
ratio in presence of different fraction of water. (d) TPAS in solid state. Inset: photographs of TPAS in
solid state under 365 nm UV irradiation.
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The cyan moiety is highly electron-deficient, so it can play the role of the electron-acceptor (A),
and the triphenylamine can be the electron-donor (D). The D–A structure endows TPAS with a large
dipole and facilitate to emission at long wavelength. The AIE property of TPAS was explored in
CH3CN-water mixture. As showed in Figure 1a, TPAS in CH3CN was non-emissive and showed no
obvious fluorescence enhancement when the water fraction (fw) was below 70%. Afterwards, NIR
emission centered at 700 nm intensified swiftly. The highest emission enhancement was recorded with
fw of 95%, which is 22-fold higher than that in CH3CN solution. In addition, TPAS showed the strong
solid-state emission peak at 680 nm (Figure 1b). So, TPAS features the unique AIE characteristics.

Such typical AIE character makes TPAS ideal for the fabrication of ultra-bright organic dots. An
amphiphilic block copolymer, Pluronic F-127 was used as the matrix to encapsulate TPAS and Fe3O4

nanoparticles to form AIE–Fe hybrid nanodots (Figure 2a). Upon nanodots formation, the hydrophobic
poly(propylene glycol) segments of the matrix intertwine with TPAS and Fe3O4 to form compact
aggregates which makes up the core, while poly(ethylene glycol) chains render outside towards the
water phase, stabilizing the resultant AIE–Fe hybrid nanodots and rendering them with excellent
colloidal stability.
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Figure 2. (a) Schematic illustration of AIE–Fe nanodots formation. (b) Dynamic Light Scattering (DLS)
(c) absorption, (d) emission (λex = 494 nm), (e) Transmission Electron Microscope (TEM), (f) Zeta
potential spectrum and (g) fluorescence intensity of AIE–Fe nanodots for storing different time at room
temperature (nanodots composition: 5 mg TPAS, 5 mg Fe3O4, 10 mg Pluronic F-127 in 10 mL water).

Fe3O4 nanoparticles exhibit broad featureless absorption in the visible domain due to the
electronic transition of d-orbitals. TPAS showed two absorption peaks at 298 and 494 nm. The
UV–vis absorption spectrum of AIE–Fe nanodots is the sum of spectra of two components (Figure 2c).
More importantly, AIE–Fe nanodots showed stronger intense NIR emission at 700 nm (Figure 2d)
than TPAS nanoaggregates in presence of 95% water, although Fe3O4 nanoparticles are reported
used as a fluorescence quencher [19]. The TEM image in Figure 2e showed the size of the AIE–Fe
nanodots were around 100 nm. We can also see thin layers on the surfaces and black dots on the core
of AIE–Fe nanodots, suggesting that Pluronic F-127 was successfully enwrapped TPAS and Fe3O4

to yield as-synthesized NPs. The AIE–Fe nanodots show hydrodynamic diameters of 107 nm and
zeta potentials of −17.36 mV (Figure 2f), which also confirm the successful fabrication of desired
nanoparticles. The stability of AIE–Fe nanodots was measured by fluorescence intensity. It can be
found that there were no obvious changes from 1 day to 9 days (Figure 2g).

We further investigated the effect of Fe3O4 nanoparticles to on quantum yield (ϕ) of AIE–Fe
nanodots (Table 1). It can be found that ϕ value slightly decreased with increasing amount of Fe3O4

nanoparticles, but it is still higher than that reported NIR-emission of nanodots. For example, Altinoğlu
EI has reported a near-infrared emitting fluorophore-doped calcium phosphate nanoparticles whose
quantum yield is just 4.9% [23]. The highest ϕ value was as high as 13.8% (entry 4). The DLS data
revealed that hydrodynamic diameters ranged from 93.5 nm to 106.7 nm were present for these AIE–Fe
nanodots. To study the correlation between concentration of TPAS and fluorescence intensity of
AIE–Fe nanodots, different amount of (0.5 mg, 0.25 mg, 0.12 mg and 0.05 mg) was used to fabricate in
AIE–Fe nanodots, whereas Fe3O4 NPs and Pluronic F-127 were kept constant. As shown in Figure 3,
fluorescence intensity of AIE–Fe nanodots increased and the maximum emission red-shifted as the
amount of the TPAS increased.
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Table 1. The effect of Fe3O4 nanoparticles on quantum yield (ϕ) of AIE–Fe nanodots (conditions: TPAS
0.5 mg, Pluronic F127 10 mg, H2O 10 mL).

No. Fe3O4 (mg) Φ (%) DLS Size (nm)

1 0.50 10.5 106.7
2 0.25 10.9 93.5
3 0.12 12.9 99.7
4 0.05 13.8 102.8
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Figure 3. PL spectra of AIE–Fe nanodots containing different amount of TPAS (conditions: Fe3O4 0.5
mg, Pluronic F127 10 mg, H2O 10 mL).

As shown in Figure 4, the magnetic hysteresis loops of AIE–Fe nanodots exhibited super
paramagnetic behavior. The magnetic saturation value of the AIE–Fe nanodots was 14.2 emu g−1,
which was lower than that of Fe3O4 nanoparticles, mainly caused by the F127 shell. The measured
saturation magnetization suggested probability for improving the effect of MRI [21]. The inset in
Figure 4 showed the photograph of the AIE–Fe nanodots in the presence of an external magnetic
field, indicating the magnetic property of the nanoprobe was good enough for magnetic separation.
The magnetic property was significant for the separation of analytes from the complicated detection
system, thus reducing the influence of the interferences in the detection system.
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system, thus reducing the influence of the interferences in the detection system. 
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Figure 4. (a) Magnetization hysteresis loops of AIE–Fe nanodots and Fe3O4 nanoparticles. (b) The
photograph of the AIE–Fe nanodots in an external magnetic field.

As shown in Figure 5, the T1-weighted MRI contrast effect correlated with the concentration
of the AIE–Fe nanodots. The filter paper in deionized water show poor contrast. The AIE–Fe
nanodots displayed an enhancement in the T1-weighted MR signal with the increasing Fe concentration.
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This confirmed that the AIE–Fe nanodots could be utilized as promising T1 mode contrast agents
for bioimaging.
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To study the in vitro cytotoxicity of AIE–Fe nanodots, HeLa cells were treated with different
concentrations of AIE–Fe nanodots by a cell-counting MTT assay. As shown in Figure 6, the cell
viability remains u to 90% after 24 h-incubation even with high concentration of AIE–Fe nanodots. In
addition, AIE–Fe nanodots system exhibited high photostability. As shown in Figure 7, after 25 cycles
confocal laser scanning its fluorescence signals remain almost constant. This might be due to the AIE
nature of the probe, which is capable of maintaining highly emissive in the aggregation state [22].

The low cytotoxicity and good photostability of AIE–Fe nanodots guarantees its uses in cells
bioimaging. Then, the confocal fluorescent imaging was performed in HeLa cells with AIE–Fe nanodots
(10 ppm) was used to stain the cells. As shown in Figure 8, HeLa cells were incubated with AIE–Fe
nanodots for 24 h; obvious red emission was observed.
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4. Conclusions

We designed and synthesized novel multifunctional AIE–Fe nanodots with spherical morphology,
uniform small size and good stability in water. The nanodots showed excellent NIR luminescence at
700 nm owing to AIE-active TPAS and an excellent magnetic resonance effect due to the presence of
magnetic Fe3O4. As a result of low toxicity and high photostability, AIE–Fe nanodots are suitable for
multimodal imaging applications, such as fluorescence imaging and MR imaging.
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