Highly stretchable, strain sensitive and ionic conductive cellulose based hydrogel for wearable sensors

Ruiping Tong ¹, Guangxue Chen ^{1,*}, Junfei Tian ¹ and Minghui He ^{1,2,*}

- ¹ State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; tongpinp@163.com (R.T.); chengx@scut.edu.cn (G.C.); fejftian@scut.edu.cn (J.T.); heminghui@scut.edu.cn (M.H.)
- ² Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510640, China
- * Correspondence: chengx@scut.edu.cn (G.C.); heminghui@scut.edu.cn (M.H.)

Figure S1 A) Young's modulus and B) modulus of cellulose based hydrogels (CHs) with different weight ratios of acrylic acid under tension and compression mode, respectively.

Figure S2 Compressive stress-strain curves of CH0 with different thickness.

Figure S3 Conductivity values of CHs.