Giving a second opportunity to tire waste: an alternative path for the development of sustainable self-healing styrene-butadiene rubber compounds overcoming the magic triangle of tires

Javier Araujo-Morera; Marianella Hernández Santana*; Raquel Verdejo; Miguel Angel López-Manchado

Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, Madrid 28006, Spain. jaraujo@ictp.csic.es (J.A.M.); marherna@ictp.csic.es (M.H.S.); rverdejo@ictp.csic.es (R.V.); lmanchado@ictp.csic.es (M.L.M.)

* Correspondence: marherna@ictp.csic.es (M. H. S.)

S1. Cryo-grinding protocol

Figure S1-1. Schematic representation of grinding and cooling cycles.

S2. Tensile curves of virgin and repaired SBR/GTR compounds

Figure S2-1. Stress-strain curves of the SBR/GTR compounds in virgin (V) and repaired (R) state.

Table S2-1. Mechanical	properties	of pristine	and repaired	SBR compounds.
------------------------	------------	-------------	--------------	----------------

	Compound					
	SBR	GTR	SBR/10GTR	SBR/20GTR	SBR/30GTR	
PRISTINE						
Tensile stress at 50% strain, σ_{50} (MPa)	0.54 ± 0.02	1.27 ± 0.05	$0.65 {\pm} 0.02$	0.66 ± 0.02	0.59 ± 0.04	
Tensile stress at 100% strain, σ_{100} (MPa)	0.65 ± 0.02	2.25 ± 0.05	$0.83 {\pm} 0.03$	0.86 ± 0.03	0.77 ± 0.04	
Tensile stress at 300% strain, σ_{300} (MPa)	0.75 ± 0.02	-	1.42 ± 0.06	1.64 ± 0.07	1.58 ± 0.03	
Tensile stress at 500% strain, σ_{500} (MPa)	0.88 ± 0.02	-	$2.40{\pm}0.10$	2.79 ± 0.09	2.61 ± 0.07	
Tensile strength, σ_b (MPa)	1.33 ± 0.08	4.8 ± 0.2	$2.60{\pm}0.20$	2.90 ± 0.10	3.30 ± 0.10	
Elongation at break, ε_b (%)	846±34	198±9	550±24	546±18	639±24	
Crosslink density, v x 10^{-5} (mol/g)	1.46 ± 0.02	30.1±0.3	4.83±0.06	4.35±0.08	3.24 ± 0.04	
REPAIRED						
Tensile stress at 50% strain, σ_{50} (MPa)	$0.54{\pm}0.04$	-	$0.68 {\pm} 0.02$	0.65 ± 0.03	0.66 ± 0.01	
Tensile stress at 100% strain, σ_{100} (MPa)	0.67 ± 0.05	-	$0.86{\pm}0.03$	0.85 ± 0.03	0.83 ± 0.01	
Tensile stress at 300% strain, σ_{300} (MPa)	-	-	-	-	-	
Tensile stress at 500% strain, σ_{500} (MPa)	-	-	-	-	-	
Tensile strength, σ_b (MPa)	0.75 ± 0.05	-	$0.80{\pm}0.10$	$0.97 {\pm} 0.08$	$0.91 {\pm} 0.02$	
Elongation at break, ε_b (%)	177±14	-	98±9	180±55	228±66	
Healing efficiency, η (%)	56±7	_	31±5	33±3	28±1	

Figure S2-2. The S2p core spectrum of as received GTR and cryo grounded GTR.

S3. Fracture surface of SBR/GTR compounds.

Figure S3-1. Scanning electron microscope (SEM) images of fracture surface of SBR/GTR compounds.

S4. Dielectric properties of SBR/GTR compounds.

Figure S4-1. Dielectric loss (ε ") as a function of the frequency of: a) SBR/20GTR; b) SBR/30GTR, in the temperature range from -45 to -5 °C.

Figure S4-2. Electrical conductivity (σ') as a function of frequency of SBR/GTR compounds at 25 °C.