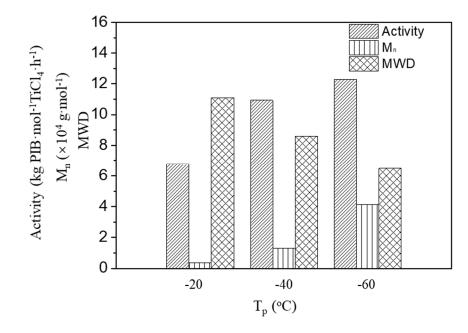
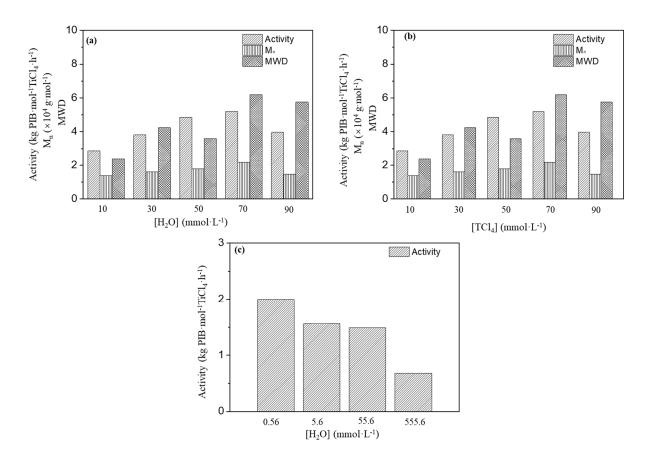

A Complexed Initiating System AlCl₃·Phenetole/TiCl₄·H₂O with Dominant Synergistic Effect for Efficient Synthesis of High Molecular Weight Polyisobutylene

Yulong Jin, Liang Chen, Xing Guo, Linfeng Xu, Zhihua Zhu, Zhen Liu, Ruihua Cheng and Boping Liu*


College of Materials and Energy, South China Agricultural University, Wushan Road 483, Guangzhou 510630, China

E-mail: boping@scau.edu.cn


State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China

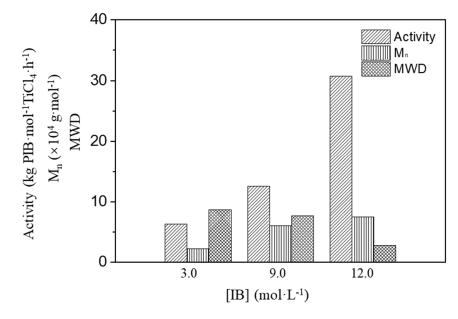

Figure S1. The effect of solvent polarity on TiCl₄/H₂O for IB polymerization ([IB] = 2.9 mol·L⁻¹; [H₂O] = 20 mmol·L⁻¹; [TiCl₄] = 30 mmol·L⁻¹; t_p=30 min; T_p = -60 °C.).

Figure S2. The effect of T_p on TiCl₄/H₂O for IB polymerization ([IB] = 2.9 mol·L⁻¹; [H₂O] = 20 mmol·L⁻¹; [TiCl₄] = 30 mmol·L⁻¹; 60 mL C₂H₂Cl₂;40 mL n-hexane; t_p = 30 min)

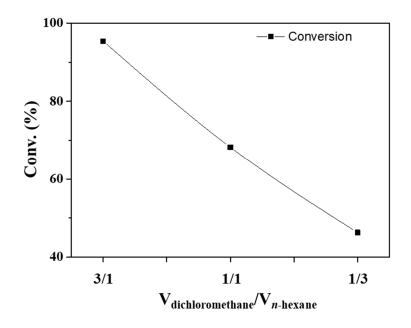


Figure S3. The effect of [H₂O] and [TiCl₄] on IB polymerization ((**a**) [TiCl₄] = 50 mmol·L⁻¹; (**b**) [H₂O] = 40 mmol·L⁻¹; (**c**) [TiCl₄] = 4.56 mmol·L⁻¹; Other conditions: [IB] = 2.9 mol·L⁻¹; 60 mL C₂H₂Cl₂; 40 mL n-hexane; t_p = 30 min; T_p = -60 °C.).

Figure S4. The effect of monomer concentration on TiCl₄/H₂O for IB polymerization ([H₂O] = 30 mmol·L⁻¹; [TiCl₄] = 20 mmol·L⁻¹; 60 mL C₂H₂Cl₂; 40 mL n-hexane; t_p = 30 min; T_p = -60 °C).

The effect of various reaction conditions on the polymerization behaviors of TiCl₄/H₂O were investigated as well (see **Figure S1-S4**). The results indicated that TiCl₄/H₂O was good at producing high or medium molecular weight polyisobutylene with $M_n=1-6 \times 10^4$ g·mol⁻¹ and the MWD of the polymer was relatively broad. In addition, this initiating system showed low efficiency, and activity≈10 kg PIB·mol⁻¹TiCl₄·h⁻¹ could be observed in most cases, thus a much higher catalyst concentration was needed to achieve a reasonable monomer conversion. This was also in accordance with the reported work that the dimer of TiCl₄ was the active coinitiator for cationic polymerization, and a relatively high concentration of TiCl₄ was needed for achieving reasonable polymerization rate [^{S1}].

Figure S5. The effect of solvent polarity on monomer conversion with AlCl₃/phenetole initiating system ([IB] = 4 mol·L⁻¹; V_{dichloromethane} + V_{n-hexane} = 100 mL; T_p = -60 °C; t_p = 30 min; [AlCl₃]/[phenetole] = 1/1.).

According to **Figure S5**, a relatively stronger polarity of the solvent was more favored by the AlCl₃/phenetole initiating system to achieve high monomer conversion, as more polar conditions could possibly help to produce more active ion pairs for IB polymerization ^[52].

References

[S1] M. Tawada, R. Faust. *Macromolecules* 2005, 38, 4989.

[S2] L. Sipos, P. De, R. Faust. Macromolecules 2003, 36, 8282.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).