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Abstract: Polyhedral oligomeric silsesquioxane (POSS) has been considered as one of the most
promising nanofillers in academic and industrial research due to its unique multifunctional
nanostructure, easy functionalization, hybrid nature, and high processability. The progress of POSS
has been extensive, particularly applications based on single- or multiple-armed POSS. In polymer
hybrids, in order to enhance the properties, bifunctional POSS has been incorporated into the backbone
chain of the polymer. This review summarizes recent developments in the synthesis, modification,
and application of bifunctional POSS-containing composite materials. This includes amino-POSS,
hydroxyl-POSS, aromatic ring-POSS, ether-POSS, and vinyl groups-POSS and their applications,
exemplified by polyurethanes (PUs) and polyimides (PIs). In addition, the review highlights the
enhancement of thermal, mechanical, and optical properties of the composites.
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1. Introduction

In recent years, inorganic–organic hybrid materials with carbon nanotubes [1–5], graphene [6–9],
organosilicons [10–12], metal oxides [13,14], and natural polymers [15–17] have attracted considerable
attention because of their distinctive properties. Among these, the incorporation of polyhedral
oligomeric silsesquioxane (POSS) has attracted attention because of its unique frame structure
and the resulting chemical and physical properties, including high thermal properties [18–20],
lower crystallinity [21], mechanical properties [22], oxidation resistance, and very good dielectric
properties [23,24]. Hence, it has been widely used in preparing polymer hybrids and polymer
composites in many areas, including optics [25], electronics, ionic liquids [26], mechanics [27],
energy [28], environment [29], biology [30], smart coatings [31,32], fuel [33], solar cells [34],
catalysts [35,36], sensors [37–39], light-emitting devices [40], and medicine [41–44].

With a silicon core and surrounding organic functional groups, POSS itself is a hybrid material
at the molecular level. It is composed of a cubic polyhedron cage surrounded by multiple silicon
oxygen rings. The substituents on the Si atom at the vertex of the POSS polyhedron can be a variety
of reactive or nonreactive groups. The desired properties can be obtained by alternating the types of
organic groups on the Si endpoint that determines whether POSS is reactive or functionalized [45,46].
POSS enhances the mechanical properties of polymers (e.g., modulus, strength, hardness) and decreases
heat evolution and melt viscosity [17,47]. POSS increased the chain rigidity of polymers, and as a result,
the glass transition temperatures (Tg) were greatly enhanced. High-molecular-weight copolymers will
be obtained by incorporating POSS moieties, which will result in improved mechanical properties. Due
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to this excellent property, these polymeric materials have found wide application in both academic
and industrial fields. For example, hybrid POSS/polyurethane (PU) material has been applied for the
construction of synthetic heart valve leaflets [48] and aortic stent grafts in medicine [49].

The classic eight-armed POSS-containing hybrids normally form cross-linked networks, hence they
exhibit poor solubility in most organic solvents. On the other hand, single-armed POSS macromeres
used as pendent [50–52] or cross-linking sites will not affect the main chains or overall properties
of POSS-containing polymers. Bifunctional POSSs (B-POSSs) are emerging silsesquioxanes that are
usually incorporated into the backbone of polymers, leading to the occurrence of several new functions,
such as nonflammability, oxidative resistance, and excellent dielectric properties [53–56]. When
B-POSSs are introduced into the main chain of a polymer, the improved performance of the polymer is
mainly due to the altered motion of the polymer chains. Thus, B-POSS has received attention because of
its fascinating properties, such as good thermal and mechanical properties, excellent transparency, and
excellent flexibility [57–59]. For example, Wei et al. [60] successfully synthesized a B-POSS through a
click reaction between 3,13-diazidopropyloctaphenyl double-decker silsesquioxane (DDSQ; compound
18) and α,ω-dialkynyl-terminated oligoethylenes. This B-POSS showed high thermal stability, high
hydrophobicity, and low surface energy. It also showed many excellent properties, which makes it a
promising candidate for flexible substrates and polymer electronics. For example, B-POSS itself is a
hydrophobic material; thus, it is not inclined to adhere to metals. Mohammod et al. [55] reported the
surface modification of B-POSS by the incorporation of silanol groups (Si–OH) in the film. The surface
of B-POSS film changed from hydrophobic to hydrophilic by irradiation with deep ultraviolet (UV)
radiation. The deep UV radiation cleaved the Si–O–Si cage of silicones. Silver (Ag) micropatterns on
the surface of B-POSS film were also fabricated by the deep UV irradiation process. The obtained Ag
micropatterns exhibited excellent adhesion on the modified surface.

The composites usually show many interesting properties, such as amphiphilic [61], thermal [62],
and optic properties [63], and also form complexes using coordination chemistry [64]. The incorporation
of B-POSS into the main chains of a polymer results in significant lowering of the dielectric constant.
This is because B-POSS has an inert inorganic silicon framework [65]. In addition, B-POSS-based
materials possess desirable chemical and physical properties due to their structural and property
variability, which is tuned by the modulation of functional groups. Sodkhomkhum et al. [66] reported
the synthesis of poly(siloxane/B-POSS) via a polycondensation reaction between chlorides containing
B-POSS and hexamethyltrisiloxane with high Tg and transparency. Iso-butyl end-capped B-POSS
reported by Groch et al. [67] showed enhanced solubility compared with methyl end-capped B-POSS.
Thermal properties investigated by thermogravimetric analysis (TGA) showed that the polymers
had exceptionally high thermal degradation temperature (Td) in the range of 470–530 ◦C whether
in nitrogen or air atmosphere. About 80% residual weight of the polymers was found in nitrogen
atmosphere at 760 ◦C.

Due to the promising applications of B-POSS, this review focuses on its synthesis and
functionalization methods. The applications and properties of polymers containing POSS will
also be introduced. Finally, we suggest some prospects for POSS from our own perspective.

2. Functional Methods of B-POSS

Figure 1 shows the schemes of various synthetic possibilities of B-POSS. Generally, B-POSS is
synthesized through reactions between raw materials such as phenyltrimethoxysilan, isopropanol,
sodium hydroxide, and methylvinyl dichlorosilane or methyldichlorosilane. B-POSS has been obtained
by involving the synthesis of 3,13-dihydrooctaphenyl B-POSS (2) and bifunctional POSS. During the
synthesis of B-POSS, Karstedt catalyst was used and tetrahydrofuran (THF) toluene or isopropanol were
employed as solvent. The obtained B-POSS was washed with methanol or hexane and characterized
by 1H-NMR, 29Si-NMR, (Fourier transform infrared spectroscopy) (FT-IR ) analysis.
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Figure 1. Schematic illustration of reaction types of bifunctional polyhedral oligomeric 
silsesquioxanes (B-POSSs) including octaphenyldicycloocatasiloxane tetrasodium Silanolate (1), 3,13-
dihydrooctaphenyl B-POSS (2), 3,13-divinyl B-POSS (3), para-aminophenol anhydride B-POSS (6), 
di(ethylene glycol) POSS (8), 3,13-Dihydroxypropyloctaphenyl B-POSS (10), 3,13-
diglycidyloxypropyloctaphenyl B-POSS (13), 3,13-diphenylethenyl B-POSS (14), 3,13-
diazidopropyloctaphenyl B-POSS (18). Numbers denote compounds discussed in the paper. 

2.1. Amino-Functionalized POSS 

Liu et al. synthesized diamine-modified POSS (4) by means of a Heck reaction, as shown in 
Figure 2 [68]. An ocatasiloxane tetrasodium silanolate (denoted Na4O14Si8(C6H5)8) (compound 1) was 
first obtained through the hydrolysis of a phenyltrimethoxysilane precusor in isopropanol by using 
the same procedure as Kakimoto et al. [69]. Phenyltrimethoxysilane, isopropanol, and sodium 
hydroxide were used as the precursor, solvent, and catalyst, respectively. Diamine-modified POSS 
was obtained through the reaction between 3,13-divinyl B-POSS (3) and 4-bromoaniline with 
palladium catalyst (Figure 2), with a yield of 91%. The structures of compounds 3 and 4 were verified 
by 1H-NMR. Compared with one-armed POSS, compound 4 can be adopted to synthesize polymer 
hybrids containing B-POSS in the backbone, including polyamide (PA), polyurethane (PU), and 
polyimide (PI), through step polymerization, where the activity of the amine functional group is of 
prime concern. 

 

Figure 2. Synthesis of 3,13-dianilino B-POSS (4). (Reprinted with permission from Liu et al. [68]. 
Copyright 2016 Royal Society of Chemistry). 

Based on compound 4, Liu et al. [70] prepared polybenzoxazine-B-POSS (PBZ-B-POSS) 
copolymers, as shown in Figure 3. For this, compound 4 was introduced into main chains of 

Figure 1. Schematic illustration of reaction types of bifunctional polyhedral oligomeric silsesquioxanes
(B-POSSs) including octaphenyldicycloocatasiloxane tetrasodium Silanolate (1), 3,13-dihydrooctaphenyl
B-POSS (2), 3,13-divinyl B-POSS (3), para-aminophenol anhydride B-POSS (6), di(ethylene glycol)
POSS (8), 3,13-Dihydroxypropyloctaphenyl B-POSS (10), 3,13-diglycidyloxypropyloctaphenyl B-POSS
(13), 3,13-diphenylethenyl B-POSS (14), 3,13-diazidopropyloctaphenyl B-POSS (18). Numbers denote
compounds discussed in the paper.

2.1. Amino-Functionalized POSS

Liu et al. synthesized diamine-modified POSS (4) by means of a Heck reaction, as shown in
Figure 2 [68]. An ocatasiloxane tetrasodium silanolate (denoted Na4O14Si8(C6H5)8) (compound
1) was first obtained through the hydrolysis of a phenyltrimethoxysilane precusor in isopropanol
by using the same procedure as Kakimoto et al. [69]. Phenyltrimethoxysilane, isopropanol, and
sodium hydroxide were used as the precursor, solvent, and catalyst, respectively. Diamine-modified
POSS was obtained through the reaction between 3,13-divinyl B-POSS (3) and 4-bromoaniline with
palladium catalyst (Figure 2), with a yield of 91%. The structures of compounds 3 and 4 were verified by
1H-NMR. Compared with one-armed POSS, compound 4 can be adopted to synthesize polymer hybrids
containing B-POSS in the backbone, including polyamide (PA), polyurethane (PU), and polyimide (PI),
through step polymerization, where the activity of the amine functional group is of prime concern.
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Figure 2. Synthesis of 3,13-dianilino B-POSS (4). (Reprinted with permission from Liu et al. [68].
Copyright 2016 Royal Society of Chemistry).

Based on compound 4, Liu et al. [70] prepared polybenzoxazine-B-POSS (PBZ-B-POSS) copolymers,
as shown in Figure 3. For this, compound 4 was introduced into main chains of polybenzoxazines
(PBZs) by reaction with 4,4-diaminodiphenylmethane (DDM), 4,4′-dihydroxyldiphenylisopropane,
and formaldehyde. Compared to neat PBZ, the hybrid copolymers exhibited enhanced surface
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hydrophobicity with increased content of B-POSS. The contact angle of PBZ-B-POSS copolymers was
significantly higher than that of neat PBZ (99.6◦). PBZ-B-POSS thermoset copolymers can be easily
obtained by thermally activated ring-opening polymerization.
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Figure 3. Synthesis of organic–inorganic polybenzoxazine-B-POSS (PBZ-B-POSS) copolymers based on
compound 4. (Reprinted with permission from Liu et al. [70]. Copyright 2017 Elsevier).

Based on compound 2, Wu et al. [71] reported the synthesis of aromatic tetracarboxylic dianhydride
modified B-POSS via the reaction between 3,13-dianilino B-POSS (4) and pyromellitic dianhydride.
The hybrid exhibited enhanced solubility, 5% weight loss (T5%) at 570 ◦C in nitrogen atmosphere, and a
high Tg of 300 ◦C. On the other hand, tetracarboxylic dianhydride modified B-POSS can be synthesized
before the modification of diamine groups, as exemplified by Wu et al. [72]. Double-decker-shaped
silsesquioxane dianhydride was synthesized before further reaction with 4,4-oxydianiline. 29Si-NMR
confirmed their structure by the appearance of peaks at intensity values of −21.8, −78.3, and −78.9 ppm.

When 4,4-oxydianiline is replaced by p-aminophenol or o-aminophenol, hydroxyl group modified
B-POSS can be formed, as reported by Chen et al. (Figure 4). [73] First, compound 5 was reacted with
p-aminophenol or o-aminophenol to form the para-aminophenol anhydride B-POSS (B-POSS-ND-p-OH)
(6) and ortho-aminophenol anhydride B-POSS (B-POSS-ND-o-OH) (7), as shown in Figure 4. The
influence of the substitution position of the B-POSS on the thermal stability and thermal behavior of
these (benzoxazine) (BZ) monomers was well investigated. The thermal investigation of B-POSS-BZ
monomers proved that the incorporation of B-POSS enhanced their resistance to the degradation of the
hybrid monomers. The ortho-substitution of the aminophenol units resulted in lower thermal stability
than the para-substitution of the aminophenol units.
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2.2. Hydroxyl Functionalized POSS

Due to the strong aggregation tendency of the super-hydrophobic POSS moiety [74], we reviewed
the mechanism of amphiphilic hybrid POSS copolymer in self-assembly, in which POSS can
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effectively control the motion of the polymer chain [75]. Kucuk et al. reported the preparation
of the first (Langmuir-Blodgett film) (L-B film) containing B-POSS with a well-defined structure [76].
Amphiphilic two- and four-armed di(ethylene glycol) POSS (2OH-B-POSS) (8) and 4OH-B-POSS (9)
were synthesized. 2OH-B-POSS was formed by the reaction between 2H-B-POSS and a 1.3-fold excess
amount of di(ethylene glycol) vinyl ether by means of a direct hydrosilylation reaction (Figure 5).
Similarly, 4OH-B-POSS was obtained, and the structure was confirmed by 1H-NMR. Through surface
pressure-area (π-A) isotherms and Brewster angle microscopy, the amphiphilic B-POSS monolayer at
the air–water interface was observed.
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Copyright 2011 Elsevier).

To further probe the hydrogen bonding effect on the monolayer properties, they also synthesized
amphiphilic B-POSS with core-corona amphiphile full name 2-di(ethylene glycol) urethane B-POSS
(2DEGNH-B-POSS) [77]. Ethyl isocyanate and 2-di(ethylene glycol) B-POSS (2DEG-B-POSS) were used
as raw materials to fabricate 2DEGNH-B-POSS. The structure was confirmed via 1H-NMR and FT-IR.
The 2DEGNH-B-POSS with a urethane group at the end exhibited a strong hydrogen bond interaction
in the 2DEGNH-B-POSS rod-like assemblies. A uniform liquid-like monolayer was formed by the
mixture of 2DEGNH-B-POSS and full name 2DEG-B-POSS (1:1 molar ratio). Monolayer properties
could be improved because of the hydrogen bonds between the urethane groups in 2DEGNH-B-POSS
and the hydroxyl groups in 2DEG-B-POSS, which guaranteed the successful separation of L-B film.

3,13-Dihydroxypropyloctaphenyl B-POSS (10) was synthesized by Wei et al. [78]. First, 3,13-
di(trimethylsilyl)oxypropyloctaphenyl B-POSS was obtained by means of a hydrosilylation reaction
between B-POSS and allyloxytrimethylsilane. Then, compound 11 was obtained through a deprotection
reaction of 3,13-di(trimethylsilyl)oxypropyloctaphenyl B-POSS (Figure 6). 1H-NMR confirmed their
structure by the appearance of a CH3–Si group at 0.38 ppm, Si–H group at 4.98 ppm, benzene rings at
7.14–7.50 ppm, and –OSiCH3CH2CH2CH2OH group at 0.31 ppm. Then, compound 10 was used as a
chain extender to produce linear hybrid PUs with B-POSS in the backbone. These organic–inorganic
linear PUs showed enhanced surface hydrophobicity. It was also noted that the Tg values increased
with the increased content of B-POSS.
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Figure 6. Synthesis of 3,13-dihydroxylpropyloctaphenyl B-POSS (10). (Reproduced with permission
from Wei et al. [78]. Copyright 2012, Royal Society of Chemistry).

Wen et al. [79] synthesized epoxy soybean oil-based polyurethanes modified by 3,13-
dimethyhydroxysilyl double-decker phenylsilsesquioxane (B-POSS(Me)OH). B-POSS(Me)OH was
directly obtained by the reaction between compound 1 and methyltrichlorosilane. 1HNMR and
MALDI–TOF–MS confirmed the successful synthesis of B-POSS(Me)OH. TGA was applied to investigate
the thermal properties of hybrid polyurethanes. At high temperature, the thermal stability and flame
resistance of the hybrids were significantly improved because of the silicon dioxide generated from
the oxidation of B-POSS(Me)OH wrapping on the surface. Differential scanning calorimetry (DSC)
showed that the Tg of the hybrid polyurethane exhibited a parabolic linear relation with the increased
B-POSS(Me)OH content. By incorporating different contents of B-POSS(Me)OH, the mechanical
property of hybrid polyurethane varied, and the amount exceeded 4.6 wt %, and the tensile strength
started to decrease.

Han et al. [80] reported a variety of Janus-type regioisomeric B-POSSs functionalized by hydroxyl
groups, which were synthesized through thiol–ene “click” chemistry (Figure 7). 1H NMR and 13C
NMR were successfully applied to differentiate and study a class of mixed octakis-adduct regioisomers
with various surface positional functional groups. Due to the existance of equivalent vinyl groups,
the para-substitutional product p-T8V6(OH)2 only exhibited one set of strongly coupled, second-order
spectra of an ABC spin system by 1H NMR. Tiny differences in the chemical shifts beween experimental
and simulated spectra were found in m- and o-T8V6(OH)2 (meta or ortho-substitutional product which
obtained by the V8T8 showed in the Figure 7). The spectral pattern presented a group of signals from
each individual subset of vinyl resonance signals. The 13C NMR spectra of p-, m-, and o- T8V6(OH)2

were also classified according to the differences between them.
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2.3. Aromatic Ring Functionalized POSS

To synthesize high-performance polymers, POSSs are often functionalized with aromatic
groups [81–84]. Seino et al. [69] reported that the reaction between B-POSS and diynes resulted
in the formation of linear polymers via hydrosilylation polymerization. Compound 11 was
formed quantitatively through the reaction of compound 2 with diphenylacetylene (Figure 8).
The polymerization of B-POSS with diynes was obtained via hydrosilylation, as shown in Figure 8.
Chemical structures were confirmed by 1H-NMR spectroscopy; the characteristic peaks of B-POSS
were methyl groups ranging from 0.22 to 0.38 ppm, and the characteristic peaks of the phenylene
group signals appeared from 6.41 to 7.59 ppm.

Benzocyclobutene (BCB) is a moiety that can be introduced into polymers and oligomers due to its
high refractive index, stable air and moisture exposure, low dielectric constant, and excellent thermal
and mechanical properties. A series of benzocyclobutene-functional B-POSSs (2BCB-B-POSS and
4BCB-B-POSS) were synthesized by Hu et al. [85]. After curing at above 200 ◦C, the hybrid resins were
converted into highly cross-linked polymers with enhanced thermal stability and optical and electrical
properties via Diels–Alder reaction. Compared with resin cured without B-POSS, this BCB-B-POSS
showed better performance in terms of low water abosorption, low heat transfer, low dielectric constant,
and higher (light emitting diode) (LED) luminous efficiency. A new type of bifunctional phenolic
B-POSS (B-POSS-BP) was synthesized with allylamine and CH2O via Mannich condensation to form a
bis-allyl benzoxazine B-POSS derivative (B-POSS-BZ) by Liao et al. [86]. The B-POSS was critical in
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preparing thermally stable, optically transparent, and mechanically flexible polybenzoxazine polymers
after the hydrosilylation of B-POSS-BZ with polydimethylsiloxane (PDMS).
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2.4. Divinyl Functionalized B-POSS

From the synthetic point of view, divinyl substituted B-POSS is important in free radical
polymerization and silylative coupling. Mituła et al. synthesized dialkenyl-substituted B-POSS,
including allyl, hex-5-enyl-, and dec-9-enyl-B-POSS, by condensation and hydrosilylation processes
(Figure 9) [87]. First, dichloro(alkenyl)methylsilane was obtained by the reaction between
dichloromethylsilane and 1,9-decadiene under the [Pt2(dvds)3] catalyst. Then, B-POSS-2Si-decenyl was
obtained by the condensation reaction between B-POSS-4OH and dichloro(dec-9-enyl)methylsilane
under triethylamine (R3N) and THF. B-POSS-2-Si-Allyl (n = 1), B-POSS-2-Si-hexenyl (n = 4),
and B-POSS-OH (n = 8) were also obtained by the same reaction. Walczak et al. [88] also reported the
synthesis of a series of B-POSS functionalized highly π-conjugated ethylarenes and analogous hybrid
materials. The existance of compound 2 with both cis- and trans-isomers was verified by 29Si NMR.
The appearance of 18.35, 78.51, and 79.46 ppm peaks and 18.35, 78.51, 79.40, and 79.49 ppm peaks was
attributed to the trans- and cis-isomers, respectively. This new B-POSS compound was reacted with
styryl- and bis(styryl)arenes via hydrosilylation reaction, leading to the formation of ethyl bridged
molecular and macromolecular hybrid systems.
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Figure 9. Synthesis of dialkenylfunctional B-POSS (12) via condensation reaction. (Reprinted with
permission from Mituła et al. [87]. Copyright 2017 Creative Commons CC BY license).

Along with silylative coupling, cross-metathesis provides efficient and complementary synthetic
routes, leading to B-POSS hybrids of great practical importance. Zak et al. [89] produced a series
of functionalized dialkenyl silsesquioxanes. Two types of transititon metal-catalyzed reactions,
highly stereoselective silylative coupling (SC) and cross-metathesis (CM), of divinyl substituted B-POSS
(B-POSS-2SiVi) with substituted styrenes and other olefins were used for the synthesis, resulting in the
formation of E isomer quantitatively.

After that, silylative coupling and metathetic copolymerization (ADMET) were further used to
synthesize a new class of vinylene-arylene and B-POSS copolymers in another work [90]. Different
arenes were polymerized in order to compare their thermal and mechanical properties. TGA proved
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high thermal resistance over 550 ◦C, depending on the B-POSS content. Gel permeation chromatography
(GPC) measurements confirmed that the average molecular weight (Mw) of copolymers improved
with the elongation of reaction time, which was possibly due to the steric hindrance.

It was found that the activity of the catalyst was affected by the feeding ratio of B-POSS in the
copolymerization. Groch et al. [91] synthesized copolymers of ethylene with divinyl substituted
B-POSS by coordinative copolymerization under the catalyst of metallocene and bis(phenoxy-imine).
The B-POSS content varied in the range of 0.93–11.53 wt % to optimize and obtain the relation between
compositions and the structural properties of copolymers. Different products were obtained depending
on the different B-POSS content, pressure of ethylene, and time of reaction. Results indicated that with
increased feeding concentration of B-POSS, the activity of metallocene catalyst was found to initially
increase and then gradually decrease over a critical value.

2.5. Asymmetric Functionalization of B-POSS

Incorporating B-POSS in the polymer chain provides a more effective retardation of the chain
motion of the linear polymer, which might allow higher effectiveness in property modulation. However,
it is noteworthy that B-POSS bridging different segments or chains on each side may offer an interesting
new class of materials.

Vogelsang et al. [92] reported a method to obtain asymmetric side-capped B-POSS by using a
combination of dichloro- and trichlorosilane capping agents (Figure 10). A mixture of symmetric
and asymmetric B-POSSs was obtained by the reaction between B-POSS(OH)4 and (CH3)(R)SiCl2,
(CH3)SiCl3, as shown in Figure 10. To obtain AB type, liquid chromatography (LC) was considered
as an effective separation technique and was employed to obtain compound 15 (AB) with
asymmetric functionality. However, significant symmetric byproduct waste would be generated
and it required differences in polarity between the byproducts and the desired asymmetric material to
be effectively separated.
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Based on Vogelsang‘s work, Barry et al. reported a more effective route to synthesize asymmetric
functional B-POSS (16) by the selective protection of silanols with boronic acid (Figure 11) [93]. Such
an active protecting group could protect two silanols simultaneously, and it could be easily introduced
and removed without affecting the B-POSS framework. In this way, high recyclable starting tetraol
B-POSS was also achieved. 4-Methoxyphenylboronic acid was used because its outstanding methoxy
protons gave a high yield (98%) and simple spectroscopic analysis was allowed. The protocol is general
and highly efficient for a wide range of asymmetrically functionalized B-POSSs.
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B-POSS] (9) was obtained via hydrosilylation reaction using 4H-B-POSS and di(ethylene glycol) 
(DEG) vinyl ether, with Pt(dvs) as catalyst. Then, compound 17 was synthesized through the reaction 
between compound 9 and (phosphorus oxychloride) (POCl3) (Figure 12). 1H-NMR spectra suggested 
the appearance of –CH2–O–P at 3.66 ppm. DSC indicated that Tg was below room temperature. 
Compound 17 cast film exhibited high conductivity (0.12 S cm–1, 85 °C) under 95% relative humidity. 
Compound 17 showed its possible application in fuel cells because of this excellent proton 
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Figure 11. Asymmetric functional B-POSS by the selective protection of silanols with boronic acid.
B represents the boron atom and the R on the boron atom represents 4-Me-C6H4, which are more
clearly to show selective-protected location of the tetraol B-POSS. (Reprinted with permission from
Barry et al. [93]. Copyright 2019 Royal Society of Chemistry).

A special catalyst was also explored in the selective synthesis of asymmetric B-POSS. Zak et al.
reported ruthenium-N-heterocyclic carbene complexes (formula [RuHCl(CO)(NHC)(PCy3)]) as efficient
and selective catalysts [94]. The [RuHCl(CO)(NHC)(PCy3)] complexes were obtained by ligand
exchange between tricyclohexylphosphine (PCy3) and N-heterocyclic carbene (NHC). The high catalytic
activity exhibited by the new catalyst allowed the bifunctionalization of three divinyl-substituted
B-POSS cage compounds in one pot. Tian et al. [95] synthesized a kind of asymmetric functional
B-POSS with silyl hydride at one end and two silanol groups at the other end. Here, only one of the
two silanol groups coupled with silyl hydride, while the other silanol remained intact owing to steric
hindrance. Blanco et al. [96] prepared POSS/PS hybrids by in situ polymerization to compare the
effect of symmetry and asymmetry POSSs in terms of thermal property. The asymmetry POSS/PS
showed better thermal performance indicated by TG, (differential thermogravimetric) (DTG), and DSC.
Tanaka et al. [97] also investigated the thermal and mechanical properties of a series of polymers
such as polystyrene (PS), poly(methyl methacrylate) (PMMA), and ethylene-(vinyl acetate) copolymer
(EVA), which were incorporated with 5 wt % POSS. The polymer matrices showed good thermal
stability because of the incorporation. The SEM suggested the homogeneous dispersion of POSS. The
POSS fillers were found to enhance the hardness of PS, which was confirmed by (dynamic mechanical
analysis) (DMA). Hence, obtaining asymmetrical POSS molecules is highly important for dispersion in
the polymer matrix.

2.6. Other Bifunctional POSS

Chlorine-containing bifunctional POSS (Cl-B-POSS) with excellent optical transparency and
hydrophobicity was obtained via the polycondensation reaction of di[(3-chloropropyl)isopropoxysilyl]-
bridged B-POSS with hexamethyltrisiloxane by Sodkhomkhum et al. [66]. Phosphonic-acid-containing
B-POSS (PHOS-B-POSS) (17) was synthesized by Kucuk et al. to prepare proton-conducting
electrolyte film [98]. First, four-armed di(ethylene glycol) B-POSS [4DEG-B-POSS] (9) was
obtained via hydrosilylation reaction using 4H-B-POSS and di(ethylene glycol) (DEG) vinyl
ether, with Pt(dvs) as catalyst. Then, compound 17 was synthesized through the reaction
between compound 9 and (phosphorus oxychloride) (POCl3) (Figure 12). 1H-NMR spectra
suggested the appearance of –CH2–O–P at 3.66 ppm. DSC indicated that Tg was below
room temperature. Compound 17 cast film exhibited high conductivity (0.12 S cm–1, 85 ◦C)
under 95% relative humidity. Compound 17 showed its possible application in fuel cells
because of this excellent proton conductivity under humid conditions as well as high thermal
stability. Another phosphorus-containing B-POSS used as flame-retardant material was reported by
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Song et al. [99]. Novel silicon–phosphorus linear polymers were synthesized via hydrosilylation
reaction between B-POSS and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivatives.
Then, different contents of B-POSS were blended with polycarbonate/acrylonitric–butadiene–styrene
(PC/ABS) to study the flame-retardant properties. The temperature of 5 wt % weight loss (T5%) and the
char residue yield at 800 ◦C suggested good flame retardancy of PC/ABS containing B-POSS.
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With a special substituted difluorosilane as a precursor, Tanaka et al. [100] reported a substituted
difluorosilane prepared from the reaction between BF3·Et2O and siloxanolate in the synthesis of an
amide product. The difluorosilane, bearing a vinyl- or BF3-complexed amino group, was used as the
raw material to synthesize polycyclic silsesquioxanes under mild conditions. This general strategy
enabled the synthesis of B-POSS where various functional groups could be introduced.

3,13-Diglycidyloxypropyloctaphenyl B-POSS (13) was synthesized by Wang et al. via a
hydrosilylation reaction between 3,13-dihydrooctaphenyl B-POSS (2) and allyl glycidyl ether [101].
Based on compound 13, Zhang et al. [102] further incorporated this B-POSS macromer into
polybenzoxazine (PBZ) to investigate the thermal and mechanical properties through dynamic
mechanical thermal analysis (DMTA) and TGA. The Tg value was higher than the PBZ and increased
with the increased content of di-functional POSS macromere. With various amounts of 3,13-diglycidyl
B-POSS, the nanocomposites containing 30 wt % of POSS showed the highest Tg value. The Td

increased with the increased compound 13 content.
Mono- and poly-epoxy groups containing B-POSS were synthesized by Cao et al. [103]. Curing

kinetics and the thermal and mechanical performance of epoxy resin with varying amounts of B-POSS
loading ratios were studied. The mono B-POSS showed more flexible structure and a better toughening
effect, while the branched poly B-POSS exhibited higher thermal resistance.

A class of B-POSS-functionalized di-nuclear alkynylplatinum (II) terpyridine complexes exhibiting
stereoisomerism was reported by Au-Yeung et al. [104]. The cis- and trans-complex stereoisomers were
separated by column chromatography and identified by X-ray crystallography. The cis-isomer showed
that the two methyl groups located on the silicon atoms pointing in the same direction exhibited a
small C–Si–Si–C torsion angle of 13.71◦, whereas the trans-configuration showed a torsion angle of
180◦. The cis-isomer also exhibited significantly different aggregation behavior in 50% water–acetone
mixture. In 60% water–acetone solution, the cis-form showed a morphological transformation into
spheres with a diameter of about 90 nm.

3. Polymer Composites Containing B-POSS

Linear polymers refer to molecular chains that are linear and irregular. Due to the simplicity of
materials processing, good solubility, high chain regularity, and POSS content in the hybrids [89,105],
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more attention has been paid to B-POSS-containing linear composite materials because of the specific
nanostructure, hydrophobic core, functionalization, flame retardance, optical transparency, and low
thermal conductivity.

3.1. PU–POSS

In recent years, PU has been applied in various areas such as packaging, coatings, footwear,
and consumer care products [106]. The applications have been extended to the biomedical field
due to the biocompatibility of PUs [107]. Even the liquid crystalline PU (LCPU) field, when LCPU
was incorporated into POSS, the LCPU/POSS hybrids could show high melting and isotropization
temperatures along with the broadening phase transition effect due to the incorporation of POSS [108].
Although PUs have been used in many fields, they still have many limitations, such as poor thermal
and moisture stability originating from urethane groups and low mechanical resistance due to the
intrinsic hardness of the hard segments. Therefore, many efforts have been made to solve these
problems. The incorporation of POSS could affect the microphase-separated morphology, dynamics
of phase separation, and order development of PU with different annealing temperatures. At low
temperature, the POSS could promote the phase separation; however, the phase separation would
slow under the high temperature [109]. Structural and property modifications of linear PUs with POSS
have attracted much attention [110–112].

Hebda et al. [113] reported PU hybrid foam (PUF), which was obtained by introducing with 0
to 15 wt % POSS chemically. The POSS moieties act as both pendant groups and cross-links. The
incorporation of POSS leads to reduced porosity and increased hardness. The simulated physiological
fluid (SBF) confirmed the material is bioactivity as well as the POSS used. Huang et al. [114] synthesized
a series of hybrid PUs containing double-decker octaphenylsilsesquioxanetetraol (DDT8OH) and
polyols through a one-step method. DMA analysis suggested that the enhanced Tg was due to the
presence of B-POSS in the main chain. SEM images showed the presence of nano- and micro-sized
B-POSS aggregates because of the heterogeneous dispersion of B-POSS in liner PU, which was
further confirmed by the presence of a nanocrystalline phase of B-POSS by XRD analysis. The
hydrophobicity and mechanical performance of the liner PU with B-POSS was obviously enhanced as
well. Xu et al. [115] also investigated organic–inorganic polyurethanes with B-POSS, and found that the
microphase separation of POSS was self-organized into spherical microdomains 10–50 nm in diameter.
Raftopoulos et al. [116] reported the molecular dynamics and morphology of a polyurethane system
with POSS through SEM, DSC, (thermally stimulated depolarization currents) (TSDC), and DMA.
Different loadings of POSS in polyurethane resulted in different morphologies. The particles in the
main chain had no influence on the time scale of segmental dynamics. The increase of Tg had no
influence on the relaxation of α′. The incorporation of POSS in the polyurethane structure affected the
glass transition, the crystallinity of the soft phase, and the order–disorder transitions [117].

3.2. Polyimide POSS

Polyimides are high-performance materials that display many advanced properties, such as for
instance good resistance at high temperature, low water absorption, and alkali resistance. Thus, they
have been widely used in many fields such as microelectronics and the aerospace industry [118]. Many
efforts have been made to improve the thermal and mechanical properties of polyimides containing
POSS [101,119–129]. Wu et al. [130] synthesized a novel polyimide with B-POSS in the main chains
(Figure 13). Different POSS content in the main chain was realized via a multi-step reaction methodology
to obtain a series of linear semiaromatic sulfonated polyimides. The TGA data showed that the weight
loss of linear sulfonated polyimide POSS (SPI-x-POSS) (x: mole ratio (%) of phenylbisaniline-POSS)
membranes was greatly increased by 200 to 450 ◦C. In addition, linear SPI-POSS copolymers displayed
appreciable mechanical strength, good oxidative and hydrolytic stability, low methanol permeability,
and high proton conductivity. Linear SPI-POSS-based copolymers were good potential candidates to
fabricate proton exchange membrane (PEM) materials.
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4. Conclusions 

This review focuses on the functional methods of bifunctional POSS and composites with B-
POSS in the main chain. B-POSS has great prospects for the development of large numbers of groups 
in organic–inorganic hybrid copolymers with B-POSS as the main component. Therefore, a number 
of breakthrough studies were done on the structures and properties of hybrid materials with B-POSS. 
Nanocomposites with excellent properties were constructed with the incorporation of POSS into 
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properties and solubility were reported through this modification. Moreover, in the future, POSS-
containing monomers will be applied in various fields that require outstanding properties of 
polymers. Without a doubt, many exciting developments await POSS-containing hybrid materials, 
with the possibility for exciting new discoveries in the future. 
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Liu et al. [68] synthesized a well-defined 3,13-dianilino B-POSS through the Heck reaction.
The organic–inorganic polyimides prepared with 3,13-dianilino B-POSS displayed enhanced surface
hydrophobicity compared to plain polyimide. The contact angle tested by water was increased by
20◦ with 19.4 wt % B-POSS, whereas plain polyimide was 87◦. Dielectric measurement showed that
dielectric constants were significantly lower and decreased with the increased content of compound 4.

4. Conclusions

This review focuses on the functional methods of bifunctional POSS and composites with B-POSS
in the main chain. B-POSS has great prospects for the development of large numbers of groups in
organic–inorganic hybrid copolymers with B-POSS as the main component. Therefore, a number of
breakthrough studies were done on the structures and properties of hybrid materials with B-POSS.
Nanocomposites with excellent properties were constructed with the incorporation of POSS into linear
polymers. Good thermal stability and mechanical properties and exceptional dielectric properties
and solubility were reported through this modification. Moreover, in the future, POSS-containing
monomers will be applied in various fields that require outstanding properties of polymers. Without a
doubt, many exciting developments await POSS-containing hybrid materials, with the possibility for
exciting new discoveries in the future.
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